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ABSTRACT Gene identity by descent (IBD) is a fundamental concept that underlies genetically mediated similarities among relatives.
Gene IBD is traced through ancestral meioses and is defined relative to founders of a pedigree, or to some time point or mutational
origin in the coalescent of a set of extant genes in a population. The random process underlying changes in the patterns of IBD across
the genome is recombination, so the natural context for defining IBD is the ancestral recombination graph (ARG), which specifies the
complete ancestry of a collection of chromosomes. The ARG determines both the sequence of coalescent ancestries across the
chromosome and the extant segments of DNA descending unbroken by recombination from their most recent common ancestor
(MRCA). DNA segments IBD from a recent common ancestor have high probability of being of the same allelic type. Non-IBD DNA is
modeled as of independent allelic type, but the population frame of reference for defining allelic independence can vary. Whether of
IBD, allelic similarity, or phenotypic covariance, comparisons may be made to other genomic regions of the same gametes, or to the
same genomic regions in other sets of gametes or diploid individuals. In this review, | present IBD as the framework connecting
evolutionary and coalescent theory with the analysis of genetic data observed on individuals. | focus on the high variance of the
processes that determine IBD, its changes across the genome, and its impact on observable data.

The descent and ancestry of DNA ural populations, and IBD may be measured relative to this
founder population. More generally, IBD may be measured
relative to the population at some past time point, with the
implication that more remote coancestry of current gametes
is ignored. In pedigrees, IBD is well defined relative to the
specified founders of the pedigree. The fact of IBD does not
depend on whether pedigree relationships are known. Spec-
ification of a pedigree relationship merely imposes a specific
prior distribution on the probabilities of IBD among individ-
uals and across the genome.

At a point in the genome, the coalescent ancestry of
a sample of gametes (Kingman 1982) defines the partition
of n gametes into the subsets that are IBD. The ancestral
recombination graph or ARG (Hudson 1991; Griffiths and
Marjoram 1996) is the most complete description of the
ancestry of the DNA of a set of n gametes, defining the
coalescents across the genome and hence the IBD partitions
relative to any past time point. Conversely, the sequence of
IBD partitions across the genome and over all time depths
relative to which IBD may be defined determine the se-
quence of coalescents across the genome. Figure 1A shows

At a given location in the genome, the descent of DNA as
described by Mendel’s first law (Mendel 1866) provides the
framework for analyses of the genetic consequences of
coancestry among individuals. This fundamental law of in-
heritance is phrased in probabilistic terms. In a diploid in-
dividual, at each location in the genome, a random one of
the two homologous copies of the DNA at that location is
the DNA copied to the offspring gamete. Additionally, all
meioses are independent; the random choice is made in-
dependently for each offspring, independently in the two
parents of an individual, and independently from generation
to generation in an ancestral lineage.

DNA in different current gametes that is a copy of a single
piece of DNA in some ancestral individual is said to be iden-
tical by descent or IBD from that ancestor. There is no abso-
lute measure of IBD; IBD is always relative to some ancestral
reference population. Many experimental or agricultural
populations have a natural founding stock, as do some nat-
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the recent ARG ancestry of a DNA segment in n = 5 current
gametes back to time point t. There are two recombination
events in the recent ancestry of these gametes, at genome
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Figure 1 Partial ancestral recombination graph to reference time t, show-
ing the successive IBD segments among five current gametes. The chro-
mosome is 10 ¢M and indexed by a continuous range of positions from
0 to 10. The four coalescent events are marked as ¢; to ¢4. Two recom-
bination events occur in the ancestry of these chromosomes, at positions
5 and 7. These events are marked as ry and r».

locations 5 and 7. Each recombination changes the IBD par-
tition relative to time t. Specifically, in region (0, 5) the IBD
partition is {(g, f), (b, €), (A)}; in (5, 7) it is {(g), (f, b, e),
(d}; in (7, 10) it is {(g), (f, b), (e, d)}. The ordering of the
subsets, and the ordering of elements within them, is irrel-
evant. The corresponding coalescents are shown in Figure
1B.

Inheritance of segments of DNA

Generation to generation, DNA is inherited in large seg-
ments of order 100 centimorgans (cM). Over successive
generations, recombination events break up these segments.
In reverse time, recombination events change the coalescent
ancestry of a sample of gametes and the IBD partitions
relative to any specified past time point t (Figure 1). In
populations with no natural founding time point, lengths
of segments shared IBD between a pair of gametes provide
a useful calibration of the time depth of the common ances-
tor to whom that IBD traces. For example, a time depth of 25
generations, resulting in a separation of 50 meioses, gives
segments of expected length 2 cM. More generally, a separa-
tion of m meioses provides segment lengths that are expo-
nentially distributed with mean 100/m cM.

Sved (1971) considered segments of genome unbroken
by recombination descending to a pair of gametes from the
most recent common ancestor (MRCA) of this segment. For
example, in Figure 1, the segment (5, 7) descends unbroken
to f and e from the MRCA at coalescent event c3. Hayes et al.
(2003) defined a segment to be IBD between a pair of game-
tes if it descends in this way unbroken by recombination.
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However, at any point in the genome, the MRCA of a pair of
current gametes is within some segment of genome unbro-
ken by recombination; thus, defining IBD in this way requires
some choice of minimal segment length that is no less arbi-
trary than choice of a defining time depth t. Several recent
authors in effect define IBD by a time depth such that pair-
wise IBD segments deriving from that time depth are long
enough to be detectable given the available density of genetic
marker or sequence data (Browning and Browning 2010;
Huff et al. 2011). However, there is high variance in the
exponentially distributed lengths of IBD segments deriving
from a MRCA at a given time depth t.

The generalization to a set of gametes would be to define
a given segment of genome in the given set to be IBD if and
only if it has a single coalescent ancestry. In this case, IBD at
any single point always occurs, and pointwise IBD is
characterized by the length of the segment around the point
that shares the identical coalescent ancestry. However, the
segment shared by all of a set of gametes becomes shorter as
more gametes are included. More importantly, the basic
premise that IBD is an equivalence relation dividing a set of
gametes into IBD subsets is violated if IBD is defined in terms
of a shared segment length rather than a time depth. For
example, in Figure 1, f and b are IBD over (5, 10), b and e
are IBD over (1, 7), but f and e are IBD only over (5, 7).
With, for example, a threshold length of 3, this last IBD
between f and e would not be recognized, although it would
be determined that f and b, and b and e were IBD in this
region. While analysis of segments of DNA descending un-
broken by recombination is an important tool, only the ARG
relative to some time depth provides a consistent definition
of an IBD process across the genome.

Coancestry and allelic associations

DNA that is IBD relative to some recent time point has very
high probability of being of the same allelic type. As compared
to individuals randomly chosen from the population, individ-
uals who share DNA IBD at the locus or loci relevant to
a phenotype will show similarity for that phenotype. Thus,
phenotypic correlations among individuals result from IBD,
and conversely allelic or phenotypic similarity provides evi-
dence of IBD. Correlations in allelic type have long been used
to measure relatedness among individuals (Wright 1922).
Powell et al. (2010) argue that the definition of IBD relative
to a time point is in conflict with coalescent theory (Kingman
1982) and propose definition of IBD in terms of current allelic
correlations. However, these allelic correlations are a statistic
reflecting coancestry rather than being that coancestry.
Linkage disequilibrium (LD) is the name given to associ-
ations in allelic type across linked loci. Associations due to
coancestry result broadly from two causes. A new variant
arising on a specific local haplotypic background creates
a strong association (LD) with the alleles of that back-
ground. Eventually, the initial LD is broken down by recom-
bination, but if the loci are tightly linked this may take
thousands of generations. Second, there are associations



due to population substructure. Random genetic drift will
result in different allele frequencies in different subpopula-
tions. Even if there is no LD within subpopulations, there
will be allelic associations between loci in the combined
population. This LD is also a reflection of coancestry: indi-
viduals within subdivisions are more closely related than are
individuals in different subdivisions. As with allelic associa-
tions among individuals, LD is not IBD, but is a reflection of
IBD.

Given genetic marker data on members of an extant
population, IBD can be detected. A set of individuals sharing
a haplotype that, due to its population frequency, is not
expected to be shared by a set of individuals of this size
randomly chosen from the population is evidence of IBD.
The smaller the probability that this haplotype sharing
would occur “by chance,” the stronger the evidence of
IBD. Longer haplotypes (of length >1 Mbp, say) have lower
population frequencies, and so, when shared, provide
clearer evidence of more recent IBD. At shorter distances,
LD becomes an important factor in assessing the population
frequencies of observed haplotypes, and hence the evidence
for IBD when these haplotypes are shared. Thus, at short
distances LD becomes a confounding factor in the detection
of IBD, and IBD of short segments of DNA cannot be
detected from common SNP variation.

The scope of this review

In this review we focus only on within-species genetic
variation and so the time depth of coancestry of interest is
also that within species. The focus is on human populations,
and our view of IBD is that of coancestry relative to some
time depth. This time depth will depend on the population
and the goal of the analysis, but will normally be <100
generations (see Rare variants in human populations). The
remainder of this review is divided into four main sections.

In The Processes of Identity by Descent we consider the
random processes that give rise to IBD itself. Specifically,
we consider probabilities of IBD, models for the partition
of gametes into IBD subsets, and the probability distribu-
tions of proportions of IBD genome and of lengths of IBD
segments. Although we make links between IBD and the
coalescent ancestry of a set of gametes, it is not possible
to give a full description of coalescent theory (Kingman
1982; Hudson 1991; Griffiths and Marjoram 1996), nor to
review evolutionary aspects of this theory such as those de-
veloped by Neuhauser and Krone (1997) and by Hein et al.
(2005).

In Phenotypic Similarity and Allelic Variation we explore
the relationship between IBD and the consequent pheno-
typic similarity of related individuals and consider measures
of allelic variation and association in relation to coancestry
and IBD. Our discussion of allelic correlations focuses on
their use as measures of relatedness among individuals.
We consider the pedigree-based numerator relationship ma-
trix (Henderson 1976) and the corresponding data-based
genetic relatedness matrix (Visscher et al. 2006). Although

IBD is the foundation of phenotypic similarities at the pop-
ulation level as well as the individual level and has links to
analyses of extant allelic associations in populations (Ardlie
et al. 2002; Wellcome Trust Case Control Consortium 2007),
we do not cover the extensive literature on population struc-
ture (Pritchard et al. 2000; Falush et al. 2003). Our focus is
on measures of similarity among individuals, rather than on
population-level measures.

In Inference of Relationships, Relatedness, and IBD Seg-
ments we consider the estimation of relationships and re-
latedness and the inference of IBD in individuals not
known to be related. We do not cover estimation of admix-
ture (McKeigue 1998) or inference of hybrids (Anderson
and Thompson 2002) or the use of inferred ethnic ancestry
in admixture mapping (Patterson et al. 2004; McKeigue
2005). The methods used in this area have many similarities
to inference and use of inferred IBD segments. They differ in
that, compared to IBD genome segments, the degree of hap-
lotypic similarity within segments of given ethnicity is less,
while the segments of a specific ethnic origin are typically
longer. The focus of admixture analysis is to detect segments
of genome of a specified ethnic ancestry in an individual,
rather than shared ancestry among individuals.

Finally, in Use of Inferred IBD in Genetic Analysis we re-
view the uses of inferred IBD in the analysis of genetic data
both in pedigrees and in populations. This includes a review
of genetic linkage mapping in terms of IBD and the use of
coalescent approaches to fine-scale mapping (Gene mapping
using IBD in pedigrees and Association and ancestry in fine-
scale mapping). We review briefly the increasing literature
on the use of observed allelic associations in the analysis of
quantitative genetic variation (Association mapping and her-
itability) and the adjustments for coancestry needed to in-
terpret these allelic associations (Adjusting for relatedness in
population-based genetic mapping). We consider the direct
use of IBD in mapping from population data (Population-
based IBD mapping) and briefly review recent literature on
the use of inferred IBD in analyses of population demo-
graphic history (Evolutionary and demographic inferences).

The Processes of Identity by Descent

In this section we assume that there is an accepted founder
population relative to which IBD is to be measured, whether
founder members of a defined pedigree or a population
existing at some time point in history.

Sources of variance in identity by descent

The probabilistic process of Mendelian segregation results in
variance, across loci, among individuals and over realizations
of a population process. Before considering these processes in
more detail, we consider a simple example to illustrate
aspects of variation in IBD. First, consider Mendelian segre-
gation at a single locus and within a defined pedigree. If the
marginal probability of IBD between two gametes at a single
genome location is s, the variance in realized IBD is /(1 — ),
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and the variance in the proportion of n such realizations that
result in IBD is (1 — ¢)/n. For example, at any genome
location, a pair of maternal first cousins share their maternal
genome IBD with probability 0.25. In a set of 120 first-
cousin pairs, the expected proportion sharing genome IBD
at a location is 0.25 and the standard deviation of that pro-
portion is ~0.04. In 5% of such sets of 120 pairs, the pro-
portion may be as high as 33% or as low as 17%.

A second dimension is the genome. In terms of genetic
distance, crossovers in the process of meiosis occur at a rate
of 1/M or 1/100 cM: on average, 1 cM is ~10° bp. The
outcomes of meiosis at nearby chromosomal locations are
therefore strongly positively correlated. In a pair of first
cousins, segments of IBD genome have an expected length
of 25 cM. In a genome of length 3000 cM, the expected
proportion of genome IBD is 0.25, and the standard devia-
tion of that proportion is ~0.04. In 5% of first-cousin pairs,
the proportion may be as high as 33% or as low as 17%.
For the variance of genome IBD between first cousins, the
3000-cM genome is “equivalent to” to 120 independent
realizations.

The inbreeding coefficient of an individual is the proba-
bility that, at any point in the genome, it carries two IBD
genes. To avoid confusion we use the classical term auto-
zygosity for the event of IBD between the two homologs of
an individual. The inbreeding coefficient of the offspring of
first cousins is 0.0625. Consider a set of 120 individuals,
each the offspring of a first-cousin marriage. At any location
in the genome, the expected proportion who are autozygous
is 0.0625 and the standard deviation is ~0.022. In 5% of
such sets the proportion may be as high as 10.5% or as low
as 2%. In a genome of length 3000 cM, the expected pro-
portion of genome IBD is 0.0625, and the standard deviation
of that proportion is ~0.018. In 5% of offspring of first-
cousin marriages, the proportion may be as high as 9.8%
or as low as 2.7%. Note that, whereas for the variance of IBD
between cousins the genome is equivalent to 120 indepen-
dent realizations, for the variance of autozygosity in their
offspring this is no longer the case.

A third dimension is the population, in which not only
autozygosity but also the inbreeding coefficient has vari-
ance. Consider first a population with a proportion a of
offspring of independent first-cousin marriages and the
remainder having negligible inbreeding coefficients. The
mean inbreeding coefficient in the population is 0.0625«,
and the standard deviation across population members is
0.0625\/a(1 — «). In a sample of n individuals from this
population, the expected average inbreeding coefficient is
0.0625«, and the standard deviation of this average is
0.0625\/a(1 — a)/n.

Finally, consider a population consisting of 30 sets of 4
offspring of independent first-cousin marriages. Now every
individual has inbreeding coefficient 0.0625, but the pop-
ulation structure affects the variance in IBD. Instead of 120
independent realizations, we now have 30. Within each set,
there is no IBD with probability 3/4, while with probability
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1/4, each of the 4 offspring has probability 1/4 of auto-
zygosity independently of its siblings. The standard deviation
of the proportion of the 120 individuals who are autozygous
at a location increases from 0.018 to 0.028, due to the within-
family correlation in IBD.

In natural populations all the above sources of variance
have effects. In a given population, with a given population
pedigree, not all individuals have the same ancestry; some
will have higher inbreeding coefficients, and some lower.
Due to random events in meiosis, individuals with the
same ancestral pedigree, and hence the same inbreeding
coefficient, will vary in the proportion of their genome that
is IBD. Likewise, for an individual with a given ancestral
pedigree, different genome locations will vary in the re-
alized IBD.

Coancestry at a single locus

We first review the probabilities, expectations, and variances
of IBD at a single point in the genome. The probability of
IBD between a pair of segregating gametes is the kinship
coefficient, (B, C) between the pair of individuals, B and
C, segregating the gametes (Wright 1922). Equivalently, this
is the inbreeding coefficient, f(D), of the offspring D of B and
C. The independence of meioses provides that, provided B is
not C nor an ancestor of C,

f(D) = Y(B.C) = ($(Ms.C) + ¥(Fs. C))/2 .
and §(D,D) = (1+4(B,C))/2,

where My and Fp are the parents of B. For a founder A who is

not an ancestor of B,

WA,B)=0 and @(A,A)=1/2.

Whether based on matrix methods and forward computa-
tion from the founders to the descendants (Quaas 1976),
ancestral path-tracing methods (Wright 1922; Stevens
1975), recursive methods (Karigl 1981), or some combina-
tion of these approaches, methods for computation of kin-
ship coefficients use Equation 1.

To consider even a pair of individuals, it is necessary to
consider larger numbers of gametes. For pedigree relation-
ships, Cotterman (1940) and Malécot (1948) first developed
probabilities of IBD among the four parental gametes trans-
mitted to a pair of individuals. In this case there are 15
possible partitions of these four gametes (Table 1). For
a larger set of n-labeled genes, Nadot and Vayssiex (1973)
provided a method with which to index the IBD states and to
compute the count of these partitions into IBD subsets.
These counts are the Bell numbers (Bell 1940) and increase
very rapidly with n. The properties of the Bell numbers are
still of mathematical interest (Berend and Tassa 2010).

In considering only a pair of individuals, it is usually
unnecessary to distinguish the maternal and paternal origins
of the two homologs within each individual, and the 15
possible IBD partitions reduce to nine state classes (Table 1).



Table 1 The IBD states among the four genes of two individuals

IBD State? State Descriptions
B B2 Partition Ewens Probability?
a b C d z (aq, az, a3, a4) Jacquard k
1 1 1 1 f(a b, cd (0,0,0,1) Aq —
1 1 2 2 (a, b)c d) (0,2,0,0) A, —
1 1 1 2 (a, b, o(d) (1,0,1,0) As —
1 1 2 1 (a, b, d)0) (1,0,1,0)
1 12 3 (a bo) (2,1,0,0) A4 —
1 2 1 1 (a, ¢, d)b) (1,0,1,0) As —
1 2 2 2 (ab,cd (1,0,1,0)
1 2 3 3 (ab)c, d) (2,1,0,0) Ag —
1 2 1 2 (a, O, d 0,2,0,0) A, k>
1 2 2 1 (@, d)b, 0 (0,2,0,0)
1 2 1 3 (a, ob) (2,1,0,0) Ag kq€
1 2 3 1 (a, d)b)c) (2,1,0,0)
T2 2 3 (@b od (2,1,0,0)
1 2 3 2 (a)b, d)o) (2,1,0,0)
12 3 4 (b (4,0,0,0) Ag ko

The two gametes of individual B are denoted a and b, and the two gametes of B,

are cand d.

? The pattern is defined by the labeling developed by Nadot and Vayssiex (1973).

b The total probability of each subset of genotypically equivalent states is given on the
first row. For example, As is the combined probability of states (11 12) and (11 21).

“ Note that Cotterman (1940) and some later authors use 2k, instead of k; for this
probability.

This provides the now generally accepted formulation of the
nine IBD states on a pair of relatives due to Jacquard (1974).
Despite the simplicity of the law of single-locus Mendelian
segregation, computation of the probabilities of these nine
state classes on an arbitrary pedigree remains a challenge.
Methods based on extensions of Equation 1 to larger num-
bers of genes were developed by Karigl (1981), and the
same approach provides methods for the computation of
other probabilities of gene ancestry and gene extinction
within defined pedigrees (Thompson 1983). For relation-
ship between a pair of noninbred individuals, the IBD states
are much simpler. The two individuals share 2, 1, or 0 genes
IBD at any locus, with probabilities k», k;, and ko, respec-
tively (Table 1).

Inbreeding and kinship coefficients, and more generally
probabilities of any IBD state, are expectations of random
variables that indicate IBD at a given point in the genome.
These random variables also have variance. Conceptually,
the pedigree-based inbreeding coefficient of an individual
may be thought of as the proportion of between-homolog
IBD over descents within the same pedigree at an infinite
number of unlinked loci. Different members of the popula-
tion share some part of their ancestry, with resulting
correlations in realized IBD. Within a given pedigree there
are both positive and negative correlations affecting the
variance of the IBD indicators. For example, consider only
the descent from a maternal grandparental couple to a set of
siblings. There is positive correlation in the maternal DNA
received by the siblings due to their shared descent from
grandparents to mother. There is negative correlation be-
tween the grandparents and also between the two homologs

within each grandparent in their descent to the grandchildren,
since each grandchild receives one and only one of these four
at a single locus.

As the examples in Sources of variance in identity by de-
scent show, within a finite population there is variation both
in the event of IBD (for example, autozygosity) and also in
the probabilities of such events (for example, inbreeding
coefficients). In addition to the variation resulting from ran-
domness in meiosis and from the different ancestral pedi-
grees of individuals within a given population, we may also
consider variation among replicate population realizations
under a given population process such as random mating
(Cockerham and Weir 1983). If f is the overall probability of
IBD between random gametes in the total collection of pop-
ulation replicates, the total variance is f(1 — f). Cockerham
and Weir (1983) partition this total variance into the variance
within a population (¢2) and that between population repli-
cates (o?). The component o reflects the variation in IBD
among replicate populations due to genetic drift. It is also
the covariance in IBD within a population relative to the total:
the larger the variance between, the greater the covariance
within, relative to the total collection. If a sample of n indi-
viduals is taken from a population, their average autozygosity
has expectation f and variance 2 /n + o2. As discussed by
Cockerham and Weir (1983), increasing n does not affect
the component of variance due to replication of the population
process.

Coalescent IBD and Ewens’ sampling formula

At a point in the genome, IBD among a set of n gametes
relative to time t ago is most easily thought of in terms of the
coalescent ancestry (Kingman 1982). If IBD is measured
relative to a time point at which there were k ancestral
lineages, the n gametes are partitioned into k IBD subsets.
As a function of the reference time t, the coalescent imposes
structure on the sequence of IBD partitions, since each co-
alescent event can only merge two lineages. In the example
of Figure 2A, the n = 6 gametes are partitioned into k = 3
groups, and the IBD partition is ((g, ¢, f), (b, €), (d)). A
partition may be characterized by the number a; of IBD
groups of size j, where n =73} ja;, and k=3 a;. In the
example, a3 = a; = a; = 1.

In terms of the time process, the coalescent is considered
backward from the present time, with the next coalescent
events occurring between a random pair of lineages at rate
proportional to ¢(¢ — 1)/2 when there are ¢ such lineages.
The process may equally be viewed forward in time. Each
coalescent event between a random pair among ¢ + 1 line-
ages (backward) corresponds to bifurcation of a random one
of the ¢ lineages (forward). The two processes differ in the
distribution of time between events, but both give the same
distribution of tree topologies (Kingman 1982), and hence
the same distribution of {a;}. The probability distribution of
tree shapes generated by this random bifurcating tree (RBT)
process was considered by Harding (1971).
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Figure 2 IBD: (A) in the coalescent ancestry relative to time depth t, (B)
relative to mutational origins on the coalescent ancestry, and (C) chang-
ing due to recombination. For details, see text.

The Ewens sampling formula (ESF) (Ewens 1972) also
provides a model for the partition of n gametes into IBD
subsets. Developed originally to model allelic variation, this
model has more general applications (Tavaré and Ewens
1997) and has been used to model IBD in forensic applica-
tions (Balding and Nichols 1994) and in the inference of IBD
from population data (Brown et al. 2012). A key advantage
of this model as a description of IBD among n gametes is
that a single parameter 6 determines the full distribution. In
particular, the probability that any two of gametes are IBD is
B =1/(1 + 6). Thus the parameter serves as a surrogate for
the time depth t relative to which IBD is measured. Under
the ESF, the distribution of the number of subsets k depends
on 6 but the distribution of {a;} given k does not.

Each of the RBT and ESF models has a Polya urn
interpretation, which provides additional insights into the
probabilities of IBD partitions: details are given in the Ap-
pendix. While there are close parallels in the processes which
give rise to the IBD partitions, the distributions of the num-
ber {a;} of groups of size j are different. The sizes of subsets
in an RBT partition tend to be more balanced than those for
the ESF. For example, when k = 2, with a, = a,—, = 1 for
x = 1,2, ... [n/2], the RBT distribution is uniform over x,
while that for the ESF is proportional to (x(n — x))~'. An
example for the case n = 8 and k = 4 is given in Table 2.
Note in particular the differences between the balanced a, =
4 with higher probability under RBT and the extreme as =
1, a; = 3 with higher probability under ESF.

There is also a coalescent interpretation for the partition
distributions under the ESF (Ewens 2004). This is that,
backward in time, each extant lineage is terminated by a mu-
tation at a constant rate 6/2, while nonterminated lineages
coalesce according to the standard neutral coalescent (Fig-
ure 2B). From this viewpoint, the ESF may be a more ap-
propriate model when considering descent from novel
mutations, for example, in analyses of IBD of haplotypes
carrying recent rare variants. Note that this infinite-alleles
ESF version of the coalescent with mutation differs from the
infinite-sites version of Griffiths and Tavaré (1994) in which
mutations are randomly placed on a preformed coalescent
ancestry.

In the example of Figure 2, A and B, the two partitions of
the n = 6 gametes into k = 3 groups have the same config-
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uration a; = a, = az = 1. Note, however, that the subgroups
are distributed quite differently on the tree, and in Figure 2B
the group of size 3 reflects lineages unmutated since the tree
origin. For larger n, if 6 is small or 8 = 1/(1 + 6) is large, so
that k < n, this group of unmutated lineages will be large.
However, if Bn < 1 so that k and n are of the same order of
magnitude, the ESF provides a useful prior for the probabil-
ities of IBD in the inference of IBD from genetic marker data
(see Inference of IBD segments).

Along a chromosome, the IBD partition of a set of n
gametes changes due to recombination. Figure 2C shows
two potential such recombination events. From the original
partition ((g, ¢, f), (b, ), (d)) of Figure 2A, recombination r1
would result in ((g, ¢, f), (b), (e, d)), while r2 would result in
((g), (b, e), (c, d, f)). The close parallel of Figure 2, B and C,
suggests that the ESF will also be a useful model for the IBD
of novel local haplotypes generated by recombination events.
The equivalence of the processes of formation and subsequent
descent of recombination breakpoints (junctions) and of point
mutations (Figure 2B) were first used by Fisher (1954) in
considering lengths of IBD segments (see The IBD process in
a genome continuum).

Identity by descent at linked loci

There is positive correlation in meiosis between genes at
linked loci, but there is also high variance in the recombi-
nation process. In the absence of genetic interference, over
a descent line of k meioses, the distance to the next recom-
bination point is exponentially distributed with mean 1/k
Morgans (M); exponential distributions have a standard de-
viation equal to the mean.

Equation 1 may be extended to compute the probabilities
of IBD at two linked loci in any defined pedigree (Thompson
1988). Pedigree relationships that have the same single-lo-
cus IBD probability may have different two-locus IBD prob-
abilities: the simplest example is a pair of half-sisters and an
aunt-niece pair. Relationships such as these, which give the
same probability of joint genotypes at single loci but differ-
ent two-locus genotype probabilities, in principle are distin-
guishable on the basis of data at linked loci.

Consideration of the variance in proportion of genome-
shared IBD by relatives requires only two-locus IBD proba-
bilities. If I(x) denotes the event of IBD at position x in the
genome, the proportion of a genome length L that is IBD is
(1/L) fé I(x)dx, which directly provides that the expected

Table 2 States with n = 8 and k = 4 and their conditional
probabilities given k under RBT and ESF

Partition Probability
ai ap as da ds RBT ESF
3 0 0 0 1 0.114 0.199
2 1 0 1 0 0.343 0.371
2 0 2 0 0 0.171 0.165
1 2 1 0 0 0.343 0.248
0 4 0 0 0 0.029 0.016




proportion of IBD is the pointwise probability, ». The vari-
ance is

(o f 10~ f 1)
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(Guo 1995). To compute the variance, the joint probability
of IBD at both genome locations x and y is required. This
probability depends only on the recombination fraction be-
tween x and y and on the pedigree relationship between the
individuals. Hill and Weir (2011) have given a detailed re-
cent treatment of this variance in the proportion of genome
shared by relatives of a given degree. Guo (1995) also con-
siders the mean and variance of the proportion of genome
shared IBD by all of a larger target group of relatives.

The IBD process in a genome continuum

Across the genome, changes in the IBD partition in a set of
gametes result from recombination events in the meioses of
the ancestral lineages. Fisher (1949, 1954) considered these
recombination breakpoints or junctions in the descent of
DNA. Once formed, junctions segregate as any variant allele,
allowing much population-genetic theory to be applied to
their survival and frequencies. This leads to results on the
distribution of proportions of genome that is autozygous in
individuals (Franklin 1977; Stam 1980) and of segments
of IBD among individuals in populations (Chapman and
Thompson 2003).

Both in known pedigrees and under population models,
the IBD process has high variance (Donnelly 1983). The
probability that two relatives share genome IBD from an
ancestor m generations ago at a specified point in the genome
is B = 2=@m=D_while the probability that they share any of an
autosomal genome length L M is ~1 — exp(—(2m — 1)LB). But
given that they do share at a specified point, the expected length
of genome shared is (2m)~! M. For example, for a pair of
relatives separated by 12 meioses, the probability of IBD at
any point in the genome is 0.0005, but the probability of sharing
some segment of autosomal genome is 0.148, while the
expected length of a segment shared IBD is 8.5 cM. Where
the expected segment lengths are substantially less than the
length of a chromosome, the partition of the genome into chro-
mosomes has very little impact on these results (Stam 1980;
Donnelly 1983).

Where IBD segments are small and few, the distribution
of their number is approximately Poisson; Poisson distribu-
tions have equal mean and variance. The second-order effect
is of clumping of segments of IBD, since the chance that the
next recombination event in the chain of connecting meioses
reverses the change that broke the IBD is of order m~! while
the overall probability of IBD decays exponentially in m
(Donnelly 1983). The Poisson clumping heuristic (Aldous
1989) provides an approach to closer approximations to
the distribution of the extent of IBD genome (Bickebéller

and Thompson 1996a,b). An approach to obtaining exact
distributions of the proportion of genome shared IBD, to
arbitrary accuracy, was provided by Stefanov (2000, 2002,
2004).

There is considerable diversity in the recent literature in
discussion of the lengths of segments of IBD and the
relationship of length to either the defining time depth of
IBD or to the time depth to the MRCA (the “age”) of the
segment (Browning and Browning 2010; Huff et al. 2011;
Palamara et al. 2012). First is simply the well-known effect
of size-biased sampling (Cox 1962). Whereas, across the
genome, lengths of IBD segments tracing to an ancestor at
time depth t are exponentially distributed, conditioning on
IBD at a point in the genome gives a surrounding IBD seg-
ment that is the sum of two such exponential lengths. Sec-
ond is the distinction between age (the MRCA) and the time
depth for defining IBD. A pair of cousins will have long
segments of IBD tracing to their shared grandparents. In
a finite population, their genomes may additionally be IBD
for smaller segments, tracing to more distant common
ancestors. As the defining time depth ¢ is increased, there
will be many more and smaller such segments. Additionally,
the large segments the cousins share IBD from their grand-
parents will be made up of multiple small segments of the
genomes that existed in ancestors at time depth t. Third,
discussions of age and length are often confused by the
variance of the processes involved. The length of an IBD
segment descended to two extant gametes from a single
common ancestor 25 generations ago (50 meioses separa-
tion) has an expected length of 2 cM, but the number of
meioses corresponding to a median length of 2 cM is about
35. With probability 10% only 6 meioses will provide a re-
combination breakpoint within 2 c¢cM, while with the same
probability it may take as many as 115 meioses to obtain this
breakpoint. Conversely, given an exact segment length of
IBD, estimation of the number of meioses of separation
has high uncertainty.

The distribution of lengths of IBD segments at the popula-
tion level provides another dimension. The pointwise probabil-
ity of IBD between two gametes increases with the time depth
t relative to which IBD is measured. For a randomly mating
population, relative to time depth t generations, the pointwise
pairwise probability of IBD is

B =1- (1~ @vew)™). @

s=1

where N(s) is the effective population size at time depth s.
Through a given line of descent, lengths of segments de-
crease with increasing time depth, but the overall IBD level
is higher. Thus, at greater time depths there must be many
more IBD segments, resulting from the many more alterna-
tive lines of descent.

The calibration of time depth in terms of lengths of IBD
segments is also affected by this greater number of older
segments. Although the mean length of older segments is
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Table 3 Probabilities of each genotype combination when the two individuals are in each of the nine genotypic state classes

Genotypes of individuals

B, bib; bib; bib; bib bib bib; bib, bib, bib,
B, bib; bb bb, bib; bb biby biby bibx bib
State

1 o 0 0 0 0 0 0 0 0
2 p? po; 0 0 0 0 0 0 0
3 p? 0 Po; 0 0 0 0 0 0
4 p} pip? 2p?p; 0 0 2pipjpx 0 0 0
5 p? 0 0 oy 0 0 0 0 0
6 P} pip; 0 2p?p; 0 0 2pipjox 0 0
7 p? 0 0 0 2pp; 0 0 0 0
8 p? 0 PP p; Py PiRAP; + P)) 0 0 PipPk 0
9 o} p’p? 2p7p; 203p; 4p7p? 207 pjPx 2pip;p} 4p?pipx Apipipip

The state classes are numbered as in Table 1. The alleles b;, b;, bx and b, are distinct, with population frequencies p;, p;, px and p;. For markers with only two alleles, such as

SNPs, only the first five genotype combinations apply.

less, the variance in length is such that a proportion of
these segments will be long: for example, longer than 1 cM.
In considering the age of IBD segments of length 1 cM, the
larger numbers of older segments will weight the distribu-
tion toward older ages. The mean age may be much larger
than the 50-generation time depth (100 meiosis separa-
tion) that is expected to give rise to segments of length
1 cM. The number of segments and overall level of IBD will
depend on the population size and history (Equation 2),
and thus the magnitude of this effect will be population
dependent.

Phenotypic Similarity and Allelic Variation
Phenotypic similarities among relatives

Explicit use of identity by descent in computing phenotypic
probabilities for relatives is generally attributed to Cotterman
(1940) and Malécot (1948), but the idea is implicit much
earlier. Pearson (1904) considered the phenotypic correlations
between siblings resulting from their shared inheritance and
the randomness of Mendelian segregation. Fisher (1918), in
considering phenotypic correlations among more general
relatives, likewise placed these within the framework of
Mendelian segregation. Wright (1922) defined and com-
puted inbreeding coefficients and went on to develop the
theory of allelic correlations in uniting gametes and similar-
ities among relatives, but did not explicitly use the concept
of identity by descent. Only in later writing (Wright 1969)
did he explicitly connect the two approaches, providing the
fundamental result that for related individuals in an infinite
population the single-locus probability of IBD between game-
tes is equal to the correlation in allelic type.

A pedigree relationship gives rise to probabilities of
different IBD states among the parental gametes in a set
of observed individuals. The joint probabilities of observed
phenotypes on a set of relatives depends on the pedigree
only through the probabilities of these IBD states. For
pedigree relationships between a pair of individuals, the
probabilities of IBD states at a single locus are the Jacquard
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coefficients of Table 1. The probabilities of a pair of geno-
types under each of the nine states are given in Table 3. The
assumption underlying these probabilities is that IBD DNA is
of the same allelic type, while non-IBD DNA is of indepen-
dent allelic type and that population allele frequencies pro-
vide the type probabilities.

The overall probability of genotypes G; and G, is

9
Z AjPr(Gy, G2 |IBD state j).
j=1

(3

For two noninbred relatives, only the last three states, with
probabilities ki, ki, and kg, apply (Table 1). These corre-
spond to the individuals sharing 2 IBD as do monozygous
twins (MZ), 1 as do parent and offspring (PO), or O as for
unrelated individuals (U). Thus the probability of data on
the pair is the weighted average of the probabilities for MZ,
PO, and U, with weights k,, k1, and ko. Once k = (ko, k1, k)
is known, the pedigree relationship is no longer relevant
(Thompson 1975).

The same principles apply to larger groups of individ-
uals and more complex patterns of IBD. The probability of
phenotypes is the weighted sum of the probabilities given
each IBD state. A useful way to represent a general single-
locus IBD state is via an IBD graph (Thompson 2011). An
example is shown in Figure 3. The edges of the graph cor-
respond to individuals observed for a phenotype of interest
that is determined probabilistically by the allelic types of the
DNA that the individual carries at this locus. This DNA is
represented by the nodes of the graph, and where the indi-
viduals share DNA IBD, their edges connect at that shared
DNA node. The labeling of the nodes is arbitrary, although in
the pedigree context, a node may represent a founder ge-
nome that descends to observed individuals (Sobel and
Lange 1996).

The state-dependent pairwise genotype probabilities of
Table 3 can be generalized to joint phenotypes and IBD
graphs. Given the IBD graph, the overall probability of the
phenotype data Y on the observed individuals is



Figure 3 The IBD graph at a single genome location on nine observed
individuals, labeled by letters A, B, .... The numbered nodes represent
distinct non-IBD DNA at this locus, and the individual edges connect the
two DNA nodes that an individual carries. Individuals C is autozygous,
carrying two copies of the DNA-node 6. Individuals B and J share both
their genomes IBD at this locus.

Pr(Y[1BD) = 3 (Hpr(ym\A(g(m-”),A(g<”'~2>))> : (Hp(A(g))) @

Ag) \ 'm 3
Here Y,, is the phenotypic observation on individual m,
which has a probability dependent on the allelic types of
the two genome nodes g™ and g2, which m carries
at this locus. Each node g represents distinct (non-IBD)
DNA, so is modeled as of independent allelic type; p(A(g))
is the population allele frequency of the allelic type assigned
to node g. The summation is over all assignments A of allelic
types to each node g. The disjoint components of IBD graphs
are often small, so that computation using Equation 4 can be
far more efficient than direct computation on a pedigree
structure. In fact, it is often feasible to compute phenotype
probabilities for phenotypes determined jointly by IBD
graphs at two or more genome locations (Su and Thompson
2012).

Just as for the IBD states of Equation 3, the IBD graph
separates the phenotype data from any data used to infer
the IBD. For example, a pedigree provides probabilities of
each possible IBD graph. Given these probabilities, the
pedigree is no longer relevant; joint phenotype probabilities
depend only on these IBD graphs. The generalization of
Equation 3 to computing the probability of phenotypes Y on
any set of individuals is

Pr(Y) = Pr(Y|IBD)Pr(IBD). (5)
IBD

A version of this equation will be important in Use of Inferred
IBD in Genetic Analysis in discussion of the IBD framework
for genetic mapping.

Covariances for a quantitative trait

In the classical variance component approach to the analysis
of quantitative genetic traits and their heritability, a key step

is the computation of probabilities of IBD among the observed
individuals given their pedigree relationships. For example,
the covariance between phenotypic measurements Yz and Y.
on the two individuals B and C may be modeled as

Cov(Y1,Y2) = 2(B, C)ox + ka(B, C)o}, (6)

where 0% and o3 are the additive and dominance variances
(Falconer and Mackay 1996), and « and k, are the IBD
probabilities in Equation 1 and Table 1. For an additive
genetic model, we require only the numerator relationship
matrix (Henderson 1976), which is the expected proportion
of genome-shared IBD and equal to twice the matrix of
pairwise kinship coefficients . Other models may require
more IBD states to be considered, for example, the vector of
probabilities k = (ko, k1, k5) that two noninbred individuals
share 0, 1, or 2 genes IBD at a locus. For such a pair of non-
inbred individuals, the kinship coefficient is ¢y = (k1/4 + ko/2).

In an analysis of the heritability of height, Visscher et al.
(2006, 2008) propose replacing pedigree-based kinship
coefficients (Equation 6) with an estimate of the realized
proportions of genome shared IBD. The assumption under-
lying this approach is only that the additive genetic covari-
ance between relatives is proportional to this realized IBD
fraction. This genetic relatedness matrix (GRM) is estimated
as follows. At any SNP locus I, suppose p; is the frequency of
a designated one of the two alleles, and in an individual i
suppose x; denotes the number of copies (0, 1, or 2) of this
allele carried by i at locus . Under a model of sampling
alleles from the current population, x; has expectation 2p;
and variance 2p;(1 — p;). For two individuals i and j, the
(i, j) entry of the GRM is the empirical correlation between
the allele counts x of i and j,

1 <& (x5 — 2p1) (x50 — 2py)
Aj == 7
YL ; 2pi(1 = pi)

where L is the total number of loci genotyped.

Powell et al. (2010) propose that, rather than considering
IBD relative to some past time point, IBD should be defined
via the correlations in allelic type among gametes or indi-
viduals relative to the current population (Equation 7).
Rousset (2002) makes similar arguments, suggesting that
inbreeding coefficients, for example, should be defined
through allelic state similarities rather than in terms of de-
scent. Although the GRM (7) provides an estimate of the
realized proportion of IBD over chromosomes or genome
regions, it does not take the segmental nature of inheritance
of DNA into account. Note that permutation of the loci will
not affect the GRM.

There is a close parallel between the partition of IBD
and partitions of the allelic variation or the variance for
quantitative traits among individuals and among popula-
tions. While Cockerham and Weir (1983) partitioned total
inbreeding within and between pedigrees (Coancestry at
a single locus), Crow and Kimura (1970) had provided

Review 309



analogous formulae for the moments of allele frequency
distributions. In highly structured pedigreed populations,
the hierarchy of IBD in descent to individuals is reflected
in the phenotypic distribution. For example, Avery and Hill
(1979) partitioned the variance for a quantitative trait among
full sibships, among half sibships, among full sibs within half
sibships, and among individuals within full sibships. They
applied their results also to derive expressions for the vari-
ance among individuals in heterozygosity over the genome.
These expressions are analogous to those for variance in IBD.

Allelic and haplotypic variation

A fundamental result is that for related individuals in an
infinite population the single-locus probability of IBD
between gametes is equal to the correlation in allelic type
(Wright 1969). For pairs of loci, similar results hold, and
Sved (1971) used probabilities of IBD to establish that the
expected value of the squared allelic correlation r? between
two loci is the probability that the segment of DNA between
the two loci descends unbroken by recombination from
a common ancestor to two randomly chosen current game-
tes. Note that while this approach relates the IBD segments
of Hayes et al. (2003) to population-based allelic associa-
tions, it is not here a definition of IBD.

Sved (1971) used this IBD approach to establish the well-
known formula for the equilibrium level of allelic association
between alleles at different loci on a single haplotype,

% =1/(1 4 4Nc), (8)

where N is the effective population size and ¢ the recombi-
nation fraction between the two loci. Sved (1971) also notes
the similarity of both the derivation and the result to the
analogous result for homozygosity at a single locus with
mutation due to Kimura and Crow (1964), following Fisher
(1954) in citing the parallels in the processes of descent of
recombination breakpoints and of point mutations.

The probabilities of Table 3 and more generally Equation
4 made two basic assumptions. The first is that IBD DNA is
of the same allelic type. Although this ignores mutation, this
is usually a reasonable assumption; mutation can be accom-
modated through an error model for the observed allelic
types. The second is that non-IBD DNA is of independent
allelic type. This is far more problematic, since it ignores all
sources of dependence other than the IBD considered, in-
cluding remote coancestry and population structure, and
requires “population” frequencies of alleles or haplotypes
to be assigned to these “non-IBD” entities.

Consider first a single locus and IBD defined via the
ancestral coalescent relative to some time point t. Our model
assumes that the ancestral lineages at time t, which are, by
definition, non-IBD, are of independent allelic types. How-
ever, in reality, these lineages have a more remote ancestry
resulting in some being more closely related in that ancestry
and, therefore, being of correlated allelic types. For single
SNP or even multiallelic microsatellite markers such corre-
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lations are slight, and the independence model is a good
approximation.

A bigger issue is the population allele frequencies that
are used to assign probabilities to the types of these
ancestral lineages. In practice, allele frequencies estimated
from current population samples are used. For very small
populations, such as in a highly endangered species, founder
allele frequencies have little meaning: all current copies
of an allele may be IBD and its current frequency simply
represent the reproductive success of the founder and its
descendants (Geyer et al. 1989). In a larger population,
currently rare alleles are likely young, and those observed
now will be those that have, by chance, increased in fre-
quency from even lower frequencies (see Rare variants in
human populations). However, for common allelic variants
in populations of substantial size, relative to a time depth of
tens of generations, use of current allele frequencies pro-
vides a useful probability model for the allelic types of an-
cestral lineages.

Allelic associations across loci raise greater problems, and
the assumption of independent local haplotypes among the
ancestral lineages at time t is an approximation. The more
remote coancestry of these lineages and the inheritance of
small chromosome segments over this remote coancestry
will result in LD in the population at ancestral time t. The
use of current local haplotype frequencies to model the hap-
lotypes of the population at time t will result in the sharing
of such haplotypes among current individuals not being rec-
ognized as IBD, even when it results from coancestry more
recent than time t. Conversely, ignoring LD in the current
population and using only allele frequencies in assigning
probabilities will result in shared current haplotypes being
interpreted as IBD, even when in reality the coancestry is
more remote than t.

In a simulation study, Brown et al. (2012) examined the
inference of IBD using a model that did not allow for LD and
compared results with those of BEAGLE fastIBD (Browning
and Browning 2011c), where fitting an LD model is is a key
part of the method. The simulation was of a population over
200 generations, so many of the actual segments shared IBD
by current individuals were short. For longer segments of
genome of length >1 cM, an order of magnitude longer than
the range of the population LD, there was little difference
between the two approaches. However, when the level of LD
in the founder population was high, the approach that did
not allow for LD inferred many short false-positive IBD seg-
ments. Conversely, the BEAGLE approach had a much higher
false-negative rate, failing to detect true short IBD segments,
since it could not distinguish these shorter shared haplo-
types from the background LD its model had fit. In any
natural population, LD will place a lower bound on the
length of IBD segments that can be reliably identified, or
equivalently on the time depth of IBD it is reasonable to
consider.

Models for haplotypic variation and allelic association
(LD) are key to methods for phasing haplotypes from



genotypic data and for imputing missing genotypes in
population samples. These methods for phasing and impu-
tation have played a major role in the analysis of SNP data
(International HapMap Consortium 2005): Browning and
Browning (2011a) have provided a recent review. While
the models need not explicitly consider IBD, many of the
approaches do take IBD as the underlying framework of
their methods.

The model that underlies the phasing method of Scheet
and Stephens (2006) explicitly considers “founder” haplo-
types that become modified by mutation and recombination.
More recent methods, designed to address the computa-
tional challenges of genome-wide analyses, are more empir-
ical, but retain the segmental nature of haplotypic variation
that results from coancestry. For example, Browning and
Browning (2009) use a fitted BEAGLE model (Browning
2006) to model each of the two haplotypes that together
define the genotype of an individual. Other recent approaches
using haplotypic variation (Howie et al. 2009; Li et al. 2010)
aim to address phasing and imputation of next-generation
sequence variants as well as SNP genotypes.

Methods for phasing that are based on population
haplotypic variation model the marker-to-marker sequence
of alleles along a chromosome. Where there is no LD, for
example, due to a recombination hotspot, phase information
is lost. There is no way to phase haplotypes across the
hotspot. More generally, the procedures are subject to switch
errors (Lin et al. 2002). By contrast, the IBD resulting from
gene descent within a pedigree provides information on the
parental origin of alleles on each haplotype of an individual.
If the parental origins of alleles at two markers is known, so
also is the phase of these markers, even if there are inter-
vening markers that cannot be phased. The same “long-
range” phasing is possible also in small populations, where
there are long segments of IBD resulting from recent coan-
cestry among individuals, resulting in long haplotypes shared
among multiple individuals. While not modeling the IBD di-
rectly, Kong et al. (2008) makes use of long shared haplotypes
to provide very effective methods for IBD detection, long-
range phasing, and haplotype imputation.

Rare variants in human populations

In the last 2000 years the human population has undergone
explosive growth (Cohen 1995). In this period, many rare
variants now being revealed by sequencing (Gusev et al.
2009; Coventry et al. 2010) have become established. Many
of these variants were unknown from previous SNP dis-
covery approaches, since 96% of individuals in large case-
control studies are of European origin (Need and Goldstein
2009), and variants arising over the past 2000 years will
normally be geographically localized and may be rare even
within local populations. This will make any association of
these variants with disease hard to detect, despite the hy-
pothesis that many of these recent variants may be mildly
deleterious (Coventry et al. 2010). An approach to detecting
genes that may harbor such variants is IBD-based mapping

(see Population-based IBD mapping). This approach is de-
pendent on the power to detect increased IBD around such
genes among affected individuals, which is in turn depen-
dent on both the age and the local counts of the relevant
variant alleles. Young variants with sizeable counts provide
the best opportunity, since these will show longer segments
of IBD among larger numbers of individuals.

It is, therefore, important to assess the age and count
distribution of new variant alleles in a human population. To
quantify the discussion, we use data from Cohen (1995)
(Figure 4A) to fit world population growth over the past
2000 years and assume 25 years per generation. Broadly,
a linear fit to the log-log rate of increase fits the data, with
a slope of 0.019 per generation. That is, the rate of increase r
(t) at t generations ago is fit as

logo(log1o(r(t))) = — 1.06 — 0.019¢. ©)

In the past century the rate has been higher, while ca. 1400
A.D. the world population fell due to the Black Death and in
the 17th century the increase was also low compared to (9),
but overall the equation provides reasonable fit (Figure 4B).
Note that Equation 9 gives a total population growing as
exp(exp(exp(+))) in time.

To relate this growth to pointwise probability of IBD,
assumptions must be made about effective population size
(Equation 2). The prehistoric effective population size that
explains current levels of SNP variation and LD is of the
order of 10* (Ardlie et al. 2002; Schaffner et al. 2005). For
purposes of demonstration, assume this value for the effec-
tive population size of some population 80 generations ago,
and that growth has followed the rates given by Equation 9.
The pairwise probability, 8, of IBD relative to t generations
ago between two random gametes sampled from the current
population can then be computed (Figure 4C).Note that at
25 generations depth, when IBD segments are expected to
be of length 2 cM, the probability is somewhat over 0.0001.
Some broad confirmation of these figures is given by the fact
that Browning and Browning (2010) found approximately
this rate of overall IBD when seeking segments of this
size in European samples (Wellcome Trust Case Control
Consortium 2007).

Figure 4C provides an example of the population-level
balance between increasing IBD and shorter segments of
IBD relative to increasing time depths discussed in The IBD
process in a genome continuum. Relative to time depth 22,
B = 0.0001, and the expected length of segments from
a common ancestor at this time depth is ~4.5 cM. Relative
to time depth 80, B8 = 0.002, but the expected length of
a segment tracing to common ancestry at this time depth
is only 1.25 cM. Of course, in each case, some part of the IBD
will trace to more recent ancestry, with longer expected
segment lengths, but generally higher IBD probability and
shorter segments imply the existence of more segments.

The study of survival of new variants using branching
process models dates back to Fisher (1922), while the
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Figure 4 The effect of explosive population growth on the proportion of
IBD genome. (A) Human world population growth over the past 2000
years. (B) The increasing rate of increase of the human population. (C)
The pointwise probability of genome-shared IBD in randomly sampled
chromosomes, relative to past time points.

population genetics of recent, geographically localized, var-
iants has been studied under the heading of Private Poly-
morphisms (Neel 1978; Slatkin 1985). We here apply that
approach to variants arising in a population with a growth
pattern like that of Figure 4. In an expanding population, the
survival probability of new mutations is increased, but
a much greater effect is the larger numbers arising. Using
a branching process model with a Poisson offspring distribu-
tion, Figure 5A shows the relative numbers of mutations
arising t generations ago and surviving to the present under
the three scenarios: a population with the growth of Figure
4, a constant rate of increase of 4% per generation equiva-
lent to the same growth over 80 generations, and a constant
population. All counts are given relative to one variant aris-
ing in any of the three populations 80 generations ago.
Expected counts increase proportionately with popula-
tion growth, but lower survival probabilities also increase
expected counts for those variants that survive. Suppose the
population size at some past time is M, the current popula-
tion is N, and the probability of survival to the present of
a new mutant arising at that past time is Q. Then overall, the
expected number of current copies of a given variant is N/M,
and among variants that survive it is N/MQ. Figure 5B gives
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Figure 5 The effect of explosive population growth on the numbers and
counts of newly arising variants, under three population scenarios: explo-
sive population growth (blue), equivalent exponential growth (red), and in
a constant population (green). (A) Variants arising (solid lines) and surviv-
ing (dashed lines) as a function of time of origin. (B) Expected numbers of
copies of each surviving variant as a function of time of origin. (C) The age
probability distributions of variants currently present in 10 (solid lines) and
120 (dashed lines) copies.

the expected count of copies of a variant arising at past times
and surviving to the present under the three population
scenarios of Figure 5A. However, summing over variants
provides a different picture. The number of variants arising
is proportional to M, and the number surviving is propor-
tional to MQ. Hence the total number of all copies of all
surviving variants that arose at any given past time is in-
dependent both of M and of Q, and hence of that past time.
In any population there are fewer older variants in more
copies but within smaller IBD segments and more younger
variants each in fewer copies carried in larger IBD segments.

Conditional upon survival, there is a rapid increase in the
count of a new alleles (Thompson and Neel 1996). The
expected number of copies of a surviving variant is propor-
tional to 1/Q, where Q is the survival probability. Many
variants become extinct by chance in only a few generations;
those that do not, have high counts (Figure 5B). For exam-
ple, even in a constant population (green curve) variants
surviving even 5 generations are expected to have at least



5 copies. Conversely, variants present in a population at
significant counts are often young, particularly in a popula-
tion exhibiting strong growth. Figure 5C shows the age dis-
tributions of a variant present in only 10 copies and of
a variant present in 120 copies. In all cases, the former is
likely to be quite young. For the variant with 120 copies, the
three population scenarios give quite different distributions
(dashed lines). For explosive growth the variant is likely to
be only between 15 and 25 generations old, while for expo-
nential growth from 30 to 70 generations old. However, in
a constant population, the variant is likely to be at least 50
generations old and could be much older. The youth of rare
variants present in substantial counts in human populations
will be reflected in large segments of IBD sharing among the
individuals who carry them.

There are close parallels between the processes of recombi-
nation and mutation in the ancestry of a set of chromosomes
(Figure 2). Both processes occur at rate ~10~8/meiosis/bp.
Thus mutations introduce point changes of state in a chromo-
some at roughly the rate that recombination creates potentially
novel local haplotypes. Once formed, these recombination
breakpoints segregate according to the same model as a variant
allele (Fisher 1954). Thus the same arguments that apply to the
distribution of rare variants apply also to novel haplotypes;
many will be young and geographically localized. A novel hap-
lotype shared by descendants of a recombination breakpoint
will provide clear evidence of IBD among the chromosomes
that carry it. Additionally, the chromosomes will show IBD to
either side of the breakpoint with the more broadly distrib-
uted ancestral haplotypes from which the novel haplotype
was formed, enabling these ancestral recombinations to be
detected (Chapman and Thompson 2003).

Inference of Relationships, Relatedness,
and IBD Segments

Estimation of relationships

Pedigree relationships R provide probabilities of IBD states z at
a locus, denoted 7 (z| R). These in turn provide probabilities of
phenotypic data (Phenotypic similarities among relatives). Con-
versely, it has long been recognized (Edwards 1967) that phe-
notypic data provide information about latent IBD and hence
about pedigree relationships. The simplest approaches consider
genotypic data at independently segregating loci on pairs of
individuals. The likelihood of a relationship R is then

4
L(R) = H Pr(Gl,j7 GZ,]"'R’)a

j=1
where Gy ; is the genotype of individual h at locus j, and

Pr(Gyj,Go,jIR) = Y Pr(Gy,j, Gy jl2)m(2|R).
VA

For a general pair of individuals, the probabilities 7 (z|R)
are the Jacquard coefficients (Equation 3), while if the indi-

viduals are assumed noninbred they are the probabilities
k = (ko, k1, ko) of sharing 0, 1, or 2 genes IBD at a locus.
The probabilities of each genotype pair under each IBD state
were given in Table 3, and in estimating relationship R the
population allele frequencies are assumed known.

Relationship estimation on the basis of L(R) was consid-
ered by Thompson (1975), restricting attention to relation-
ships R in which the two individuals are not inbred. Milligan
(2003) revisited this approach, while Anderson and Weir
(2007) address the case in which the individuals may be
inbred and there may be underlying structure in the popu-
lation. Since L(R) depends on R only through the probabil-
ities w(z|R), relationships R that give the same 7 (z|R),
such as half-sib and avuncular relationships, can never be
distinguished on the basis of data at independently segre-
gating loci. Although a highly polymorphic multiallelic locus
can give an accurate estimate of the IBD state z at that locus,
large numbers of independently segregating loci are re-
quired to provide an accurate estimate of (2| R), and rela-
tionships that give similar values of 7(z|R) are not easily
distinguished. The number of independently segregating
loci in the human genome is quite limited, so that this clas-
sical approach cannot extend beyond distinguishing the
simplest relationships of parent—offspring, sib, half sib, and
unrelated.

There is also information about relationships in the
lengths of segments in a given IBD state z, and methods
for computing likelihoods of relationships using data at
linked loci (Boehnke and Cox 1997; Abecasis et al. 2002)
make implicit use of this information. Now, not only the
allele frequencies but also the genetic linkage map must
be known. Relationships such as half sibs and aunt-niece
that provide identical single-locus IBD state probabilities
differ in their two-locus probabilities and so have different
likelihoods on the basis of data at linked loci. However,
other distinct relationships may provide identical IBD state
probabilities at two or even three loci (Thompson 1988).
Even where relationships are identifiable, information is
again limited by the variance of the underlying IBD process,
and in practice usefulness is limited to detection of non-sib
pairs in sib-pair studies (Guo 1994; Olson 1999) or to cases
in which there are very specific alternative hypotheses of
relationship. More individuals provide more information
(McPeek and Sun 2000; Sieberts et al. 2002), and validation
from marker data of the stated relationships in genetic epi-
demiological studies is standard (Boehnke and Cox 1997;
Sun et al. 2002). However, there is insufficient information
for reliable relationship estimation beyond one generation
of unobserved individuals.

The availability of dense SNP data has renewed interest
in the estimation of pedigree relationships. It is indeed
the case that such data provide accurate estimates of IBD
genome segments. For close relatives who share several
segments of autosomal genome IBD with high probability,
this provides estimates of degree of relationship (Huff et al.
2011) or even information to correct misspecified pedigrees
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(Han and Abney 2011). However, inferences are limited by
the finite length and polymorphism of the human genome
and the variation in realized IBD over realizations in any
pedigree. Moreover, the issues of identifiability of general
relationships are complex. From an infinitely long and in-
finitely informative genome, the exact probability distribu-
tion of IBD states and segment lengths could be determined.
Even then, the pedigree might not be determined by this
distribution (Steel and Hein 2006).

Estimators of relatedness

Although there is insufficient information for the general
reconstruction of pedigrees from genetic marker data, estima-
tion of more limited parameters of relationship is more feasible
and may suffice. For example, in analyses of quantitative genetic
traits only kinship coefficients {y and pairwise probabilities of
IBD k are needed (Equation 6).

In livestock populations, where relationships are known,
pedigree-based values of k and  are available, but in nat-
ural populations a variety of estimators based on allelic
identity have been developed. The majority of these are
moment-based estimators derived from expectations of alle-
lic identity at single markers (Queller and Goodnight 1989;
Ritland 1996; Lynch and Ritland 1999; Wang 2002). De-
spite the superior performance of maximum-likelihood esti-
mators (Milligan 2003) these less-biased estimators of
relatedness are often preferred in the estimation of herita-
bility (Thomas 2005). Since unrelated individuals have kin-
ship coefficient 0, the maximum-likelihood estimator can
never be unbiased, whereas moment-based estimators that
permit negative estimates can be so. The use of these esti-
mators reinforces the interpretation of relatedness as a (po-
tentially negative) correlation rather than as a (necessarily
positive) probability (see Covariances for a quantitative trait).
Toro et al. (2011) provide a recent discussion of the estima-
tion of genealogical coancestry from molecular markers.

With the advent of genome-wide SNP variants, the use of
genome-wide marker-based estimates of relatedness has also
entered the human genetic literature. Estimators of k can be
used to detect closely related individuals in case-control stud-
ies (Voight and Pritchard 2005; Sun and Dimitromaniakis
2012). The empirical genetic relatedness matrix or GRM
(Equation 7) may be used as an estimator of the pedigree-
based numerator relationship matrix (Equation 6). Even
where the pedigree relationship is known, a marker-based
estimate of relatedness may be preferred, since the realized
proportion of genome-shared IBD varies among pairs of indi-
viduals with the same pedigree relationship (Identity by de-
scent at linked loci). In known sib pairs, using the variation in
realized IBD contributes to analyses of heritability (Visscher
et al. 2006). Additionally, partitioning the analysis by chro-
mosome provides estimates of the contributions of each chro-
mosomes to phenotypic variation (Visscher et al. 2007). Using
an even more local set of genetic markers provides estimates
of IBD in small genomic regions for purposes of gene mapping
(Day-Williams et al. 2011).
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Despite the strong parallels in the patterns of variance
and covariance (Phenotypic Similarity and Allelic Variation),
the generation-to-generation processes for population levels
of IBD and for allelic similarities are not strongly correlated
(Cockerham 1969; Nei et al. 1977). Although IBD DNA is,
with high probability, of the same allelic type, each set of
IBD gametes has an allelic type in accordance with popula-
tion allele frequencies. For example, in a single individual,
autozygosity implies homozygosity, but homozygosity is not
a strong indicator of autozygosity. Any marker-by-marker
moment-based estimator, for example, the GRM (7), takes
no account of the genome locations of markers. To gain in-
formation across linked markers, Day-Williams et al. (2011)
use a smoothing method. An alternative approach is to con-
sider haplotypic rather than allelic similarity and model the
segments of IBD across a chromosome. This is the approach
considered in the following section.

Inference of IBD segments

Similarity of haplotype markedly above that expected in
individuals randomly sampled from the population provides
evidence that the corresponding segments of DNA are IBD
from a recent common ancestor. The longer such near-
identical haplotypes extend, the more recent on average is
that common ancestor (Coancestry and allelic associations).
Because the lengths of IBD segments decrease only as m~!
with increasing number of meioses of separation, even com-
mon ancestry at a depth of 50 generations will give rise on
average to a segment of length 1 cM (Inheritance of segments
of DNA). Failure to take the segmental nature of IBD into
account when inferring relatedness results in loss of power
(Albrechtsen et al. 2009).

Browning and Browning (2012) have provided a recent
thorough review of methods for the detection of IBD seg-
ments from similarity of marker haplotypes. Broadly, methods
may be divided into two groups. Rule-based methods can
provide rapid searches for shared haplotypes in large popula-
tion samples on a genome-wide scale. Such methods include
GERMLINE (Gusev et al. 2009), the approach of Kong et al.
(2008), and the more recent BEAGLE fastIBD method of
Browning and Browning (2011c). The alternative is to take
a model-based approach to inference of IBD segments, and
we limit discussion here to the development of these prob-
ability models. We consider IBD relative to a time point
sufficiently recent that the haplotypic similarity due to IBD
is distinguishable from population-level LD.

Model-based approaches to the detection of IBD seg-
ments in individuals not known a priori to be related all use
hidden Markov models (HMM) to model the latent IBD.
Using genotypic data on single individuals, Leutenegger
et al. (2003) used a two-state HMM to model the IBD/
non-IBD between the two homologous chromosomes of off-
spring individuals to detect unspecified relationships be-
tween their parents. Browning (2008) used the same two-
state IBD-model for pairs of phased haplotypes sampled
from a population.



The first model for inferring IBD segments between pairs
of diploid individuals was that implemented in PLINK
(Purcell et al. 2007). This approach modeled the IBD as that
of two independent pairs of haplotypes, each following
a model equivalent to that of Leutenegger et al. (2003).
The IBD state is summarized as 0, 1, or 2 shared IBD be-
tween the two individuals. However, the inbreeding coeffi-
cient of offspring is the kinship coefficient of parents, and in
most populations IBD within individuals is at least as great
as IBD between. The approach of Browning and Browning
(2010) also seeks only IBD between individuals and uses
only two latent IBD states: any-IBD and no-IBD. In contrast,
Han and Abney (2011) provide an estimate of the probabil-
ity of each of the nine genotypically distinguishable states
(Table 1) at each marker location using individual-specific
transition rates. However, the HMM transitions are not
based on any model of descent; if a transition occurs the
next state is a realization of the marginal probabilities spe-
cific to the pair of individuals.

Thompson (2008) provided a Markov model for transi-
tions along a chromosome among the 15 states of IBD of the
four gametes of two individuals (Table 1). A generalization
of this model applicable to any number of gametes has the
Ewens sampling formula (Equation A.1) as the pointwise
model for the partition of n gametes into IBD subsets. Tran-
sitions among the IBD states approximate those expected to
occur due to recombination events in their coalescent ances-
try (Figures 1 and 2C), and hence this model provides a use-
ful prior for the IBD. This model has been in implemented in
the IBD Haplo software and tested in estimating IBD seg-
ments among sets of four gametes (pairs of individuals) in
a simulated population of 200 generations time depth using
either haplotypic or genotypic data (Brown et al. 2012).
Moltke et al. (2011) have also provided a model for any
number of gametes, but, to facilitate MCMC sampling of
IBD, their latent IBD model is simplified, both in its point-
wise state probabilities and in its permitted transitions.

All the above methods use similar data models. Basically,
IBD DNA is of the same allelic type, while non-IBD DNA is of
independent allelic types. The models require allele fre-
quencies. Since we seek IBD relative to a recent reference
time depth t, for common variants it can be assumed that the
allele and local haplotype frequencies at ancestral time
depth t do not differ widely from those in the current pop-
ulation. Thus allele frequencies and local LD structure can
be estimated from large samples from current populations.
While sharing of rare variants may provide strong evidence
of coancestry, the absence of population-level data on the
frequencies of such rare alleles or haplotypes makes the re-
liable quantitative assessment of this IBD evidence problem-
atic. The data model of Purcell et al. (2007) is slightly
different in that it uses the population sample directly, rather
than using estimated allele frequencies. The alleles of the
population sample are assigned without replacement to non-
IBD DNA within each pair of individuals, resulting in negative
correlations in the allelic types of these non-IBD gametes.

Allowance for genotyping error is important (Leutenegger
et al. 2003), and this is also accommodated in other recent
articles (Browning and Browning 2010; Moltke et al. 2011;
Brown et al. 2012). An error model can accommodate muta-
tion, recognizing haplotypic similarity and shared descent
even when mutations have occurred. While most of the meth-
ods consider the data input as genotypic, the methods of
Thompson (2008) and Brown et al. (2012) allow for either
phased or unphased data on individuals, or for phase infor-
mation only in specified chromosomal regions. Generally,
knowledge of the phased haplotypes provides more accurate
estimates of the IBD partition, since alternate uncertain phas-
ings generate uncertainty in IBD state conditional on marker
data. An exception is where the model badly misspecifies
local haplotype frequencies, for example, by ignoring LD
(Brown et al. 2012).

In earlier models (Leutenegger et al. 2003; Purcell et al.
2007), LD is not accommodated; the data at each locus de-
pend only on the latent IBD state at that locus. Albrechtsen
et al. (2009) extended the basic data model to allow for
pairwise LD among loci, and Han and Abney (2011) use
a version of this model, conditioning their HMM emission
probabilities on genotypes at either single or multiple pre-
vious loci. The approach of Browning (2008) and Browning
and Browning (2010) uses a full LD model. In this case,
allele frequencies are not used directly, but only through
the haplotype clusters of the BEAGLE model fitted empiri-
cally to a large population sample (Browning and Browning
2007). A model that incorporates LD more closely approx-
imates local haplotype frequencies and thus increases spec-
ificity, but an approach that too closely fits the observed
haplotype frequencies among a small set of individuals will
lose power to detect IBD among them (Brown et al. 2012).

At any location in the genome, the ancestral coalescent
partitions a set of chromosomes into the disjoint subsets that
are IBD relative to a past time t (The descent and ancestry of
DNA). This partition is an equivalence relationship; if =
denotes IBD, then among three gametes, b, ¢, and d, b = ¢
and ¢ = d implies b = d. Without this consistency, joint
phenotype probabilities (Equation 4) are undefined. In a de-
fined pedigree, any pattern of inheritance of DNA will al-
ways provide an IBD graph (Phenotypic similarities among
relatives), and hence a jointly consistent pattern of IBD.
However, pairwise estimates of IBD among chromosomes
or among individuals need not be jointly consistent. Joint
consistency is ensured only by the construction of an IBD
graph from these pairwise estimates (Glazner and Thomp-
son 2012).

Consider, for example, three diploid individuals with each
pair sharing just one gamete IBD. This IBD can be resolved
in one of two ways: all three individuals share the same
gamete IBD, or there are three distinct IBD nodes each
shared by a different pair (Figure 6A). Suppose now a fourth
individual also shares just one gamete IBD with each of the
other three. Then this is possible only through all four indi-
viduals sharing a single gamete (Figure 6B). There are also
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constraints in the changes in IBD graph across the genome.
Suppose at the first locus, each pair of three individuals
shares one gamete IBD, and at a very closely linked locus,
a fourth individual shares also with each of the other three.
In this case, at the first locus, the IBD should resolve as the
three individuals sharing a single gamete IBD and not as the
three pairs (Figure 6). Generally, the constraints both at
a locus and across loci make construction of IBD graphs from
pairwise estimates a complex task.

Use of Inferred IBD in Genetic Analysis

In this section we review the use of IBD, primarily in locating
the genes of causal effect on a trait of interest relative to the
increasing mass of mapped allelic marker variation, from the
first DNA markers (Botstein et al. 1980) to millions of SNPs
(1000 Genomes Project Consortium 2010) and next-gener-
ation sequence data. Whether in pedigrees (Gene mapping
using IBD in pedigrees) or in populations (Association and
ancestry in fine-scale mapping), implicitly (Association map-
ping and heritability and Adjusting for relatedness in popula-
tion-based genetic mapping) or explicitly (Population-based
IBD mapping), all approaches depend on IBD. Finally, in
Evolutionary and demographic inferences we very briefly re-
view other applications of IBD in inference from human
genetic data.

Gene mapping using IBD in pedigrees

Pedigree-based linkage analyses directly models inheritance
of DNA at locations across the genome. The classical
pedigree-based linkage LOD score (Smith 1953) uses a joint
model-based probability of marker genotypes Yy and trait
phenotypes Yt to assess co-inheritance at (hypothesized)
trait and (known) marker loci. As a function of trait data
and model, this joint probability is proportional to the con-
ditional probability Pr(Yr|Yy), which may be expressed di-
rectly in terms of IBD among observed individuals using
a slight generalization of Equation 5,

Pr(Yr|Ym) = » _ Pr(Yr|IBD)Pr(IBD | Yu),
IBD

(10)

where the summation is over the states of IBD at a hypoth-
esized trait locus among individuals observed for the trait.
Given chromosome-wide genetic marker data Yy, on pedi-
gree members, joint IBD graphs across the chromosome may
be realized from Pr(IBD|Yyy). Whether the IBD is expressed
in terms of inheritance (Lange and Sobel 1991) or directly in
terms of an IBD graph (Thompson 2011), averaging the
values of Pr(Yy|IBD) over realizations of IBD at each hy-
pothesized trait locus provides a Monte Carlo estimate of
Pr(Yr|Yy) and hence of linkage LOD scores.

Other classical linkage mapping designs make more
explicit use of the pedigree-based probabilities of IBD, in
case-only designs such as affected sib-pair methods (Suarez
et al. 1978), homozygosity mapping (Lander and Botstein
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Figure 6 Resolving components of IBD graphs from pairwise IBD. (A) For
three individuals A, B, and C, with each pair sharing a gamete IBD, the
joint sharing can be resolved in two ways. (B) If D also shares a gamete
IBD with each of A, B, and C, then all four individuals must share a single
gamete.

1987), and other affected relative pair methods (Weeks and
Lange 1988). Ascertainment of affected relatives increases
the probabilities of IBD at causal genome locations. Addi-
tionally, because prior probabilities of IBD are smaller in
remote relatives, IBD in more remotely related affected indi-
viduals provides a strong signal. With modern genome-wide
dense markers, using marker-based inferred IBD among
cases in pedigrees remains a powerful tool, but direct ped-
igree-based computations are often infeasible. Albers et al.
(2008) have developed a method that approximates IBD
probabilities among remotely related case individuals in
pedigrees and used these to provide accurate estimates of
LOD scores or other linkage detection statistics. Thomas
et al. (2008) have also developed methods with which to
use segments of IBD inferred from dense marker data among
members of extended pedigrees to map causal loci.

Quantitative trait mapping using an IBD framework also
has a long history. Haseman and Elston (1972) relate the
dissimilarity between sibs to the inferred IBD at given
points in the genome inferred from marker data. Goldgar
(1990) and Schork et al. (1993) extend these ideas to more
individuals and more complex models, while Guo (1994)
considers the mean and variance of IBD in specified chro-
mosomal regions conditional on marker data. Modern
dense genome-wide SNP data provide the information to
estimate both pointwise probabilities and genome-wide pro-
portions of IBD sharing between pairs of individuals. Han
and Abney (2011) suggest that their estimates of realized
IBD across the genome could be used in follow-up QTL
mapping studies.

An advantage of an IBD framework for linkage analysis
is that IBD within pedigrees may be combined with IBD
inferred between members of different pedigrees using
a population-based model. The within-pedigree analysis also
provides phase information on observed individuals, increas-
ing the information for the between-pedigree inferences
(Brown et al. 2012). Specifically, combined IBD graphs
jointly over observed individuals and across a chromosome
may be estimated conditional on marker data and used in



Equation 10 to estimate LOD scores that include information
from unknown between-pedigree relationships. Combining
inheritance information within the pedigrees of a genetic
epidemiological study with inferred IBD among members
of different pedigrees has the potential to increase both
the power and resolution of linkage mapping (Glazner and
Thompson 2012).

Association and ancestry in fine-scale mapping

Pedigree-based methods of gene mapping have high power,
if the assumed pedigree relationship is correct. However,
they have low resolution due to the limited number of
meioses in which recombination events are reflected in
observable data (Boehnke 1994). This recognition has led to
genome-wide association studies (GWAS), in which LD be-
tween a marker and a causal locus provides the mapping
signal (Risch and Merikangas 1996). An association test
makes no explicit use of IBD, but its success is dependent
on the LD that arises from coancestry, and its success is often
limited by the effects of population-level relatedness that
also create LD (Coancestry and allelic associations). Initial op-
timism regarding association mapping (Glazier et al. 2002)
was tempered by failures to detect known genes (van Heel
et al. 2002) and failures to replicate findings (Elbaz et al.
2006). Only with much larger-scale GWAS (Wellcome Trust
Case Control Consortium 2007) and better methods with
which to control for population structure (see Adjusting for
relatedness in population-based genetic mapping) did GWAS
start to have major successes in mapping causal trait loci.

In an association test the genetic linkage among markers
and the relatedness of individuals are ignored. However, the
haplotypic variation in a population sample has both de-
pendence across loci within a haplotype and dependence
among haplotypes resulting from their ARG. These de-
pendencies provide the basis for IBD-based methods for
using LD for fine-scale mapping. The earliest methods for LD
mapping (Terwilliger 1995; Xiong and Guo 1997) used the
genetic marker map, but were based on a combination of
local single-marker likelihoods and implicitly assumed a “star
phylogeny” in which alleles descend independently from the
root. Other approaches (Kaplan et al. 1995; Graham and
Thompson 1998; Rannala and Slatkin 1998) take the coa-
lescent ancestry structure of the sample into account but not
the dependence along the chromosome. In the ancestry of
a haplotype carrying a disease allele, when a recombination
occurs between the causal locus and a genetic marker, the
marker allele acquired on the haplotype is modeled as
randomly sampled according to population frequencies.
McPeek and Strahs (1999) take the orthogonal approach,
modeling the decay of haplotype IBD along the chromo-
some, but using only the pairwise covariance structure
among haplotypes to take the coancestry into account.
McPeek and Strahs (1999) also provides an excellent review
of earlier articles.

Generalization of these models, taking both coalescent
ancestry and the segmental structure of this coancestry into

account in LD-based mapping, has proven difficult. Analysis
using the full ARG is computationally intensive (Kuhner
et al. 2000; Kuhner and Smith 2007), as are the approaches
to fine-scale mapping that use it Larribe et al. (2002). One
approach is that of Zollner and Pritchard (2005), which
models the local coalescent process across a few markers
and seeks clustering of similar phenotypes within this local
coalescent at specific genome locations. Use of the sequen-
tial Markov approximation to the ARG (McVean and Cardin
2005) may prove more tractable, and an approach using
heuristic ARG estimates has been scaled up to analyze thou-
sands of individuals jointly (Minichiello and Durbin 2006).
However, even in this case, ARG-based analyses are limited
to short genomic regions.

Association mapping and heritability

GWAS are having increasing success, with many hundreds
of causal genes detected and results replicated, but the
proportion of trait heritability accounted for by these genes
is often very low (Manolio et al. 2009), and this is nowhere
more apparent than in the many studies of the additive
genetic variance of human height. Height is a trait not only
easily measured, and with apparently high heritability, but
one in which genetic effects are broadly distributed over the
genome. Studies of close relatives based on Equation 6 provide
an estimate of heritability of the order of 80%, although this
may be inflated by effects of shared environment or by epige-
netic factors that also contribute to correlations in relatives.

Lango Allen et al. (2012) undertook a meta-analysis of 46
earlier studies, with a combined total of data on >183,000
individuals. Their approach selected SNPs representing 180
loci, each showing a robust significant signal of association
with human height. In their analysis, these SNPs explain
only 10% of the phenotypic variation in height, while they
estimate that unidentified common variants of similar effect
size would increase this to 16%. However, this would still be
only 20% of the presumed heritable variation.

Yang et al. (2010) took a different approach in which
SNP effects are treated as random effects, and the total
additive genetic contribution of all SNPs across the genome
is thereby estimated. The model implies a vector of genetic
values based on the SNP genotypes of each individual,
where the variance of this vector is the genetic relatedness
matrix or GRM (Equation 7 in Covariances for a quantitative
trait). The goal is to use not only SNPs identified as tagging
loci with significant effects, but all SNPs across the genome.
Using a variance matrix based on 294,831 SNPs in 3925
individuals they explain 45% of the phenotypic variance.
They suggest that the remaining missing heritability is due
to incomplete linkage disequilibrium between causal var-
iants and genotyped SNPs. It is important to note that Yang
et al. (2010) excluded close relatives from their study.
Whether the pedigree relatedness (Equation 6) or the GRM
(Equation 7) is used to model the variance of individual
effects, any additive effects shared by close relatives will con-
tribute to the estimate of heritability.
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Rather than estimation of heritability, or within-sample
variance explained, the approach of de los Campos et al.
(2010) is that of whole-genome prediction. The test of a pre-
diction method is not the within-sample variance explained,
but out-of-sample predictive accuracy. This is generally
assessed by cross-validation, with the measure being the
proportion of variance explained (R?) in the regression of
observed values on the prediction. Heritability provides an
upper bound on predictive R?, but there is a large difference
due to variance in the estimators of SNP effects (Visscher
et al. 2010). Ultimately, if large enough samples of individ-
uals are available to estimate all effects without error, R?
should approach the heritability bound. In practice, the very
large numbers of SNP effects contributing to a trait such as
height means that predictive accuracy remains stubbornly
low (Makowsky et al. 2011). Samples containing a signi-
ficant proportion of close relatives provide much higher
whole-genome predictive accuracy (Makowsky et al. 2011).
If the goal is prediction, the fact that correlations in close
relatives may not reflect true additive genetic heritability is
not a concern.

Whether for heritability estimation or genomic prediction,
there is no intrinsic difference between using a pedigree-based
numerator relationship matrix (Equation 6) and using the GRM
based on SNP markers (Equation 7). Also, other estimates of
relatedness could be used. For example, methods that use
haplotypic rather than marker-by-marker similarities (Inference
of IBD segments) provide more accurate estimates of local IBD.
However, while pedigree-based kinship (Equation 6) and em-
pirical correlations (Equation 7) always produce a positive
semi-definite covariance matrix, other methods of estimat-
ing genome-wide pairwise IBD may not.

The approach of Yang et al. (2010) for quantitative traits
has been extended by Lee et al. (2011) to case-control stud-
ies by transforming the trait status to a quantitative liability
scale. They account for a significant proportion of the heri-
tability estimated from family studies. It remains a question
whether the remaining “missing” additive genetic variance is
truly missing and due to rare alleles of small effect (Lee et al.
2011). Alternatively, or in part, the “missing” heritability
may be a “phantom” resulting from gene-environment inter-
actions and epistasis (Zuk et al. 2012) or epigenetic factors.

Adjusting for relatedness in population-based
genetic mapping

In any genetic mapping method, the base point for compar-
ison must be chosen. The linkage LOD score (Smith 1953)
compares the data probabilities with the trait locus at some
hypothesized genome location with the probability of
the same data under the same trait and marker model, but
the trait locus being at some genome location unlinked
to the genetic markers. By contrast, methods developed
for the mapping of QTL (Lander and Botstein 1989) com-
pare the model of some nonzero effect at a specific location
with the null model of no effect. The same question of the
null hypothesis arises in population-based approaches to
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genetic mapping. For example, in admixture mapping,
Patterson et al. (2004) develop both a case-only test com-
paring ancestry at each location to a genome-wide value for
the same individual and a case-control test in which ancestry
measures at specific genome locations are compared be-
tween cases and controls. The first approach requires a ge-
netic model, while the latter assumes absence of systematic
differences between cases and controls.

In case-control studies, it is necessary to control for
differences between the case population and the control
population, with regard both to their allele and haplotype
frequencies that affect allelic associations with a trait
phenotype and to their degree of relatedness that affects
genotypic and phenotypic covariances within them. Geno-
mic control (Devlin et al. 2001) uses the genome-wide dis-
tribution of test statistics to provide a correction factor for
significance of signals at specific genome locations. Alterna-
tively, this approach can be used to detect whether stratifi-
cation exists, and principal components (PC) analysis can
then be used to correct for it (Price et al. 2006). The coef-
ficients of the top PCs are used as fixed-effect covariates to
correct for stratification, but this does not account for re-
latedness among individuals. While Lee et al. (2011) used
the GRM (Equation 7) to estimate heritability and 20 PCs to
adjust for stratification, Kang et al. (2010) used a model
including a random-effects covariance matrix based on the
GRM to correct for relatedness. Both relatedness of individ-
uals and case-control population differences are reflections
of coancestry, and both inflate heritability estimates if not
adjusted for. However, the same covariance information can-
not simultaneously estimate heritability and correct for struc-
ture and relatedness. Browning and Browning (2011b) give
additional discussion of this issue, while a recent review of
this area has been given by Price et al. (2010).

Difficulties in identifying the loci underlying phenotypic
variance and covariance increase in non-Caucasian popula-
tions (Need and Goldstein 2009), due to genetic diversity
and to the effects of rare causal variants. Both allele frequen-
cies and haplotype frequencies (LD structure) differ among
populations. In an attempt to replicate GWAS results on
asthma and allergic diseases, Yoon et al. (2012) considered
46 strong SNP associations found in 12 independent GWAS.
Of the 32 that were polymorphic and of sufficient quality in
their Korean population, only 6 showed effects in their
study. Wang et al. (2012) also ascribe some part of the
missing heritability to differences in LD structure across pop-
ulations, noting that standard methods of meta-analysis as-
sume homogeneity of LD across the studies. They have
proposed a new method to combine across ethnic groups
allowing for LD differences, and in a study of type 2 diabetes
their approach finds novel variants in addition to confirming
others previously found.

Population-based IBD mapping

It has been proposed that rare variants arising in the last
80 generations of explosive human population expansion



may underlie many current common genetic diseases (Rare
variants in human populations). Despite the development of
association-based tests to address problems of allelic hetero-
geneity (Li and Leal 2008; Madsen and Browning 2009),
there is very low power for detecting geographically local-
ized rare causal variants. Whereas association approaches
will fail, the patterns of genome shared IBD among cases
at causal may be well differentiated from those in noncausal
regions (i.e., genomic control) and from those among con-
trols. These ideas underlie the recent development of pop-
ulation-based IBD mapping.

Ascertaining via disease in geographically localized pop-
ulations increases the potential to detect the presence of rare
causal variants in segments of IBD inferred among such
groups of case individuals. The methods of Leutenegger et al.
(2003) (Inference of IBD segments) were developed with the
goal of increasing information for genetic linkage mapping in
a population in which relationships between parents of af-
fected individuals were often underrecorded. Detection of
IBD segments between the two homologs of these affected
individuals, without knowledge of the ancestry, has led to
identification of the relevant recessive gene (Edery et al
2011). More generally, Albrechtsen et al. (2009) have used
a population-based method of inferring IBD segments among
affected individuals and demonstrated the increased power
relative to association mapping methods. The same power
that is gained by considering remotely related affected indi-
viduals in known pedigrees (Weeks and Lange 1988; Albers
et al. 2008) applies also to the population-based approach.

In population samples, detection of segments of IBD
enables association tests either to use (Browning and Brown-
ing 2010) or to adjust for (Choi et al. 2009) this coancestry in
association methods of gene mapping. Alternatively, inferred
IBD may be used directly in methods of population-based IBD
mapping under the basic premise that, collectively, there will
be a higher probability of IBD among cases at causal loca-
tions. Browning and Thompson (2012) have shown that
where there are multiple rare causal variants, IBD-based map-
ping can have very substantially greater power than associa-
tion mapping in a case-control study. The pairwise methods of
Browning and Thompson (2012) may be extended to larger
sets of gametes or individuals. For example, ESF (Coalescent
IBD and Ewens’ sampling formula) provides one model for the
subsets of IBD gametes, parametrized in terms of pairwise
IBD probability 8 = 1/(1 + 6) (see Equation A.1). Since
the number of IBD subsets, k, is a sufficient statistic for
0 and hence of 8 (Ewens 1972), tests of different values of
B in different population samples based on the varying values
of k and n can be easily derived.

In pedigree-based linkage analyses, several IBD-based
test statistics have been considered: for a review and
comparison see McPeek (1999). Location-specific IBD
among case individuals is often scored pairwise, but other
statistics include the sizes of groups of cases sharing haplo-
types IBD. Once the IBD graph is inferred from genetic
marker data, the source of the IBD inference is irrelevant

to the analysis of trait phenotypes (Phenotypic similarities
among relatives). Thus, all these test statistics can equally
be applied in population samples. Figure 7A shows a small
collection of IBD graph components that might be inferred
at a particular locus in a case-control study. There would be
many additional unconnected individuals. This sample
would indicate more IBD among cases (A) than among con-
trols (U) and includes one pair of affected individuals who
share both their gametes IBD. Alternatively, a model-based
statistic such as the probability of trait phenotypes condi-
tional on IBD (Equation 4) can be used. Figure 7B shows
the same IBD graphs, but now with a quantitative phenotype
for each individual shown; a value =4.0 corresponds to case
status. The clear correlations among individuals sharing ge-
nome IBD at this locus show how a model-based approach
may significantly increase power.

In pedigree-based linkage analysis, test statistics that
increase power rely on the particular patterns of IBD that are
expected under given trait models. One example is the
autozygosity used in homozygosity mapping of rare re-
cessive traits (Smith 1953; Lander and Botstein 1987).
Rather than being autozygous, case individuals sampled
from a population may often be compound heterozygotes,
carrying two different but nonnormal alleles. Such situa-
tions are well known in the case of “Mendelian” traits such
as the first to be positionally cloned, the cystic fibrosis trans-
membrane conductance regulator locus, where now hun-
dreds of alleles that have different geographic origins are
known (Estivill et al. 1997), and in their various combina-
tions have multiple trait effects (Chillon et al. 1995). Many
Mendelian disorders caused by variants in one or both
homologs of a single gene have eluded pedigree-based link-
age mapping due to their rarity. Test statistics that exploit
the expected IBD pattern will have high power in this
situation.

While analogous IBD-based test statistics may be used in
pedigrees and in populations, procedures for testing will
differ. A pedigree provides a strong prior distribution on null
patterns of IBD at and across test locations in the genome.
Rejection of the null distribution leads to inference of
a causal location. In population samples there is no such
well-defined null distribution. Testing-inferred IBD against
a null distribution such as that of the ESF (Equation A.1)
may show that the IBD does not follow this distribution, but
this may be for reasons of population structure and history
unrelated to the trait phenotype of interest. In population-
based IBD mapping, as in GWAS, permutation of case-
control labels, or more generally of quantitative phenotypes,
is feasible and effective. These permutations provide a null
distribution for the hypothesis that case-control status or
phenotypic value is unrelated to the IBD state at the test
location. Also, as in GWAS, adjustment can be made for
genome-wide differences in the patterns of IBD in case and
control populations (Browning and Thompson 2012). By
contrast, in human pedigree studies the constraints of
pedigree structure make effective permutation testing
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Figure 7 Possible components of an IBD graph used in genetic mapping,
showing only individuals involved in some IBD sharing. The IBD graph may
derive from the analysis of marker data on a pedigree or on individuals
samples from a population. (A) A binary trait with affected (A) and un-
affected (U) individuals. (B) A quantitative trait, with the trait values of
individuals shown. In both cases, at this hypothesized locus, phenotypic
similarity is associated with IBD.

impossible, although it is possible and effective for some
designed crosses in experimental populations (Churchill and
Doerge 1994).

Evolutionary and demographic inferences

Population genetics theory makes many predictions as to the
allelic and haplotypic variation to be expected in a popula-
tions as a result of drift, selection, mutation, migration, and
recombination. With the advent of genome-wide informa-
tive genetic marker data, many advances in methods have
made evolutionary and demographic inferences from these
data. An early example is the use of Equation 8 to provide
the now standard estimate of 10* for the ancient effective
human population size (Ardlie et al. 2002), while Hayes
et al. (2003) use lengths of segments of shared haplotypes
to estimate effective population sizes at various past times.

As with other aspects of IBD, the processes involved have
high variance, and over the evolution of a population the
processes of allelic association (or LD) and IBD are not
closely correlated (Cockerham 1969; Thompson 1976; Nei
et al. 1977). The sharing of common alleles provides little
evidence for IBD. In a review of more recent studies of the
relationship between heterozygosity and fitness, Szulkin
et al. (2010) make the same point in connection with multi-
locus patterns of LD. While earlier methods for detecting
selection in human populations focused on allelic variation
(Bowcock et al. 1991) more recent approaches make use of
the haplotypic variation (Sabeti et al. 2002). Albrechtsen
et al. (2010) develop a method for detecting genome regions
that have undergone strong recent selection. Their approach
explicitly relates the resulting reduced haplotypic variation
to high levels of IBD sharing among individuals.

Under the assumption that the majority of the human
genome, and in particular the noncoding sequences, has not
been subject to strong selection, haplotypic variation and
structure provide information about demographic history
(Pluzhnikov et al. 2002). This haplotypic structure is a result
of segments of IBD. SNP variants have low mutation rates,
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so much of the common allelic variation within and among
human populations dates back tens of thousands of years.
Haplotypic variation reflects lesser but still substantial time
depths. A DNA length of say 10° bp will undergo recombi-
nation at a rate of order 0.001 per meiosis. Thus most of the
common haplotypic variation exhibited in patterns of LD of
this extent was established at least 500 generations (12,000
years) ago. The patterns of genetic variation within and
among populations, given the wealth of data now available,
can provide a much more detailed picture of the major de-
mographic events in human prehistory (Gutenkunst et al.
2009).

Data on chromosome segments provide much stronger
evidence than allelic variation at single loci for two reasons.
For short segments, within the range of population LD, the
haplotype acts as a single “rare allele.” The relative rarity of
particular haplotypes can suggest coancestry, but again time-
depth information is scant. Longer shared haplotypes across
several megabase pairs are a strong signal of recent IBD.
Segments of allelic identity of this length are likely to have
descended from a recent common ancestor, unbroken by
recombination events. The length of shared segments pro-
vide some information on the likely time depth, although
there is high variance. Population size, patterns of growth,
and also patterns and time depth of subdivision all have
impacts on the lengths and counts of IBD segments in a pop-
ulation (Chapman and Thompson 2002).

The many new rare variants being uncovered by
sequencing genomes from a global array of human pop-
ulations (1000 Genomes Project Consortium 2010) are
providing new information for inferences of the demograph-
ics history of populations and the coancestry among them.
In the past 2000 years the human population has undergone
explosive growth (Cohen 1995). In this period, many rare
variants now being revealed by sequencing (Coventry et al.
2010) have become established. Sharing of these rare var-
iants, whether detected directly or via the local haplotypic
background on which they arise, provides powerful evidence
of coancestry (see Rare variants in human populations). The
site-frequency spectra of variants and the sharing of alleles
among populations provide new scope for inferences of hu-
man demographic history (Gravel et al. 2011). At shorter
time depths, long-range haplotype sharing within and across
populations provide more detailed demographic evidence.
The distributions of segment lengths of inferred IBD can
provide a time depth to patterns of changing population size
or bottleneck events (Gusev et al. 2012; Palamara et al.
2012).

Summary

Coancestry underlies genetically mediated patterns of similar-
ity among individuals and among populations. The most
complete description of the coancestry among a set of gametes
is their ARG, but more limited summaries of the ancestry are
useful. For each past time point t, and at each point in the



genome, the ARG provides the partition of gametes into sub-
sets each descending from a single lineage existing at time t.
This is the IBD partition relative to time t. This partition
changes along the chromosome due to recombination events
more recent than time t in the ancestral lineages. The ARG also
defines the segments of genome that descend from the most
recent common ancestor of a set of gametes unbroken by re-
combination. Although analysis of such segments has provided
fundamental results on the relationships between IBD and
genetic variation (Sved 1971), in terms of defining, inferring,
and using IBD, this summary of the ARG seems less useful.
Backward in time, the time to the next coalescent event is
exponentially distributed. Across the genome, the genetic
distance to the next recombination event is exponential.
Exponential distributions have standard deviations equal to
their mean. Accordingly the processes of IBD have high
variance, across the genome, within defined pedigrees, and
in populations. While the probability of IBD at a point in the
genome decays exponentially with the number of meioses of
separation, m, the length of an IBD segment decreases only
linearly in m. Thus in remote relatives, IBD segments are rare
but not short (Donnelly 1983). At the population level, prob-
abilities of IBD relative to a past time t increases with t, but
the expected lengths of segments decrease, resulting in many
more older segments, shorter in length in expectation but
again having high variance. This leads to striking differences
between the length distribution at given m, and the number
of meioses separation among segments of the given length.
At a point in the genome, relative to a recent time point t
(perhaps 1200 years or 50 generations), IBD DNA has very
high probability of being of the same allelic type, whereas
the types of non-IBD DNA are effectively independent. The
joint probability of phenotypes of a set of related individuals
may thus be expressed as linear weighted sums over the
probabilities of IBD states. Jointly among individuals, a con-
sistent pattern of IBD at a locus can be expressed in terms of
the IBD graph. Given the IBD graph, or a set of realized IBD
graphs, a joint probability of the phenotypes of related indi-
viduals can be similarly computed. Whereas pedigree-based
probabilities of IBD are the expected proportions of genome
IBD, allelic covariances provide estimates of the realized
proportions. There are close parallels between the partition-
ing of variance in IBD and the partitioning of realized allelic
variation, both among individuals and among populations.
Across the genome, there is dependence of allelic types
(LD) resulting from population structure or remote coan-
cestry. This affects the frame of reference required to define
the independence in allelic type of non-IBD DNA. Sharing
of a haplotype that is rare in the population is a signal of
coancestry or IBD, but there is no absolute measure of
haplotypic rarity that defines IBD. For common haplotypic
variation, use of current haplotypic frequencies in assessing
IBD provides a framework for inferring coancestry, as well as
for phasing and imputation. Rare variants can provide a strong
signal of coancestry, but provide little time-depth information.
With the explosive growth of the human population, there are

many young rare variants, typically geographically localized.
Many will have arisen more recently than the time depth of
IBD typically of interest. Recombination breakpoints creating
novel local haplotypes have the same distribution of survival
and replication as do these novel variants (Fisher 1954). The
common haplotypic variation surrounding a (typed or untyped)
novel variant or recombination breakpoint provides information
both on IBD and on its likely time depth.

Since IBD gives rise to allelic and phenotypic correla-
tions, it is possible to infer IBD from observed patterns of
similarity. For close relatives, pedigree relationships may be
estimated or validated from genetic marker data. For more
remote relatives, the segmental nature of IBD is key to
inference, and longer shared haplotypes provide evidence
of recent coancestry. However, even recent coancestry may,
by chance, provide only short shared haplotypes; there is
no hard threshold length between the longer segments of
IBD of recent coancestry and the shorter-range haplotypes
that reflect the LD of more remote coancestry. Segment
lengths of a given time depth have a high variance in
length. Shared segments of a given length can have very
different depths of coancestry. There are many recent
methods for inference of IBD; most of these focus on
pairwise estimation. To obtain a full IBD graph that can be
used in a joint analysis of trait data, the pairwise inferences
must be combined consistently, not only at each locus but
also across loci.

Despite the high variance of the processes involved, and
the caveats regarding too close an identification of allelic and
descent identity, modern SNP data and now sequencing data
are providing a wealth of information. There are many ways in
which to measure the processes and probabilities of IBD (The
Processes of Identity by Descent). There are many ways to use
IBD to analyze patterns of phenotypic variation among related
individuals in a defined pedigree or from a population (Phe-
notypic Similarity and Allelic Variation). There are many ways
to estimate relationship and measure relatedness and to detect
IBD segments (Inference of Relationships, Relatedness, and IBD
Segments). Finally, and most importantly, an IBD approach
unifies genetic mapping in pedigrees and populations and
across genomic scales from a SNP at a single base pair to
haplotypes over several million base pairs. It provides a frame-
work with which to address the heritability of phenotypes, and
quantitative variation in populations, and to address the de-
mographic and evolutionary history of our species.
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Communicating editor: M. Turelli

Each of the ESF and RBT models has a Polya urn interpretation, which provides additional insights into the distributions of
the number {a;} of groups of size j. That for the ESF is due to Hoppe (1984) and provides the formula for the probability of
any partition z of the n labeled objects in which there are a; groups of size j,

n n—1
5) = 6 [ (G-1)® / T+
=1 =1

(A1)

where . jaj = n and } .a; = k. Conditional on the number of subsets k

(2] k) =

H((J 1)!

j=1

where S, is the coefficient of 6~ in (6 + 1)(6 + 2) ...

/M“H]l

(6 + n — 1) (Ewens 2004).

(A.2)

For the Polya urn model for the RBT, we start with an urn with k balls of different color and sample a ball (n — k) times,
each time replacing it together with an additional ball of the same color. Hence a particular sequence s of choices resulting in

a; subsets of size j has probability

mals 1K) = (k= )T (G

J=1

(A.3)

1Y /=1 [L(G-10"
=1

The apparent similarity of Equations A.2 and A.3 is misleading if the distribution of interest is that of the {a;}. In the ESF case
there are n!/ Hj(i!)afaj! partitions z with given {a;} (Hoppe 1984). This provides the ESF result

mn(a,...,anlk) = n! (Sn"k Hjafaj!)
j

(A4

For the RBT, the (j — 1) samplings of each of the a; colors resulting in a group of size j may be arbitrarily ordered among the
(n — k) samplings. Additionally, the k original lineages are unordered. Thus there are (k!/[[;a;!)((n—k)!/[I((G—1))*)
sequences resulting in a; groups of size j, providing for the RBT

n—1 -
wn(al,...,an|k):k!((k 1)Haj1) (A5)
j
From Equations A.4 and A.5 we see that the ESF partitions tend to be far more unbalanced than those of the RBT. Due to the
extra factors j% in the denominator of Equation A.4, the ESF gives higher probabilities of more extreme group sizes, while the
RBT gives rise to more balanced group sizes.
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