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Abstract
To characterize the relation between an exposure and a continuous outcome, the sampling of
subjects can be done much as it is in a case-control study, such that the sample is enriched with
subjects who are especially informative. In an outcome dependent sampling (ODS) design,
observations made on a judiciously chosen subset of the base population can provide nearly the
same statistical efficiency as observing the entire base population. Reaping the benefits of such
sampling, however, requires use of an analysis that accounts for the ODS design. In this report, the
authors examined the statistical efficiency of a plain random sample analyzed with standard
methods, compared with that of data collected with an ODS design and analyzed by either of two
appropriate methods. In addition, three real datasets were analyzed using an ODS approach. The
results demonstrate the improved statistical efficiency obtained by using an ODS approach and its
applicability in a wide range of settings. An ODS design, coupled with an appropriate analysis,
can offer a cost-efficient approach to studying the determinants of a continuous outcome.
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A simple and well known outcome dependent sampling design is the case-control study. The
case-control study design is logistically and economically appealing because observations
made on a judiciously chosen subset of the population base provide nearly the statistical
efficiency of observing the entire population base 1. The principal idea of the case-control
design and its subsequent extensions such as case-cohort and two-stage designse.g.2,3,4,5,6,7,
is to concentrate resources on observations carrying the greatest amount of information.
Related ideas of response based sampling have also be developed in economics and survey
sampling8,9,10.

An unique property of the case-control design is that under the logistic regression model
with a binary Y, the estimated regression parameter (the odds ratio) for the exposure is the
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same under retrospective sampling as it is under a cohort study, with the effect of sampling
confined to the intercept2,4. i.e., analyzing the a data set from case-control study as if it were
from a cohort study will only affect the intercept. This property does not hold for a
continuous response variable or if the regression model is not logistic. While designs for
studying dichotomous outcomes have continued to develop, for studies of continuous
outcomes analogous work has lagged. As the scope of epidemiologic inquiry grows, so does
the need for efficient approaches to studying the determinants of a continuous outcome’s
level. This need is especially clear when the measurement of exposure is expensive.

As an example, the authors wanted to study background-level in utero exposure to the
neurodevelopmental toxicant polychlorinated biphenyls (PCBs) in relation to performance
on the Bayley Scale of Infant Development (BSID). Maternal pregnancy serum was
available from a previously completed cohort study in which BSID had been measured, and
PCB concentration in the maternal serum could provide a good surrogate measure of in
utero exposure.

In studies of the relation between a relatively expensive exposure measure and the level of a
continuous outcome, one approach has been to dichotomize the outcome and conduct a
nested case-control study11,12. Dichotomizing a continuous outcome, however, could cause
the estimand to be different and usually will result a loss of information as a lower order
scale for the response is used 13.

To reap the benefits of a reduced sample size, one can employ case-control-like sampling
adapted for continuous outcomes, outcome dependent sampling (ODS). Zhou et al.14.
proposed an new ODS scheme that allows for two components. First, an overall random
sample (SRS) of the population base is taken. Second, one or more supplementary random
samples are taken, in which (as with case-control sampling) the probability of selection
depends on the level of the outcome variable. For example, supplementary random samples
might be taken only from the tails of the distribution of outcome. In most settings, by
oversampling subjects in the tails, greater efficiency can be achieved than with a plain
random sample of the same total sample size as the ODS sample, because the “tail”
observations can provide greater influence on the parameter under study. Unlike the case-
control study, failure to account for the biased sampling scheme with a continuous response
in the statistical analysis will led to biased estimates for the regression parameters. In oder to
consistently estimate the same estimand as the cohort study, the sampling scheme must be
accounted for properly in the analysis. One commonly used method that can be adapted to
our setting is to conduct a weighted analysis (weighted estimating equation approach), with
weights inversely proportional to the probability of being sampled (IPW) e.g.,15. Another
alternative is the weighted pseudo-likelihood method10, which requires that one correctly
specify all the underlying distributions. Misspecification of these distributions will lead to
biased and erroneous conclusions. These methods, however, are all accounting the sampling
scheme in an approximate way. A more efficient analysis that based on a likelihood function
that truly reflect the biased sampling design14 has been recently developed. The likelihood
function used in (14) reflects all observed data and characteristics of the ODS sampling
design. No additional distribution assumptions about the exposure variable are needed, nor
is enumeration of the base population required (as is the case with the IPW method).

The present report builds on our previous, technically-oriented piece14 in several ways.
First, we provide a more intuitive explanation for why our ODS estimator is more
statistically efficient than the alternatives. Our simulation study shows this efficiency under
a wide range of exposure distributions, and translates the gain in efficiency into the
reduction in sample sizes that yield equivalent statistical power. The simulation also
explores the impact of various options in sampling and expresses results in terms of
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statistical power. The real data examples demonstrate the wide applicability and special
advantages of the proposed ODS design and estimator.

MATERIALS AND METHODS
A Semiparametric Inference Procedure for ODS with a Continuous Outcome

In this section, we give a brief overview of the ODS design Zhou et al.14 proposed and their
method for statistical inference under such a design. Let Y denote the continuous outcome
variable and X denote the exposure. Assume that each Y falls into one of three mutually
exclusive intervals: a lower tail strata, a middle section strata, and a upper tail strata. The
general structure of the proposed design consists of two components: an overall random
sample (SRS), and a supplement random sample from each of the three strata of Y. Let Ck, k
= 1, 2, 3, denote the strata in Y. The observed data structure in the above ODS design is as
follows: one observes the supplement random samples conditional on Y being in strata Ck,
i.e., {Yki,Xki|Y ∈ Ck}, where i = 1, 2, …, nk; One also observes an overall SRS sample
whose individuals are denoted by {Y0i, X0i} where i = 1, 2, …, n0. The total sample size in
the ODS sample is therefore n = n0 + n1 + n2 + n3, where any of the nk, k = 0, 1, 2, 3 can be
zero. The above general sampling strategy encompasses several special cases, e.g., when n1
= n2 = n3 = 0, then the ODS design reduces to the simple random sample design or cohort
design; when Y is binary and n0 = 0, the ODS design reduces to the usual case-control
design.

Denote by fβ(Y|X) the conditional density function for the population, where β is the vector
of regression coefficients that links exposure X and the outcome Y. Let G and g denote the
cumulative distribution and density functions of X, respectively. The joint likelihood
function, L(β), of the observed ODS data is

(1)

The component in the first bracket is data contribution to the likelihood from the SRS
sample, the second bracket is the contribution from each of the supplement samples. An
important feature of this likelihood is easier to appreciate if it is re-expressed. From Bayes
formula,

(2)

where I is an indicator function for stratum membership, Pr(Yki ∈ Ck) involves both g and β
through Pr(Yki ∈ Ck) = ∫ fβ(Yki|x)g(x)dx. Plugging equation (2) into equation (1), the
likelihood function we began with, denoted as L(β,G) now to reflect the dependence on the
unknown distribution of X, can be rewritten as

(3)

L(β, G) now has three components: the specified regression model fβ(Y|X) in the first
bracket, the unspecified g(X) in the second bracket, and the ODS sampling induced
probability P(Yki ∈ Ck) that ties fβ(Y|X) and g(X) together in the third bracket. The first
component would be the usual likelihood function for observed data, had the sampling been
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simple random sampling. The last component reflects the biased sampling nature of the
ODS design and ignoring it in analysis would result in biased β estimates. Hence g(X), or G,
in the second bracket cannot be simply factored out as would be the case with a simple
random sample design. Statistical inference about β using the standard maximum likelihood
estimation method will depend on a known or a parameterized G. In practice, however, G is
rarely known. Misspecification of the distribution could lead to an erroneous conclusion and
bias the parameter estimation. Consequently, statistical approaches that do not rely on the
extra parameterization of G are desirable.

To estimate β without specifying G(X), Zhou et al. 14 developed a maximum likelihood
based approach that maximizes L(β, G) by modeling G nonparametrically. They used the
profile likelihood idea where it (a) fixes β in equation (3) and solve for an empirical
likelihood estimate Ĝ(β) from a constrained likelihood function, constraints placed on Ĝ
that reflect its properties of being a discrete distribution function, using the Lagrange
multiplier technique. An explicit solution for Ĝ(β) can be obtained. (b) Plugging Ĝ(β) into
equation (3), the Zhou et al. estimator β̂Z can be obtained, using the Newton-Raphson
procedure, by maximizing the resulting likelihood. An explicit standard error formula based
on an asymptotic distribution is given in Zhou et al.. The statistical program for this analysis
can be obtained from the web page (www.bios.unc.edu zhou) or from the authors.

The inverse probability weighted approach of Horvitz and Thompson15 can also be adapted
in this situation by crudely treating all observed data, including the SRS sample, as if it were
sampled from three strata, each with a given selection probability. Like the Zhou et al..
estimator, the IPW approach also yields a consistent estimate for β. The IPW method is
commonly used with data from a two-stage studye.g. 16,17 If all N individuals were fully

observed in the entire population, the log likelihood function would be .
An estimate of this quantity is obtained if we use the completely observed individuals and
weight their contributions inversely according to their selection probability into the second
stage. Th IPW estimator β̂IPW is the solution to following weighted score equation

where pk can be estimated by  if there is a complete information. Note that the IPW
actually need more information than the likelihood approach employed by the Zhou et al.
method since it requires the sampling probabilities to be known. However, since the IPW
approach is based on crudely accounting for the sampling scheme and is based on estimating
equations approach, it may not be as efficient as a likelihood based estimator. It has been
shown that when the number of bins to group Y is not fine enough (when the number of
categories of Y is small), the method is not efficient18. The realistic settings for the ODS
design we considered had k between 2 to 4.

A SIMULATION STUDY
We designed a simulation to study the efficiency of different methods under a variety of
conditions that mimic situations one might face in real applications. The basic simulation
setting is modeled after a real study by Daniels et al.19, of prenatal exposure to low levels of
PCB in relation to mental and motor development, where an ODS design was used in the
data collection. The data were generated according to the following model,
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where X is the exposure variable that takes on several distributions, p = 1 indicates a linear
dose-response relationship and p = 2 represents a nonlinear relationship for E[Y|X], the Zs
are independent covariate variables, and e is a standard normal random error. We generate X
from several distributions that includes normal, exponential, lognormal, and Bernoulli.
These selections reflect possible real situations where X could be a rare-binary variable, a
continuous variable, or a skewed variable. We generated Z1 from a binary distribution
(Bernoulli(0.45)), Z2 from a log-normal distribution (LN(0, 0.25)), and Z3 from a three level
polynomial distribution (P(n, 0.3, 0.7)).

In our simulation, we first generated a cohort with 100, 000 individuals according to the
above model and drew ODS samples from this cohort. We drew an overall random sample
of size n0, where we observed {Y,X,Z1,Z2,Z3}. We also drew a supplement random sample
of size n1 from the lower tail of Y defined by {Y < Ȳ − a * σY} and a supplement random
sample of size n3 from the upper tail of Y defined by {Y > Ȳ + a * σY}, where σ is the
standard deviation of Y and a is a known constant. In addition to various configurations for
the parameter values, we investigated the effect of varying the value of cut point a on the
performance of the methods. We also investigated the impact on statistical power of varying
the contribution to the total sample size from the overall random sample and the supplement
random samples (ρ = n0/(n0+ n1 + n3)). Note n2 = 0 here does not reduce the generality.

Under each setting, we compared the Zhou et al. estimator, denoted by β̂Z, with four other
estimators: (i) the naive maximum likelihood estimator, β̂N, based on the observed ODS
data but ignoring the sampling scheme; (ii) an inverse probability weighted estimator
(β̂IPW); (iii) the maximum likelihood estimator based on a plain random sample of the same
size as the ODS sample (β̂P); (iv) two logistic regression estimators (β̂Lk) based on
dichotomizing a continuous Y by defining the outcome D as D = 1 if Y > mean(Y)+k * σY
and D = 0 otherwise, where k = 0, 1. The weight used in calculating β̂IPW is the inverse of
the observed probability of being sampled in the respective strata of Y. The βN and βP
estimates are the same as the ordinary least square estimates in our simulation setting. Each
set of simulations generated 1000 data sets.

SIMULATION STUDY RESULTS
Table 1 shows the simulation results for a = 1, and (n0, n1, n3) = (200, 100, 100) (hence ρ =
0.5) for various exposure effects. The mean estimate given by β̂N is biased for estimating β1
in the simulation. Thus, ignoring the sampling scheme (β̂N) leads to a biased estimate for the
exposure effect. It is also clear from Table 1 that different dichotomization of a continuous
Y will lead to inconsistent, and different, estimates (β̂L0 and β̂L1) of the β1. Perhaps more
importantly, the logistic estimators can be less able to detect the true underlying relationship,
as reflected by corresponding p values of 0.08 for β̂L1, compared with p < 0.05 for all other
methods using continuous response. We do not present results for these two estimators in
future comparisons. The other three methods all yielded consistent estimates of β1. The
actual coverage of their nominal 95 percent confidence intervals coverage (95% CI
Coverage) are all close to 95 percent, indicating that a good approximation to the asymptotic
normality is achieved with this sample size, and the estimated standard errors (SE) are close
to the true standard deviations. Under the setting considered, β̂Z has the smallest SE while b
β̂P has the largest SE. Because β̂N is a biased estimator and its SE underestimates the true
variation, we excluded it from the further studies of sample size and power below. The
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above observations are consistent across different exposure effects listed in Table 1. Under
the same linear model but when the X term is quadratic, β̂Z is again more efficient.

Results in the lower panels of Table 1 provide the contrast for the normally distributed X to
extreme X, namely a skewed exposure (Lognormal) and a rare binary exposure (Bernoulli(.
05)). When compared to the Normal distributed exposure, the SE for βZ is even smaller SE
in the skewed exposure situations. For the rare binary exposure case, results in Table 1
demonstrate that β̂Z is still the most efficient overall, though the sample size considered was
not sufficiently large enough for any of them. This is reflected in the fact that the estimated
standard errors are bigger than the estimates of the slope. This is not surprising because with
the distribution of a rare binary X, there may not be enough information in the data set as X
= 1 could be sparse. Future development of a modified ODS design for this situation is
certainly warranted.

Figure 1 shows the power for testing H0 : β1 = 0 v.s. H1 : β1 = true value, for n = 400 and
type I error fixed at 5 percent. The points corresponding to the true value of β1 = 0 shows
the empirical type I error rate for each test. All three methods yield close to 5 percent type I
error. For all three estimators, as β1 increases, so does the statistical power, and the power of
β̂Z > β̂IPW > β̂P.

Table 2 shows the sample sizes required to achieve a given statistical power for three values
of β1 according to type of estimator under the same settings used in the top panel of Table 1.
Use of ODS with an appropriate estimator requires a smaller sample size. In this setting, the
β̂Z method on average needs about 60 percent of the subjects who would be needed if the
study were conducted with a simple random sampling scheme and the β̂IPW method needs
about 83 percent. Further, for a given power, as the true value of β1 is farther away from 0,
relatively fewer subjects are needed to achieve the same power with β̂Z as compared with
β̂P. i.e., efficiency increased as β1 is farther away from 0.

Figure 2 shows the impact of two factors in a given ODS setting. The impact of varying a,
the cut-point that determined the strata of Y where the supplement random samples were
drawn, is shown in the left graph. a = 0 means there was only plain random sampling and in
this instance all three methods had the same power. As a increases, however, β̂Z (solid line)
has better power than the other two. With β̂Z, the increase in power appears to be monotonic
in a. The graph on the right of Figure 2 shows the impact of ρ, the fraction of the overall
random sample in the total ODS sample (ρ = n0/(n0+n1+n3)). At ρ = 1, there is no
supplement sample and the ODS samples are plain random samples. However, as ρ
decreases to below 0.7, β̂Z (solid curve) is again the most powerful of the three estimators.

Table 3 investigates different ODS allocations when the exposure variable is skewed (X ~
lognormal). Compared with the results in the lognormal panel of Table 1, we see that
allocating more of the ODS sample to the upper tail of Y improves the efficiency. The
standard error of the slope estimator decreases as more of the ODS sample is shifted from
the lower tail to the upper tail, i.e. 0.0222 → 0.0201 → 0.0192 as the ODS allocation
changes from (200, 150, 50) → (200, 100, 100) → (200, 50, 150).

Real Data Example 1
In the motivating example noted in the Introduction, the setting was like one where if the
outcome has been dichotomous a nested case-control study would have been implemented.
However, the outcome of interest, the score on the Bayley Scale of Infant Development
(BSID), was a continuous variable, and, as noted above, treating it as a dichotomous
variable would have resulted in a loss of statistical power. Measurements of the exposure of
interest here, polychlorinated biphenyls, are expensive, thus minimizing sample size while

Zhou et al. Page 6

Epidemiology. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



maintaining power was especially important. Thus, the authors drew drew a random sample
of cohort members and two additional random samples, one from each tail of the outcome
distribution19. Using the inverse probability weighted estimator, the estimated β̂IPW was
0.47 BSID units/µg/L PCB with estimated SE as 0.32 (p = 0.14)14. Using the Zhou et al.
estimator, the estimated β̂Z was 0.44 with SE = 0.22 (p = 0.02). Using the SRS data alone,
the β̂N was 0.29 (SE = 0.29, p = 0.32). Daniels et al. also examined and confirmed the shape
of the dose-response relation in both the ODS and the SRS samples. The example
demonstrates the improved efficiency obtained by the Zhou et al. estimator.

Real Data Example 2
Rissanen et al.20 examined the relation of serum lycopene concentration to the thickness of
carotid arteries among 1028 men in Finland. Using their data, we selected samples of total
n=400 in two ways. First, we selected a random sample with n=400. Second, we selected a
random sample of n=200, and, among those with carotid artery thickness above the 90th
percentile we selected a random sample of n=100, and among those with carotid artery
thickness below the 10th percentile we selected a random sample of n=100. We then
analyzed the data using ordinary least squares with n=1028, and with the 400 all selected at
random. In addition, we analyzed the 200-100-100 sample using inverse variance weights
and then with the Zhou et al. estimator. In all models the lycopene results were adjusted for
the same covariates (age, year, and sonographer). Results are given in Table 4. With n=1028
(the full data), the estimated coefficient for lycopene was −0.14 with an estimated SE at 0.04
and p = 0.0011. With n=400 (all random), the estimated effect β̂P = −0.10, with SE = 0.06
and p = 0.096. With the 200-100-100 sample, we had β̂IPW = −0.19 with SE = 0.08, p =
0.017 and β̂Z = −0.24, SE = 0.07 and p = 0.0009. This example suggests that use of an
outcome-dependent sampling scheme and the Zhou et al. estimator obtained nearly as much
power as analysis of the full dataset. Furthermore, the greater efficiency of the Zhou et al.
estimator compared with IPW approach is clear. The larger β’s obtained using outcome
dependent sampling and estimators reflect the shape of the dose-response curve, which had
larger negative slopes near the tails of the outcome. While we focused on analyzing the
lycopene association as linear (trend test type approach), clearly a curvilinear approach
would better describe the relation and could be easily accommodated with either the IPW or
the Zhou et al. estimators.

Real Data Example 3
Korrick et al.21 conducted a case-control study of hypertension and bone lead level.x For
logistic reasons the sampling probabilities for cases and controls could not be determined.
Measurements of blood pressure were available. The example, which is presented in the
online supplementary material, shows that with their data, the proposed ODS approach
could be used to estimate the coefficient for bone lead in a model of blood pressure.

DISCUSSION
Our results show that for a fixed total number of observations used to examine the linear
relation between a continuous exposure and a continuous outcome, the ODS design is more
efficient than a plain random sample design. An intuitive and simple expression of the
benefit of the ODS approach using the Zhou et al. estimator was found in the simulations
showing that it yields the same estimand as that from the underlying cohort study and that
for a given desired statistical power, the number of observations needed could be reduced by
about 40 percent compared with a plain random sample. This work shows that the benefits
of outcome dependent sampling apply to continuous outcomes, not just to dichotomous ones
through case-control designs. For binary response variable, our approach is equivalent to the
case-control analysis22.
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To implement the weighted method, one needs to know or estimate the weights which
requires at least empirical data about the distribution of Y. This may not be a problem for
nested studies; however, it can be difficult to calculate the weight for studies that are not
nested. The difficultly arises because good quality data on the distribution of Y, and an
enumeration of potential subjects, may not be available for the base population. The IPW
suffers from the fact that in the typical ODS setting the natural choice of number of
categories of Y is not large enough to yield the variability in weights that would make it
efficient18. Some recently developed methods may help to identify even more optimal
weights18,23. The Zhou et al. method, on the other hand, does not used the selection
probability and hence does not need to enumerate the base population.

Our results showed that with a up to about 1 and ρ near 0.5 and a total sample size of 400,
ODS analysis conducted using the estimator of Zhou et al. increased power about twice as
much as the weighted estimating equation approach (Figure 2). With larger values of a or
smaller values of ρ, the advantage of the Zhou et al. estimator was greater. This reflects a
greater influence on the regression parameters for data from the tail areas than the middle
areas. In general, the efficiency gain of the IPW method over the simple random sample
analysis is notable, thus we would suggest in practice that one should at least do the
weighted analysis if one cannot implement the Zhou et al. method.

If an ODS procedure is to be used, questions will arise regarding the optimal choice of a and
ρ. For example, consider an examination of the serum level of contaminant X among
pregnant women in relation to a continuous outcome in offspring. Subject matter
considerations might support large values of a, e.g., greater than 1, so that it corresponds to a
clinically abnormal value. Values of a greater than 1 might seem appealing because of the
resulting increase in power, especially with the Zhou et al. estimator (Figure 2). But the
reward from choosing a relatively large value of a depends on an assumption about fβ(Y|X)
across the range of Y. If, e.g., Y is intelligence quotient (IQ), and a is set at 2.5, and the only
supplement sample is of those with IQ’s less than 100 - 2.5 * SEIQ, or 62.5, then the
mentally retarded population in the supplement sample will include a larger proportion of
genetically-determined retardation, on whom X might have essentially no effect. This
“dilution” of the supplement sample with the “doomed” (or “immune”) means estimates of
fβ(Y|X) will be attenuated in proportion to the dilution. Smaller values of a, e.g., 1–1.5
would guard against such dilution while allowing one to get much more power with the
Zhou et al. estimator than would be possible with the weighted estimated equation.
Similarly, choice of ρ > 0 has several advantages over ρ = 0 (14), since including an overall
random sample provides the flexibility of a cohort study and allows for model checking. In
general, choosing a ρ from the range of [.2, 0.5] allows one to get much improved power
with the Zhou et al. estimator than would be possible with the weighted estimated equation
estimator, while still allocating enough observations to the SRS sample.

Similarly, the relative size of n1 and n3 might be affected by several factors that will vary
across studies. For example, if the exposure variable is known to be skewed with a long tail
to the right and β is known to be either zero or positive, then increasing the size of n3
relative to n1 would be sensible. A large n3 relative to n1 would also make sense when there
is little interest in the determinants of a low value of the outcome variable.

Prospective designs coupled with relatively expensive measures of exposure are being used
with increasing frequency in epidemiologic research. Furthermore, the scope of
epidemiologic research increasingly includes outcomes best measured on a continuous scale.
Given these trends, methods that allow cost cutting while maintain statistical efficiency are
likely to see greater use. Recently, similar ideas using the ODS design has been extended to
the situation where in addition to the ODS sample, information other than exposure variable
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are also available for the rest of the base population24. Methods have been developed that
account for an ordinal outcome variables in a generalized linear model setting, as have been
methods that incorporate auxiliary information about the exposure variable that is available
for the entire base population25. Much work, however, remains to be done, e.g., how to use
ODS with longitudinal data is still an open question. A survey of the statistical research on
ODS design can be found in Zhou and You26.
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BSID Bayley Scale of Infant Development

CI Confidence interval

IQ intelligence quotient

ODS outcome dependent sampling

SE standard error

REFERENCES
1. Cornfield J. A method of estimating comparative rates from clinical data. Applications to cancer of

lung, breast, and cervix. Journal of National Cancer Institute. 1951; 11:1269–1275.

2. Anderson JA. Separate sample logistic discrimination. Biometrika. 1972; 59:19–35.

3. Breslow NE, Cain KC. Logistic regression for two-stage case-control data. Biometrika. 1988;
75:11–20.

4. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979;
71:101–113.

5. Prentice RL. A case-cohort design for epidemiologic studies and disease prevention trials.
Biometrika. 1986; 73:1–11.

6. White JE. A two stage design for the study of the relationship between a rare exposure and a rare
disease. American Journal of Epidemiology. 1982; 115:119–128. [PubMed: 7055123]

7. Wacholder S, Weinberg CR. Flexible maximum likelihood methods for assessing joint effects in
case-control studies with complex sampling. Biometrics. 1994; 50(2):350–357. [PubMed: 8068835]

8. Imbens GW, Lancaster T. Efficient estimation and stratified sampling. Journal of Econometrics.
1996; 74:289–318.

9. Cosslett SR. Maximum likelihood estimator for choice-based samples. Econometrika. 1981;
49:1289–1316.

10. Holt D, Smith TMF, Winter PD. Regression analysis of data from complex surveys. Journal of the
Royal Statistical Society, A. 1980; 143:474–487.

11. Li R, Folsom AR, Sharrett AR, Couper D, Bray M, Tyroler HA. Interaction of the glutathione S-
transferase genes and cigarette smoking on risk of lower extremity arterial disease: the
Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2001 Feb 15; 154(3):729–
738. [PubMed: 11257276]

12. Iribarren C, Folsom AR, Jacobs DR Jr, Gross MD, Belcher JD, Eckfeldt JH. Association of serum
vitamin levels, LDL susceptibility to oxidation, and autoantibodies against MDA-LDL with
carotid atherosclerosis. A case-control study. The ARIC Study Investigators. Atherosclerosis Risk
in Communities. Arterioscler Thromb Vasc Biol. 1997 Jun; 17(6):1171–1177. [PubMed: 9194770]

Zhou et al. Page 9

Epidemiology. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Suissa S. Binary methods for continuous outcome: a parametric alternative. Journal Clinical
Epidemiology. 1991; 44:241–248.

14. Zhou H, Weaver MA, Qin J, Longnecker MP, Wang MC. A semiparametric empirical likelihood
method for data from an outcome-dependent sampling design with a continuous outcome.
Biometrics. 2002; 58:413–421. [PubMed: 12071415]

15. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite
universe. Journal of the American Statistical Association. 1952; 47:663–685.

16. Flanders WD, Greenland S. Analytical methods for two-stage case-control studies and other
stratified designs. Statistics in Medicine. 1991; 10:739–747. [PubMed: 2068427]

17. Zhao LP, Lipsitz S. Designs and Analysis of Two-Stage Studies. Statistics in Medicine. 1992;
11:769–782. [PubMed: 1594816]

18. Godambe VP, Vijyan K. Optimal estimation for response-dependent retrospective sampling.
Journal of the American Statistical Association. 1996; 91:1724–1734.

19. Daniels JL, Longnecker MP, Klebanoff MA, Gray KA, Brock JW, Zhou H, Chen Z, Needham LL.
Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor
development at 8 months. Am J Epidemiol. 2003; 157:485–492. [PubMed: 12631537]

20. Rissanen T, Voutilainen S, Nyyssonen K, Salonen R, Salonen JT. Low plasma lycopene
concentration is associated with increased intima-media thickness of the carotid artery wall.
Arterioscler Thromb Vasc Biol. 2000 Dec; 20(12):2677–2681. [PubMed: 11116071]

21. Korrick SA, Hunter DJ, Rotnitzky A, Hu H, Speizer FE. Lead and hypertension in a sample of
middle-aged women. J Public Health. 1999 Mar; 89(3):330–335.

22. Qin J, Zhang B. A goodness-of-fit test for logistic regression models based on case-control data.
Biometrika. 1997; 84(3):609–618.

23. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are
not always observed. Journal of the American Statistical Association. 1994; 89:846–866.

24. Weaver M, Zhou H. An Estimated Likelihood Method for Continuous Outcome Regression
Models with Outcome-Dependent Subsampling. J. Am. Stat. Assoc. 2005; 100:459–469.

25. Wang X, Zhou H. A Semiparametric Empirical Likelihood Method For Biased Sampling Schemes
In Epidemiologic Studies With Auxiliary Covariates. Biometrics. 2006 (in press).

26. Zhou, H.; You, J. Semiparametric Methods for Data from an Outcome-Dependent Sampling
Scheme. In: Hong, D.; Shyr, Y., editors. Quantitative Medical Data Analysis Using Mathematical
Tools and Statistical Techniques. Singapore: World Scientific Publications; 2006. (in press)

Zhou et al. Page 10

Epidemiology. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Simulation results for the power of testing H0 : β1 = 0. v.s. H1 : β1 = true value under the
model in the top panel of Table 1. The results are based on 1000 simulations with n0= 200
and n1 = n3 = 100.
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Figure 2.
The power for the testing H0: β1 = 0. v.s. H1 : β1 = 0.1. (a). The power as a, cut-point for
defining the strata in term of σY, varies with sample size (n0, n1, n2) = (200, 100, 100); (b).
The power as ρ, the fraction of SRS sample, varies with n = 400, n1 = n2, and a = 1.
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Table 2

Sample size needed for testing H0 : β1 = 0 for a given statistical power. The results are based on 1000
simulations with α = 1.0, ρ = 0.5 and n1 = n2.

Sample Sizes for

Power Trueβ1 βP βIPW βZ

0.80 0.05 3000 2500 1900

0.10 790 670 470

0.15 360 310 220

0.85 0.05 3600 2900 2250

0.10 960 780 530

0.15 400 340 245

0.90 0.05 4200 3400 2500

0.10 1070 870 630

0.15 485 400 280

0.95 0.05 5100 4300 3080

0.10 1320 1080 770

0.15 625 510 350

NOTE: X follows a log-normal distribution, other details see footnote to Table 1.
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