Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Sep;52(3):283–287. doi: 10.1104/pp.52.3.283

Photosynthetic Reactions in the Marine Alga Codium vermilara

I. CO2 Fixation and Hill Reaction in Isolated Chloroplasts

Mordechay Schönfeld a, Menachem Rahat a, Joseph Neumann a
PMCID: PMC366486  PMID: 16658548

Abstract

Chloroplasts were isolated from the marine alga Codium vermilara (Siphonales). The isolated chloroplasts were active in CO2 fixation in the light at a rate comparable to the rates obtained by fragments of thalli. Maximal rates of CO2 fixation by isolated chloroplasts from Codium were obtained in the presence of salt or sorbitol isoosmotic with sea water. The conditions of isolation of Codium chloroplasts are much less stringent than those required for active chloroplasts from higher plants. The isolated chloroplasts comprise a homogeneous population of the intact “class I” type, as based on microscopic observations and on their inability to reduce ferricyanide unless osmotically shocked. The intact chloroplasts are able to reduce p-benzoquinone at a high rate.

Full text

PDF
283

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. The photosynthetic energy conversion process in isolated chloroplasts. Experientia. 1966 May 15;22(5):273–287. doi: 10.1007/BF01900449. [DOI] [PubMed] [Google Scholar]
  3. Giles K. L., Sarafis V. Chloroplast survival and division in vitro. Nat New Biol. 1972 Mar 15;236(63):56–58. doi: 10.1038/newbio236056a0. [DOI] [PubMed] [Google Scholar]
  4. Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
  5. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kalberer P. P., Buchanan B. B., Arnon D. I. Rates of photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1542–1549. doi: 10.1073/pnas.57.6.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sagan L. On the origin of mitosing cells. J Theor Biol. 1967 Mar;14(3):255–274. doi: 10.1016/0022-5193(67)90079-3. [DOI] [PubMed] [Google Scholar]
  8. Shephard D. C., Levin W. B., Bidwell R. G. Normal photosynthesis by isolated chloroplasts. Biochem Biophys Res Commun. 1968 Aug 13;32(3):413–420. doi: 10.1016/0006-291x(68)90677-3. [DOI] [PubMed] [Google Scholar]
  9. TREBST A. V., LOSADA M., ARNON D. I. Photosynthesis by isolated chloroplasts. XII. Inhibitors of carbon dioxide assimilation in a reconstituted chloroplast system. J Biol Chem. 1960 Mar;235:840–844. [PubMed] [Google Scholar]
  10. Trench R. K., Greene R. W., Bystrom B. G. Chloroplasts as functional organelles in animal tissues. J Cell Biol. 1969 Aug;42(2):404–417. doi: 10.1083/jcb.42.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Walker D. A. Correlation between Photosynthetic Activity and Membrane Integrity in Isolated Pea Chloroplasts. Plant Physiol. 1965 Nov;40(6):1157–1161. doi: 10.1104/pp.40.6.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Walker D. A., Crofts A. R. Photosynthesis. Annu Rev Biochem. 1970;39:389–428. doi: 10.1146/annurev.bi.39.070170.002133. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES