Table 1.
Discriminant Method | TP* | FP | FN | TN | Se | Sp | Test Error rate |
---|---|---|---|---|---|---|---|
Linear Discriminant Analysis (LDA) | 13 | 8 | 45 | 1181 | 0.224 | 0.993 | 0.043 |
Quadratic Discriminant Analysis (QDA) | 13 | 9 | 45 | 1180 | 0.224 | 0.992 | 0.043 |
K-Nearest Neighbour (KNN) | 17 | 16 | 41 | 1173 | 0.293 | 0.987 | 0.046 |
Epanechnikov Kernel Discriminant (EKD) | 13 | 8 | 45 | 1181 | 0.224 | 0.993 | 0.043 |
Normal Kernel Discriminant (NKD) | 9 | 2 | 49 | 1187 | 0.155 | 0.998 | 0.041 |
Logistic Discriminant Analysis (LDA) | 13 | 9 | 45 | 1180 | 0.224 | 0.992 | 0.043 |
Support Vector Machine (SVM) | 9 | 3 | 49 | 1186 | 0.155 | 0.997 | 0.042 |
Neural networks (NNET) | 11 | 8 | 47 | 1181 | 0.190 | 0.993 | 0.040 |
Mixture Discriminant Analysis (MDA) | 15 | 13 | 46 | 1176 | 0.259 | 0.989 | 0.045 |
Flexible Discriminant Analysis (FDA) | 13 | 8 | 45 | 1181 | 0.224 | 0.993 | 0.043 |
Multivariate Adaptive Regression Splines (MARS) | 14 | 12 | 44 | 1177 | 0.241 | 0.990 | 0.045 |
Adaptive Backfitting (BRUTO) | 13 | 9 | 45 | 1180 | 0.224 | 0.992 | 0.043 |
True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN), Sensitivity (Se), Specificity (Sp)