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Abstract
This paper explores the application of text mining to the problem of detecting protein functional
sites in the biomedical literature, and specifically considers the task of identifying catalytic sites in
that literature. We provide strong evidence for the need for text mining techniques that address
residue-level protein function annotation through an analysis of two corpora in terms of their
coverage of curated data sources. We also explore the viability of building a text-based classifier
for identifying protein functional sites, identifying the low coverage of curated data sources and
the potential ambiguity of information about protein functional sites as challenges that must be
addressed. Nevertheless we produce a simple classifier that achieves a reasonable ∼69% F-score
on our full text silver corpus on the first attempt to address this classification task. The work has
application in computational prediction of the functional significance of protein sites as well as in
curation workflows for databases that capture this information.
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1. Introduction
To facilitate progress in understanding and prediction of protein function, it is critical to
populate databases with information about the physical aspects of protein function,1,2

including the location of functionally important residues on the protein and the biochemical
properties of ligand-protein interactions. Drug discovery for treatment of diseases proceeds
systematically from this information; drugs can be designed to target a specific functionally
important site on the protein and can become the basis for large-scale drug screening
experiments. However, such physical information is currently scarce compared to more
qualitative information about protein function, such as pathway assignments or Gene
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Ontology annotations, despite its critical importance for characterization and eventual
manipulation of protein behavior.

In previous work, we have shown that text mining can be integrated with protein structure-
based methods for prediction of protein functional sites to identify high-quality predictions
that are supported by evidence in the biomedical literature.3 The method we developed in
that work is called Literature-Enhanced Automated Prediction of Functional Sites, or LEAP-
FS. While that work showed that we were able to recover a good proportion of curated
functional site annotations in existing databases, it did not attempt to classify the functional
importance of each site more specifically, e.g., identifying catalytic sites. Automated
identification of catalytic sites in the biomedical literature has application, for example, in
genome annotation pipelines and in drug design. Such predictions provide fine-grained
information regarding the biological significance of a specific functional site, influencing
both the overall understanding of the role of a protein in a biological process, and how that
protein might be modulated through drug intervention. The classification can also be
employed within the curation pipeline for the development of resources such as the Catalytic
Site Atlas4 to assist in identifying meaningful literature to be curated, and to highlight
specific residue mentions within that literature that should be considered for inclusion in the
resource.

Development of a functional site classifier would lay the foundation for generalizing the
methods we previously developed in LEAP-FS. First, it supports the generalization of the
methods to a broader set of the biomedical literature; we would like to be able to identify
functionally important protein residues through analysis of literature that is not directly
connected to proteins via curated links. The classifier would play a role in that
generalization by assisting in the recognition of literature where residues are specifically
discussed as being catalytically active. Second, classification of a residue mention as within
a catalytic site gives us increased confidence that the residue mention is relevant for
prediction of functional sites – it provides evidence that the residue is mentioned due to its
functional importance.

In this work, we take a step towards finer-grained analysis of amino acid residues mentioned
in text. We provide an analysis of the residues identified in publications linked to proteins in
the Protein Data Bank in order to understand what relevant information is readily available
in curated data sources. We further explore the development of a classifier which can
classify amino acid residues as catalytic residues based on the textual context of the residue
mention, e.g. for the positive cases below.

1. We propose a mechanism involving general base catalysis by the carboxy-terminal
Trp270 carboxyl group [PMID 12356304]

2. it is possible that Arg 381 is one of the catalytic bases previously observed [PMID
9174368]

We find that while our classifier does a reasonable job in classifying positive instances, there
is significant ambiguity around negative instances, both for the purpose of developing
training material and during classification of held-out test data.

2. Related Work
BindingMOAD is a database of protein ligand-binding sites, which is updated through
curation of approximately 2000 full text publications each year.5 To assist with this curation,
a natural language processing system called BUDA, using the rule-based GATE system6

(gate.ac.uk) was developed to identify articles relevant to binding, and to extract protein-
ligand interactions along with quantitative binding affinities. However, it has been noted that
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the curation of BindingMOAD cannot rely completely on this automated information
extraction, due to ambiguities that persist in the extracted information.7 Furthermore,
specific evaluation results of BindingMOAD have not been made available so we are unable
to make detailed comparisons.

The Open Mutation Miner8 system extracts mutation information from full text publications
and identifies mutation impact information including protein properties such as kinetic and
stability data. The system also aims to capture protein function impacts, through detection of
Gene Ontology9 molecular function terms via dictionary look-up with some morphological
processing. A rule-based strategy is employed for association (grounding) of an impact to a
mutation. We refer the reader to their work8 for a thorough review of other text mining
systems that focus on extracting mutation information. The scope of these systems is
different than our work, as we are interested in detecting all specific protein residue
mentions, not only mutation sites, and we focus on catalytic and ligand binding sites.

Nagel et al10 address annotation of individual protein residues, focusing on binding and
enzymatic activity. The goals of that work are closest to our own goals. They develop a
mutual information-based classifier for detection and categorization of functional terms
within a sentence, achieving F-scores of 0.57 for binding and 0.27 for enzymatic activity on
a very small corpus of 100 manually annotated abstracts; association of residues to these
terms is achieved using syntactic relationships. However, only 16 extracted functional
annotations are produced by the system. The authors compared those annotations to
information in UniProt and did find that that the text mining identified correct annotations,
of which 11 were not already present in the resource. The evaluation of this work was very
limited in scope; we will present a much larger-scale evaluation.

3. Methods
3.1. Amino Acid residue detection in text

To detect residues in biomedical publications, we employ a set of patterns that take
advantage of regularities in how protein residues and mutations are expressed in text. These
patterns are described in detail in previous work;3,11 that work showed that we were able to
achieve F-scores of over 94% on a third-party gold standard.10 For the analysis reported
here, we reused the previous results we generated, which included detection of single-letter
abbreviations for mutations (e.g. D199S) but ignored single-letter abbreviations for
individual residues. All residue and mutation mentions were normalised to a three-letter
residue abbreviation with the specific position of the residue.

3.2. Corpus creation
We created two corpora for processing: a corpus of abstracts and a corpus of full text
publications. The starting point for the creation of each of these corpora was the set of
17,595 PubMed identifiers referenced as the primary citation of records in the Protein Data
Bank12 (PDB; www.pdb.org), using PDB data downloaded in May 2010 for the LEAP-FS
system.

We were able to retrieve the full set of abstracts from a local Medline repository. We were
also able to successfully retrieve 11,560 full text publications from this set. After running
the residue and mutation detection step over these corpora, we identified 6,109 abstracts and
8,491 full text publications with residue mentions. We next applied a physical verification
step for those residue mentions, in which each amino acid mention identified in the text
must be matched to a physical residue in the corresponding PDB record, with both the
position in the protein sequence and the specific amino acid matching (for mutations, either
the wild type or the mutated amino acid was allowed to match). This step ensures that
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residues identified in the text are grounded to the appropriate protein sequence, and resulted
in identifying 5,236 abstracts and 7,309 full text publications with physically verified text
residues (PVTR) (in each case representing 86% of the original corpus).

3.3. Distant learning for training data creation
To avoid costly manual annotation of training data, we take advantage of high quality
external knowledge to automatically generate appropriate training data. We have previously
explored this strategy for creation of training data for extraction of protein-residue
associations from text.11 We extend that approach here to create a “silver standard” data set
– i.e. training data that we believe to be highly reliable, but which has not been manually
verified. The architecture of the approach is outlined in Figure 1.

The silver corpus creation starts with the abstract and full text corpora we collected, with
each physically-verified text residue in the corpus serving as a potential training example.
The annotation of the text residues in the corpus as well as the sub-selection of publications
for the silver standard data set relies on external curated data. The external knowledge we
rely on to build our training and test data is the curated links to the literature from the
Protein Data Bank which form the basis of our corpus creation, coupled with literature-
curated annotations of catalytic sites available in the Catalytic Site Atlas4 (CSA;
www.ebi.ac.uk/thornton-srv/databases/CSA/). We refer to the subset of CSA annotations
that are marked as coming from the literature as CSA-Lit. The annotated catalytic sites in
CSA-Lit represent highly reliable positive information about the residues in PDB records
that are catalytically active. Our training data focuses on the publications that have at least
one physically-verified text residue that is annotated in CSA-Lit.

Because catalytic sites are also binding sites, and generally are a subset of functional sites,
there is significant potential ambiguity about whether a given functional site is catalytic. To
ensure that our training data cleanly captures specifically catalytic sites as positive instances
but does not inadvertently include a catalytic site as a negative instance, we refer to other
functional site resources to discard potentially ambiguous cases. Catalytic sites that are not
in the CSA-Lit subset but are annotated in CSA (usually on the basis of sequence alignment
with a known catalytic site) are discarded as they are not definitively catalytic, but very
likely to be. We also consider any site identified in BindingMOAD as a binding site and any
residue that is near a small molecule (NSM) in the corresponding PDB structure (see3 for
details on how this is formally determined) as ambiguous. The logic we employ is
formalized as follows:

For each PubMed article with at least one physically-verified text residue in CSA-Lit, for
each physically-verified text residue in the article,

1. is it in CSA-Lit? (if yes, annotate as positive instance)

2. is it in CSA? (if yes, discard)

3. is it annotated in BindingMOAD? (if yes, discard)

4. is it a residue near a small molecule in the PDB structure? (if yes, discard)

5. otherwise, annotate the text residue as a negative instance.

Application of this strategy results in an imbalanced silver corpus for the abstracts, with 749
positive instances and 179 negative instances (in 259 abstracts), and a significantly larger
and more balanced silver corpus for the full texts, with 5846 positive instances and 6095
negative instances (over 312 articles).
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3.4. Applying basic machine-learning classification
The silver standard we created is designed to resemble the judgments which would be
produced by a human without requiring an explicit annotation stage. The curators of CSA
determined on the basis of a particular article whether a particular site was catalytic or not,
which suggests that this information is available explicitly or implicitly in the text of the
article. This in turn suggests that a machine-learning algorithm may be able to successfully
classify some of the residue mentions on the basis of this textually-encoded information as
catalytic.

In this section, we describe a fairly simplistic machine learning approach to this problem.
This approach was designed to determine how readily the annotations could be determined
using simple features based on the textual context surrounding the residue mention. In
addition to this, it was desirable to have the features selected so the classifier could be
trained on the relatively small abstracts-only portion of the corpus, since these are far more
easily accessible than full text data. Because of the small size of this portion of the dataset,
feature types which tend to suffer from data sparseness were not explored extensively. In
particular, for word n-grams, from the few hundred instances in abstracts we have available
there is unlikely to be enough information to meaningfully populate feature vectors for n >
1, so we only experimented with features based on word unigrams.

We report classification results with a model built using Zhang Le's Maxent Toolkita. In
preliminary experiments, we achieved superior performance using this toolkit than with
other tools. The corpora were preprocessed; sentences were identified using the Jena
Sentence Boundary Detector tool13 and the text was tokenized and tagged with part-of-
speech (POS) tags using the GENIA tagger.14 We experimented with the following feature
sets:

• TOKENS(b,e): the set of tokens in the range (b, e) relative to a physically-verified
text residues (PVTR) token, not crossing sentence boundaries. For example,
TOKENS(−2, −1) denotes the two tokens immediately preceding the PVTR. The
value $ denotes the sentence boundary, so TOKENS($, −1) means all preceding
tokens.

• LEMMA(b,e) and BIOLEM(b,e): the same as TOKENS(b,e), but using lemmas of
the tokens derived from the GENIA tagger and the BioLemmatizer,15 respectively.

• MT: Match Type. Whether the PVTR was identified via mutation pattern such as
Cys42Ala or a bare amino acid residue pattern such as Cys42.

Use of the full preceding sentential context, e.g. LEMMA($, −1), was found to be the most
effective; smaller ranges tended to be detrimental. Features based on POS-tags were
unhelpful. Unlemmatized tokens performed worse than lemmas (results not reported).

4. Results
4.1. Literature-based recovery of CSA annotations

To establish the context for the task of classifying functional sites as catalytic, we undertook
an analysis of the data we had generated for our initial experiments with the LEAP-FS
method. The aim of this analysis was to understand the proportion of the residues extracted
from carefully selected biomedical publications that correspond to known catalytic sites. In
our previous work,3 we established that a significant proportion of the residues identified in
the publications we analysed corresponded to functionally active sites as recorded in both

ahttp://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
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CSA and BindingMOAD and used this as evidence supporting the hypothesis that residue
mentions in the literature have functional significance. Here, we specifically examine how
well we are able to recover the functional site annotations in the CSA, essentially measuring
the method's recall of curated annotations.

Table 1 summarises the results. Line 1 indicates the total amount of information in the
Protein Data Bank that is linked to a PubMed ID. The last column (PMID,Site) indicates the
number of unique combinations of PMIDs and residue locations in the Protein Data Bank.
This represents an upper bound on the number of residues mentioned in text that we would
expect to find. Line 2 represents the results of the analysis in our previous work; we
identified 14,127 residue mentions in 5,236 PubMed abstracts; those residue mentions
correspond to 44,701 physical residues in the PDB. Line 3 extends that to processing of full
text publications. Lines 4-6 focus on the subset of PDB residues that are included in the
Catalytic Site Atlas; we take these residues to be the set of known (or presumed) catalytic
sites. We can see here that text mining of PubMed abstracts (Line 6) is only able to identify
a small proportion (∼9%) of the catalytic residues that could be mentioned in some
publication (Line 5). Restricting our analysis to those residues in the CSA that have been
explicitly marked as having supporting evidence in the literature (the CSA-Lit subset; Lines
7-12) we find that we are able to recover a somewhat higher proportion, ∼17% for abstracts
(476/2799). When we process full text as well, our coverage of CSA-Lit improves
dramatically, to ∼38% (1052/2799) for all literature evidence we were able to access and
detect.

We further wish to understand the extent of the ambiguity we face in attempting the
classification task. To assess this, we examined the annotation status of the physically
verified text residues (PVTRs) in the full text data set. While the annotations of the CSA-Lit
subset are clearly the most relevant to our classification task, representing literature-curated
catalytic site annotations, all of the annotations in CSA are very likely to be valid catalytic
sites, as they were derived through alignment with known catalytic sites in closely related
structures. As we suggested above, many binding sites are also catalytic sites. Hence sites in
PDB protein structures which are in close proximity with a small molecule (NSM = near
small molecule), a characteristic strongly suggestive of a ligand binding site, as well as the
curated subset of those sites represented in the BindingMOAD database,5 are also
potentially catalytic. The overlap of the PVTRs with each of these sources is summarized in
Table 2. The results show that a large proportion of the PVTRs overlap with some existing
annotation for those sites (41.5%), despite only a small fraction having been formally
curated as catalytic sites (0.8%). While this is a strong result for LEAP-FS – supporting the
hypothesis that text residues are likely to be functionally important – it means that we have a
large ambiguity set for our catalytic site classification task.

4.2. Classification results over silver corpus
The abstracts and full text corpora were split into a training subset and a test subset, with
80% of the articles in each corpus randomly selected for training and 20% reserved as a
held-out test set. Table 3 provides a selection of the classification results over these subsets
(test results in italics). Our experiments used 8-fold cross-validation. We include results for
a baseline system, labelled BL, which is a majority-class classifier. Other lower-performing
scenarios are not included. All results reported for LEMMA and BIOLEM are LEMMA($,
−1) and BIOLEM($, −1), respectively. The column σ2 indicates the value for the σ2

Gaussian smoothing parameter to the MaxEnt learner (0.0, 1.0, 4.0 were tested).

The abstract development set contains 613 catalytic (positive) and 133 non-catalytic
(negative) text instances, while the full text development set contains 4641 catalytic and
4846 non-catalytic text instances. The standard measurements of precision, recall, and f-
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score are calculated over these text instances. F-score is calculated through micro-averaging
(Mic), i.e. across all text residues in the test set, and macro-averaging (Mac), i.e. averaging
performance over the two categories catalytic vs. non-catalytic.

We note that the baseline system BL has non-zero values for the non-majority class
(therefore, less than 100% majority class recall) in the cases of training on abstracts and full
text together. This is because the majority class is calculated from the input data in the
training fold. The folds are randomly determined at the document level rather than the text
instance level. Coupled with more balanced instances in the full text data, this can result in
the majority class in a given fold not being the same as the majority class in the entire data
set.

5. Discussion
5.1. Full text versus abstracts

Examination of Table 1 shows a clear advantage when processing full publications as
compared to abstracts, despite having access to a smaller proportion of the relevant literature
(66% of relevant publications). This demonstrates that the increased level of detail that is
available in full text publications16 is important for understanding of specific physical
residues. Our results also indicate an advantage in processing both the abstracts and full text
together.

Our results show some discrepancies between what is identified in abstracts as compared to
the corresponding full text publications we were able to access. While it would be typical for
a full text publication to contain the abstract, we found that our system was not able to
identify (minimally) the same text residues as in the corresponding abstracts for 497 full text
files. Further investigation revealed that more than half (250) of those full text publications
were spurious – while there was text downloaded for a given PMID, it was not the actual
publication context. This typically resulted from an error in the logic of our full text retrieval
script or a subscription firewall. We found that in 157 publications we missed residue
mentions due to conventions in the HTML to plain text conversion script that our residue
detection patterns were not sensitive to. An additional 88 publications had no results in the
full text data set because single letter mutations were not included in the full text processing.

5.2. Classifier performance
Examination of Table 3 shows several consistent patterns. First, the classifiers based on
machine learning all easily outperform the baseline classifier; this effect is most pronounced
on the more balanced full text test set. Second, the classifiers trained on more data
(combining both abstracts and full text) outperform the classifiers trained on abstracts alone.
The lack of complete subsumption of the abstract data in the full text data, as discussed
above, likely contributes to this effect, but it also demonstrates the advantage of more
training contexts to learn from. Third, the MT (match type) feature improves performance in
most cases. Fourth, the results on the held-out test set are slightly lower than the
corresponding results for the development set, except in the case of the final full text test
run, trained on all the development data. This again shows the benefit of more data.
However, the differences between the various feature sets we experimented with were small
and not fully consistent across the system combinations we considered – sometimes
BIOLEM gives an advantage over LEMMA and sometimes not, and various settings for the
σ2 parameter affected P/R/F across the two categories inconsistently. We have experimented
with a limited set of features in this work to test the viability of the approach; application of
other features and other approaches to named entity recognition is warranted to achieve
improved performance.
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One complicating factor for the classifier arises from the distinction between a catalytic text
mention of a given site in a protein, and a catalytic site. A catalytic site may be discussed in
text for some reason that has nothing to do with its function and therefore a given text
mention may not be appropriately categorized as “catalytic”, even if the corresponding
protein site is a catalytic site. However, given our distance-based methodology for
producing the training and test data for the classifier, we cannot discriminate between these
cases. We annotate individual text mentions of PVTRs based on site-level information rather
than considering whether the specific local textual context provides evidence of function.

An analysis of the classifier's performance at the level of a unique PVTR, rather than at the
level of text mentions, is shown in Table 4. Here, we have aggregated over the classification
of all text mention instances of a given (PMID, Site) pair. We have employed a simple
majority vote of classifications over the instances – that is, if the majority of the individual
text mentions are classified as catalytic, then the PVTR is classified as catalytic as well. In
the case of a tie, we examine the scores of the classification. When the data is viewed this
way, we see improved performance on the recall of catalytic sites, at a significant cost to
precision. In contrast, the classification of non-catalytic sites has improved overall. These
results therefore confirm the catalytic text mention/catalytic site difference, suggesting that
many text mentions of catalytic sites are not clear references to its catalytic status, while it is
possible to reliably rule a PVTR out as non-catalytic due to a lack of catalytic text mentions.

Addressing this problem could lead to overall improvement of the classifier, which we plan
to explore in future work. We could build a classifier which aggregates information across
text mentions to support classification of a unique PVTR rather than classification of each
individual text mention. We could also explore a two-part solution, where the first part is to
identify sentences that contain functional information about a site in a protein, and the
second part is to classify that functional information more specifically. This would require
development of a training corpus which provided more specific functional information. This
could be done manually or by filtering text mentions in our existing corpus according to
whether there is a detected Gene Ontology molecular function term within the same
sentence, similar to the mutation grounding strategy of Naderi and Witte.8

5.3. Use of the classifier for improving curation of catalytic sites
Our data highlights (a) the low coverage of curated information about both catalytic sites
and binding sites more generally, and (b) the significant ambiguity of functional sites.

The gap between curated information and the amount of inferred information in genomic
databases is a well known problem,17 and we see clear evidence of that gap here. In
comparing Lines 4 and 7 of Table 1, we see that the CSA-Lit curated subset represents less
than 6% of the full CSA database. BindingMOAD is the curated subset of the PDB NSM
data, focused on protein ligand binding sites. For the PVTRs in our corpus, only 13% of
NSM sites we recover are also captured in BindingMOAD (PVTR NSM vs. PVTR
BindingMOAD data in 2). While this difference in coverage could be because many of those
NSM sites are not high-quality binding sites, it is more likely a reflection of the time and
resources that manual curation requires. The fact that we are able to recover over forty
thousand NSM sites in our corpus of 7,309 full text publications suggest that text mining can
play a powerful role in closing this gap, by highlighting sites that have literature evidence of
functional importance.

However, to close the annotation gap we must go one step further than identification, and
perform finer-grained categorization of those PVTRs. The catalytic site classifier we have
developed on the basis of our training data could be applied more broadly to the full set of
7,309 articles for which we have identified PVTRs. This would identify those PVTRs not in
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CSA-Lit that are most likely to be catalytic sites; those in turn can be prioritized for
curation, and the specific document with the catalytic mention of the site can be provided to
a database curator. These developments would enable higher-throughput in the curation
process.

6. Conclusion
This paper has explored the applicability of text mining from the biomedical literature to the
problem of detecting catalytic sites. We have presented two corpora in which protein residue
mentions were annotated using reliable external knowledge about catalytic residues. Our
analysis of these corpora according to their coverage of existing annotated resources showed
that the literature is a good source of information about functionally significant protein sites,
and furthermore that processing of full text publications is particularly important for
achieving good recall of these sites from the literature. With respect to classification of these
functional sites as catalytic, we observed that there is considerable ambiguity in assigning
the functional role of a given site.

Nevertheless, we explored development of a classifier learned from our annotated silver
corpora to enable automatic annotation of catalytic sites in the biomedical literature. Despite
the ambiguity of catalytic sites, and the evaluation of the annotation at the level of individual
text mentions of protein sites rather than aggregated over unique physical sites, the
classifiers were able to achieve reasonably good performance with a simple set of features.
Having established the viability of the approach, and having identified some of the
challenges that arise in this task, we are confident that we in future work we will be able to
develop new methods that improve upon the initial results presented here. This work
represents an important step in the development of effective strategies for understanding
functional characteristics of proteins at the level of specific residues, and for supporting
curation of that information in databases, by exploiting the information available in the
published literature.
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Fig. 1. Architecture for distant learning silver corpus creation
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Table 2

Analysis of the overlap of the physically verified text residues (PVTR) in our full text corpus with functional
site annotations. Percentiles in parentheses are relative to the category.

Category Num PVTR % PVTR Num PMID PMID %

All PVTR 107153 100.0% 7309 100.0%

in abstract 6085 (5.7%) 2477 (33.9%)

not in abstract 101068 (94.3%) 4832 (66.1%)

PVTR CSA-Lit 805 0.8% 312 4.3%

in abstract 237 (29.4%) 127 (40.7%)

not in abstract 568 (70.6%) 185 (59.3%)

PVTR any CSA 5821 5.4% 2413 33.0%

in abstract 1252 (21.5%) 759 (31.5%)

not in abstract 4569 (78.5%) 1654 (68.5%)

PVTR BindingMOAD 5652 5.3% 698 9.5%

in abstract 537 (9.5%) 239 (34.2%)

not in abstract 5115 (90.5%) 459 (65.8%)

PVTR NSM 42603 39.8% 5254 71.9%

in abstract 3540 (8.3%) 1653 (31.5%)

not in abstract 39063 (91.7%) 3601 (68.5%)

PVTR any annotation 44428 41.5% 5566 76.2%

in abstract 3900 (8.8%) 1804 (32.4%)

not in abstract 40528 (91.2%) 3762 (67.6%)
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