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Abstract
Extracellular signal–regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is
implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show
that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor
von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation–dependent mechanism. Our conclusions derive from
transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems
such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines
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promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation.
Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 cor-
relate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data
suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of
ERK5 in renal carcinomas.

Neoplasia (2013) 15, 649–659
Introduction
Extracellular signal–regulated kinase 5 (ERK5), also known as big
mitogen-activated protein kinase (MAPK) 1, is a member of theMAPK
family that shows greatest similarity to the ERK1/2 family members,
sharing 66% sequence identity in the amino-terminal half, as well as
in the activation loop motif (Thr-Glu-Tyr), while the carboxy-terminal
half of ERK5 is unique [1]. ERK5 is activated in response to cell
stress and growth factors [2,3] through its selective phosphorylation
by mitogen-activated protein kinase kinase 5 (MEK5) [4]. In con-
trast to the detailed knowledge about the regulation of its activ-
ity, the molecular mechanisms controlling ERK5 protein expression
levels remain poorly understood. A recent report suggested a role for
c-Abl in the regulation of ERK5 half-life, but the mechanism is still
unclear [5].

ERK5 participates in several processes including proliferation,
angiogenesis, and vasculature maintenance [6,7]. ERK5 is known
to mediate the effects of different oncogenes [8,9], and its signaling
has been found altered in several human tumors [10–12]. In partic-
ular, the role of ERK5 in angiogenesis and endothelial function has
been clearly demonstrated in several experimental systems [13,14]. In
this regard, several studies have shown that hypoxia-inducible factor 1,
α subunit (HIF-1α), a critical mediator in the cellular response to
hypoxia and angiogenesis, is regulated by several MAPKs including
ERK5 [15–17]. One of the proposed mechanisms involves ubiquitin-
dependent degradation of HIF-1α mediated by ERK5 [15]. Interest-
ingly, gene profiling studies demonstrated that there is a large overlap
between the gene expression patterns regulated by ERK5 and HIF-1α,
with 82% of the genes specifically regulated by ERK5 being modulated
in response to hypoxia throughHIF-1α [18]. Under normoxia, HIF-1α
is efficiently hydroxylated at two proline residues by a family of dioxy-
genases [EGL nine homologs (EGLNs), also known as prolyl hydroxy-
lase domain proteins (PHDs)] that require oxygen as co-substrate. This
posttranslational modification labels HIF-1α for proteasomal degrada-
tion, as the proline-hydroxylated form is recognized by an E3 ubiquitin
ligase complex that contains the von Hippel-Lindau (pVHL) tumor
suppressor protein. Thus, under normal oxygen tension, HIF-1α half-
life is extremely short and normoxic protein levels are very low [19].
Importantly, VHL is a key tumor suppressor in clear cell renal cell
carcinoma (CCRCC), where up to 75% to 80% of the cases present
a loss of function of the VHL [20].

Our results demonstrate that ERK5 is a novel target for the pVHL
tumor suppressor that is labeled for ubiquitin-proteasome system
(UPS)–mediated degradation upon proline hydroxylation. Moreover,
there was a strong correlation between ERK5 expression and poor
prognosis in human samples from CCRCC, suggesting that ERK5
deregulation could contribute to tumor progression and may repre-
sent a novel target for therapeutic intervention using drugs that
block ERK5 activity.
Materials and Methods

Cell Lines and Plasmids
Cells were maintained in 5% CO2 and 37°C. All culture reagents

were provided by Lonza (Madrid, Spain). Cos7 cells were purchased
from ATCC (LGC Promochem, Barcelona, Spain), and cells were
maintained in Dulbecco’s modified Eagle’s medium supplemented with
10% FBS and 1% glutamine plus antibiotics. 786-0 (ATCC), 769-P
cells (ATCC), and Caki-2 (kindly provided by Dr A. Meseguer,
Centre d'Investigació en Bioquímica i Biologia Molecular, Barcelona,
Spain) were cultured in Dulbecco’s modified Eagle’s medium supple-
mented with 10% FBS, 1% glutamine plus antibiotics, and 1% non-
essential amino acids (Sigma-Aldrich, Madrid, Spain). MCF7 cells
have been previously described [21]. HMEC cells were kindly provided
by Dr L. Alvarez-Vallina (Hospital Universitario Puerta de Hierro,
Madrid, Spain) and cultured in 95% EBM-2 plus bovine brain ex-
tract (BBE), epidermal growth factor, hydrocortisone, GA-1000 anti-
biotics, and 5% FBS. Plasmids encoding for green fluorescent protein
(GFP), haemagglutinin (HA)-ERK5 wild type (WT), and MEK5
hyperactive (DD) in pCEFLwere kindly provided byDr S.Gutkind [Oral
and Pharyngeal Cancer Branch, National Institutes of Health (NIH),
Bethesda, MD]. WT HA-ERK5 and mutants forms AEF and Δ713
in pCDNA3 were generous gifts from Dr M. Buschbeck (Institut de
Medicina Predictiva i Personalitzada del Cancer, Badalona, Spain). Flag-
tagged pVHL was obtained by conventional polymerase chain reaction
(PCR) procedures using as template a plasmid coding HA-pVHL kindly
provided by Dr M. Ortiz de Landázuri (Hospital Universitario de La
Princesa, Madrid, Spain). Briefly, the following primers were used:
forward, 5′-ACAGGATCCATGGACTACAAGGACGACGATGAC-
AAGCCCCGGAGGGCGGAGAACTGG-3′, which include a BamHI
site plus 3X Flag-tagged epitope between codons 1 and 2, and reverse,
5′-CACAGAATTCTCAATCTCCCATCCGTTGATGTGC-3′ in-
cluding an EcoRI site. PCR conditions were 95°C for 2 minutes for
the first cycle and then 35 cycles of 95°C for 30 seconds, 60°C for 1 min-
ute, and 72°C for 1 minute with a final extension of 72°C for 5 minutes.
The PCR products were cloned in pCDNA3.1 (Invitrogen, Barcelona,
Spain) vectors using the BamHI/EcoRI sites. DNA was confirmed
by automatic sequencing. HA-pVHL WT and C162F mutant form
in pRc/CMV vector were kindly provided by Dr W. Kaelin through
Addgene (Plasmid Nos 19999 and 22042; Cambridge, MA). Plasmids
coding for Flag-tagged PHD-1 and PHD-3 were kindly provided
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by Dr F. S. Lee (School of Medicine, University of Pennsylvania,
Philadelphia, PA).

Chemicals and Antibodies
Antibodies against VHL, ubiquitin, and hydroxylated HIF were

purchased from Cell Signaling Technology (Izasa, Barcelona, Spain).
Antibodies against ERK5 were produced in our laboratory [21] or
from Cell Signaling Technology. HA antibody was purchased from
Covance (Princeton, NJ). Antibodies against ERK2 and tubulin were
from Santa Cruz Biotechnology (Quimigen, Madrid, Spain). Anti-
body against Flag, cycloheximide, dimethyloxalylglycine (DMOG),
and 4′,6-diamidino-2-phenylindole (DAPI) were obtained from
Sigma-Aldrich. MG-132 was purchased from Calbiochem (Bionova,
Madrid, Spain).

Transfections
Cells were transiently transfected by using Lipofectamine (Invitrogen)

following the manufacturer’s instruction. The total amount of DNA
was normalized using an empty vector. Transfected cells were used
36 to 48 hours after transfection for the different assays.

Western Blot Analysis, Immunoprecipitation, and
Co-Immunoprecipitation Assays
Cells were collected in lysis buffer [100mMHepes (pH 7.5), 50mM

NaCl, 0.1% Triton X-100, 5 mM EDTA, and 0.125 M EGTA].
Protease and phosphatase inhibitors [0.2 μg/ml leupeptin, 2 μg/ml,
aprotinin, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 0.1 mM
Na3VO4] were added before lysis. Indicated amounts of protein were
loaded onto 6% to 12% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis, transferred to polyvinylidene fluoride (PVDF)
filters, and blotted against different proteins using specific antibodies.
In the case of human samples, tissues were disaggregated by using
the POLYTRON Dispersing System PT 2100 (Kinematica AG,
Lucerne, Switzerland) in lysis buffer and processed as in the rest of
the cases. Protein quantification was performed using the BCA
Protein Assay Kit (Pierce, Madrid, Spain) following the manufac-
turer’s instructions. In the immunoprecipitation assays, extracts were
precleared and soluble fractions were incubated with the indicated
antibody. After 2 hours, extracts were incubated for 45 minutes
in the presence of protein G (Gamma bind Sepharose; Pharmacia
Biotech, Uppsala, Sweden) and then washed three times in the same
lysis buffer. Then, immunocomplexes were resuspended in load-
ing buffer and loaded onto sodium dodecyl sulfate–polyacrylamide
gel electrophoresis gels. For the co-immunoprecipitation assays, 293T
cells were transfected with 3 μg of indicated plasmid by using
Lipofectamine and, 48 hours later, were lysated in HNTG buffer
[22] and processed as in immunoprecipitation assays. Antibody detec-
tion was achieved by enhanced chemiluminescence (Amersham, GE
Healthcare, Barcelona, Spain). Results show a representative blot of
three with nearly identical results. Images were quantified by using
ImageJ software (NIH).

Immunocytochemistry
Samples were processed as previously described [23]. In the case

of exogenous protein, cells were grown onto glass coverslips and
then transfected as described above. Samples were then incubated
with the indicated antibody overnight and, after extensive wash,
incubated 60 minutes with Alexa Fluor 488– or Alexa Fluor 546–
conjugated anti-rabbit or anti-mouse antibodies (Invitrogen Molecular
Probes). Then, samples were mounted with Fluorosave (Dako, Barcelona,
Spain). Positive immunofluorescence was detected using a Zeiss LSM-
710 confocal microscope. Images were acquired and processed using
Zen 2009 Light Edition program.
Patient’s Samples and Analysis
Fresh samples of 19 cases were obtained from patients diagnosed

and surgically treated for CCRCC in the Urology Department of
the University Complex of Albacete, under the supervision of the
local ethical committee and the pathologist with the purpose of
not interfering in the histologic evaluation. All cases were reviewed
and diagnosed according to the criteria of the World Health Orga-
nization classification. Bivariate analysis was performed with the
Pearson chi-squared test to evaluate the correlation between tumor
stage and Fuhrman grade with the expression level of ERK5. Stage
variable was recorded at low risk of disease progression (stages I
and II) and high risk (stages III–IV) by using PASW Statistics 18
v.18.0.0 program.
RNA Isolation, Reverse Transcription, and Real-Time
Quantitative PCR

Total RNA was obtained, and reverse transcription (RT) per-
formed as previously described [23]. Changes in the mRNA expres-
sion of ERK5 and VHL were examined by real-time quantitative
PCR using an ABI PRISM 7500 FAST Sequence Detection System
(Applied Biosystems, Madrid, Spain). cDNA was amplified using
SYBR1 Green PCR Master Mix (Applied Biosystems) in the presence
of specific oligonucleotides. The PCR conditions and quantification
were performed as previously described [23]. Primers for all target se-
quences were designed using the computer Primer Express software pro-
gram especially provided with the 7000 Sequence Detection System
(Applied Biosystems).

Chosen PCR primers were given as follows:

ERK5: sense, 5′-GGCCCCTGAAAGAATAAACCC-3′; antisense,
5′-CGAAGGATGGCCAACTCAATC-3′;
VHL: sense, 5′-GACCTGGAGCGGCTGACA-3′; antisense,
5′-TACCATCAAAAGCTGAGATGAAACA-3′;
GAPDH: sense, 5′-TCGTGGAAGGACTCATGACCA-3′; anti-
sense, 5′-CAGTCTTCTGGGTGGCAGTGA-3′.
Interference Assays
SiRNA for VHL was purchased from Dharmacon (Thermo Fisher

Scientific, Inc, Waltham, MA; ON-TARGETplus SMARTpool
Human VHL, Catalog No. L-003936-00 and ON-TARGETplus
CONTROL pool, Catalog No. D-001810-10-05) and used following
the manufacturer’s recommendations. For siRNA assays, cells were trans-
fected by using Lipofectamine 2000 (Invitrogen) following the manu-
facturer’s instructions.

Stable knockdown of endogenous ERK5 in 769-P cells was per-
formed by using lentiviral vectors containing shRNA for ERK5 from
Sigma-Aldrich (Catalog No. NM_139034). Lentivirus production
and infections were performed as previously described [23]. 769-P
cells were selected with puromycin (3 μg/ml) and best performing
shRNA was selected.



Figure 1. HA-ERK5 is degraded through the proteasome. (A) Cos7 cells were transfected with 0.5 μg of HA-ERK5, HA-ERK2, and HA-ERK1
and, 36 hours later, treated with 100 μM cycloheximide for the indicated times. Then, 30 μg of total cell lysates (TCLs) were blotted against
indicated antibodies. (B) Cos7 cells were transfected as in A and treated with 20 μMMG132 for 5 hours. Then, 30 μg of TCLs were blotted
against HA and tubulin. (C) Cos7 cells were treated with 20 μMMG132 for indicated times. Then, 60 μg of TCLs were blotted against ERK5,
ERK2, and tubulin. (D) Cos7 cells were transfected with 0.5 μg of HA-ERK5, HA-ERK2, and HA-ERK1 plus increasing amounts of Flag-VHL.
Thirty-six hours later, 30 μg of TCLs were blotted against the indicated antibodies. (E) Western blot of Cos7 cells transfected with 0.5 μg of
HA-ERK5 Pro1 or HA-ERK5 WT in the presence or absence of 2 μg of Flag-VHL. Lysates were blotted against HA and tubulin as loading
control. Fold variation of these experiments for each MAPK is shown at the bottom of each panel.
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Cell Proliferation Measurements
Subconfluent monolayer cultures were trypsinized, and cells were

plated in 24-well plates at a density of 10,000 cells per well. Cell
proliferation was analyzed at 1, 2, 3, 4, and 5 days by an MTT-based
assay. Briefly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) at 0.5 mg/ml was added to the medium in each well
and plates were returned to the incubator for 1 hour. The medium-
MTT was then removed, 500 μl of DMSO was added to each well,
and the plate was kept in agitation for 5 minutes in the dark to dis-
solve the MTT-formazan crystals. The absorbance of the samples was
then recorded at 570 nm. Four wells were analyzed for each condi-
tion, and wells containing medium plus MTT but no cells were used
as blanks.
Migration Assays
To perform wound healing assays, cells were grown to confluence

(>90%) in six-well dishes. A small area was then disrupted by scratch-
ing the monolayer with a 1000-μl plastic pipette tip. Cells were
inspected microscopically every 12 hours. The remaining wound area
was calculated using ImageJ software (NIH), and the migration dis-
tance of the cells was estimated on the basis of that calculation.
Data Analysis
Results are represented as means ± SD of at least three independent

experiments. Statistical analysis was performed using the GraphPad
Prism 5.00 software. Significance was determined using a t test.
The statistical significance of differences was indicated in the figures
by asterisks as follows: *P < .05, **P < .01, and ***P < .001.
Results

ERK5 Is Degraded through the UPS
To study the mechanism controlling ERK5 protein expression level,

we transiently transfected Cos7 cells with an HA-tagged version of
ERK5 and determined protein levels at different time points after inhi-
bition of protein synthesis with cycloheximide. As shown in Figure 1A,
the half-life of exogenous HA-ERK5 was much shorter than that of
HA-ERK1/2. To investigate the participation of the proteasome in
the degradation of these proteins, we used the well-established inhibitor
MG132 [24]. This experiment revealed that ERK5, but not ERK1 or
ERK2, accumulated upon proteasomal blockade (Figure 1B). Further-
more, similar result was obtained when endogenous ERK5 was ana-
lyzed in response to MG132 (Figure 1C).
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In the proteasome-mediated degradation, proteins are labeled for
degradation by covalent binding to the protein ubiquitin in a reaction
that requires an E3 complex containing a specific substrate recogni-
tion subunit. In the case of HIF-1α, the specificity of the E3 ligase
complex is conferred by the protein pVHL [25]. Thus, given the
functional similitude between ERK5 and HIF-1α, we studied the role
of pVHL as a putative E3 ubiquitin ligase for ERK5. To this end,
HA-tagged versions of ERK5, ERK2, and ERK1 were transiently
co-transfected with increasing amounts of a plasmid coding for Flag-
tagged pVHL. As shown in Figure 1D, overexpression of pVHL results
in a marked reduction of HA-ERK5 levels, whereas HA-ERK2 and
HA-ERK1 remained largely unaffected. A mutant lacking C-terminal
Figure 2. pVHL promotes ERK5 degradation. (A) Cos7 cells were tran
six hours after transfection, cells were incubated in the presence or
pitated against HA and blotted against ubiquitin. Lower panel showe
observed in this experiment is shown at the bottom. (B) 293T cell
Samples were immunoprecipitated and immunoblotted with indicate
were blotted against HA. (C) Same as B. As positive controls, TCLs
were transfected with 0.25 μg of HA-ERK5 and 0.25 μg of Flag-VHL
immunofluorescence. Image shows a representative field of five. T
transfected with 0.5 μg of HA-ERK5 WT or HA-ERK5Δ713 with increas
blotted against HA or tubulin. Fold variation of this experiment is sho
0.25 μg of HA-ERK5Δ713 and processed as in D. (F) Cos7 cells wer
MEK5DD, and 3 μg of Flag-VHL at the indicated combinations. TCL
experiment is shown at the bottom.
region of ERK5 (HA-ERK5 Pro1), which renders a protein highly
similar to ERK1/2 [4,26], was not affected by the overexpression of
pVHL (Figure 1E).

To further confirm the role of VHL as a putative E3 ubiquitin
ligase for ERK5, HA-ERK5 and Flag-VHL were co-transfected in
Cos7 cells and their ubiquitination pattern was evaluated in the pres-
ence or absence of MG132. As expected (Figure 2A), overexpression
of pVHL resulted in the accumulation of ubiquitinated forms of
HA-ERK5. Indeed, the use of a mutant form of pVHL as C162F with
impaired binding to Cul2 and elongins B and C [27] did not show
a detectable effect onto HA-ERK5 compared to WT (Figure W1),
supporting the role of pVHL as an E3 ubiquitin ligase for ERK5.
sfected with 0.5 μg of HA-ERK5 and with 3 μg of Flag-VHL. Thirty-
absence of 20 μM MG-132 for 5 hours. Cells were immunopreci-
d reblotting of the membrane against HA. HA-ERK5 fold variation
s were transfected with 5 μg of HA-ERK5 and 5 μg of Flag-VHL.
d antibodies. As positive controls, TCLs overexpressing HA-ERK5
overexpressing Flag-VHL were blotted against Flag. (D) Cos7 cells
, and subcellular distributions of both proteins were evaluated by
he scale bar represents 10 μm. (E) Upper panel: Cos7 cells were
ing amounts of Flag-VHL. Thirty-six hours later, 30 μg of TCLs were
wn at the bottom. Lower panel: Cos7 cells were transfected with
e transfected with 0.5 μg of HA-ERK5 or HA-ERK5-AEF, 1.5 μg of
s were processed as in E. Fold variation for both proteins in this



Figure 3. ERK5 levels are regulated through a prolyl hydroxylation mechanism. (A) Cos7 cells were transfected as in Figure 1A. Thirty-six
hours later, cells were treated with 1.5 mM DMOG at indicated times. TCLs were blotted against HA, HIF-1α, and tubulin. (B) Sub-
confluent cultures of MCF7 and HMEC cell lines were treated with 1.5 mM DMOG for 9 hours and endogenous levels of ERK5 (60 μg),
ERK2 (30 μg), HIF-1α (60 μg), and tubulin (10 μg) were detected by immunoblot analysis using TCL. (C) Cos7 cells were transfected with
0.5 μg of HA-ERK5 or HA-ERK2 in the presence/absence of 2 μg of FlagPHD-1 or FlagPHD-3 and processed as in Figure 1C . (D) Cos7 cells
were transfected with 0.5 μg of HA-ERK5 alone or with 2 μg of FlagPHD-3. Thirty-six hours later, cells, except control, were treated with
20 μM MG132 in the presence/absence of 1.5 mM DMOG for 12 hours. Then, extracts were collected and immunoprecipitated against
HA and blotted with the indicated antibody and reblotted against HA. Thirty micrograms of TCL were blotted against HA, Flag, and tubulin.
Fold variations for HA-tagged proteins or endogenous proteins in each experiment are indicated at the bottom of the panels.
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Moreover, we observed physical interaction between HA-ERK5 and
Flag-pVHL (Figure 2, B and C) as well as co-localization (Figure 2D).
We next asked if the subcellular localization could influence the activity
of pVHL on HA-ERK5. To this end, we transfected Cos7 cells with a
truncated form of ERK5 (Δ713) that preferentially localizes in the
nucleus [28] and found that pVHLpromoted ERK5 degradation regard-
less of its subcellular localization (Figure 2E).

Next, we evaluated if activation of ERK5 could be a determinant in
the effect of pVHL onto ERK5. Cos7 cells were co-transfected with
HA-ERK5 WT or a mutant resistant to activation (HA-AEF-ERK5)
in the presence/absence of Flag-pVHL and a constitutively active form
of MEK5 (MEK5-DD). As shown in Figure 2F , both the basal and
activated forms of HA-ERK5 (achieved by the mobility shift) were
affected by the presence of pVHL. Moreover, although to a lower
extent, pVHL was able to mediate the degradation of the nonactivable
form of ERK5 (Figure 2F ), which showed a similar binding to pVHL
and subcellular distribution than the WT (Figure W2).

In summary, our results indicate that pVHL binds to ERK5, lead-
ing to its ubiquitination and proteasomal degradation regardless of
its localization and activation status.
VHL Mediates ERK5 Degradation through Prolyl
Hydroxylation–Dependent Mechanism

pVHL binding to HIF-1α is critically dependent on the hydrox-
ylation of specific proline residues within HIF-1α proteins. This
posttranslational modification is catalyzed by a family of 2-oxoglutarate–
dependent dioxygenases termed EGLNs or PHDs [29,30]. Therefore,
we next sought to investigate if a similar mechanism was applicable
to ERK5. As a first approach, Cos7 cells were transiently transfected
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withHA-ERK5 and then incubated in the presence/absence of DMOG,
a specific inhibitor of prolyl hydroxylation, and found a marked
increase in the expression levels of HA-ERK5 (Figure 3A). In contrast,
exogenously expressed HA-ERK2 was not affected by DMOG treat-
ment (Figure 3A), suggesting that the effect was specific for ERK5.
Importantly, we also observed stabilization of endogenous ERK5, but
not ERK2, inMCF7 andHMEC cells exposed to DMOG (Figure 3B),
demonstrating that endogenous ERK5 could also be regulated through
a prolyl hydroxylation mechanism. In agreement, overexpression of
PHD-1 and PHD-3 promoted a marked reduction in HA-ERK5 levels
with almost no effect on HA-ERK2 (Figure 3C). Next, we sought to
investigate whether ERK5 was subjected to proline hydroxylation. To
this end, we probed HA-ERK5 with antibodies raised against the
hydroxyproline-containing epitopes within HIF-1α and reasoned that
they might detect other hydroxylated proteins when overexpressed.
As shown in Figure 3D, a specific band was observed after immuno-
precipitation of HA-ERK5 from MG132-treated samples. Further-
more, the band intensity was decreased in samples exposed to
DMOG and increased upon overexpression of PHD-3 (Figure 3D).
To further explore the role of pVHL on ERK5 stability, we used a

genetic approach based on RNAi. To this end, we chose two
CCRCC-derived cell lines, Caki-2 and 769-P, showing normal or
defective pVHL activity, respectively [31]. Caki-2 cells showed a
lower level of ERK5 protein than 769-P cells (Figure 4A), but no
differences were observed in mRNA levels (Figure 4B). To demon-
strate the role of the different VHL status, both cell lines were trans-
fected with siRNA against VHL or RNAi control. This treatment
resulted in a marked reduction of VHL levels [>90%, as assessed
Figure 4. VHL mediates ERK5 expression level in renal carcinoma–de
(60 μg) and tubulin (10 μg) expression by Western blot by using ly
analyzed by qRT-PCR in Caki-2 and 769-P cells 48 hours after trans
transfected as in B, and 60 hours later, ERK5 protein levels were a
as loading control. (D) Subconfluent cultures of Caki-2 and 769-P ce
were collected and 60 μg were blotted against ERK5 and 10 μg again
is indicated at the bottom of the panels.
by quantitative RT-PCR (qRT-PCR); Figure 4B] that correlated
with an increase in ERK5 protein expression levels in Caki-2, while
no effect was observed in the 769-P cell line (Figure 4, B and C ).
Furthermore, pVHL depletion affected ERK5 expression post-
transcriptionally as mRNA levels were not affected by the inter-
ference of VHL (Figure 4B). Finally, DMOG treatment resulted in
a marked increase in ERK5 protein in the VHL functional cell line—
Caki-2—whereas it had no effect on 769-P ERK5 levels (Figure 4D).
Altogether, these experiments strongly support the regulation of ERK5
protein levels by its interaction with VHL in a hydroxyproline-
dependent manner.
ERK5 Is Implicated in Renal Cell Carcinoma
In light of our findings, we decided to investigate the role of ERK5

in CCRCC, a type of tumor in which loss of pVHL function is a
hallmark [28]. To this end, we knocked down ERK5 expression in
769-P cells by infection with lentiviral particles encoding for shRNA
against ERK5. The treatment resulted in effective knockdown of
ERK5 at the mRNA and protein levels in selected pools (Figure 5A).
Interestingly, low levels of ERK5 correlated with impaired cell growth
under complete and low serum conditions (Figure 5B and data not
shown) and in soft agar assays (Figure W3). In addition, ERK5 knock-
down resulted in delayed migration in wound healing assays
(Figure 5C ), supporting a role for this MAPK in the growth and
migration of 769-P cells. Similar results were obtained in other experi-
mental models lacking VHL function, such as 786-O, underlying the
importance of ERK5 for these processes in CCRCC cells (Figure W4).
rived cell lines. (A) Caki-2 and 769-P cell lines were tested for ERK5
sates from subconfluent cultures. (B) Levels of RNA ERK5 were
fection of control or VHL siRNA cells. (C) Caki-2 and 769-P were
nalyzed by using 60 μg of cell lysates. Tubulin (10 μg) was used
ll lines were treated with 1.5 mM DMOG for 9 hours. Then, TCLs
st tubulin. Fold variation of endogenous protein in each experiment



Figure 5. ERK5 is altered in renal cell carcinoma. (A) 769-P cells were infected with retroviral vector control (pLKO) or carrying shRNA
against ERK5 (shERK5). Selected pools were evaluated by qRT-PCR (left panel) and Western blot analysis (right panel) by using the
indicated antibodies. Image shows a representative experiment of three. (B) The results of proliferation assays are presented as the
means ± SD. Values of OD at 570 nm at 24 hours were referred as 1. (C) Wound healing assays were performed in 769-P cells infected
with empty vector (PLKO) or coding for shRNA against ERK5 (shERK5), and migration was evaluated at indicated time points. Images
show a representative experiment of three independent experiments performed in duplicated cultures. (D) Western blot analysis against
ERK5 (120 μg), ERK1/2 (60 μg), and tubulin (10 μg) in different tumors diagnosed as CCRCC.
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Given the functional role of EKR5 in CCRCC cells, next we
decided to study its role on CCRCC tumor progression. Although
we could not test the effect of ERK5 interference in a xenograft
model of 769-P cells due to the low tumorigenicity of the cell lines
(Figure W5), we explored ERK5 expression levels in primary samples
from 19 patients diagnosed with CCRCC (Figure W6). Clinico-
pathologic data from these patients are shown in Table 1. The mean
age was 62.60 years (SD, 11.50; range, 39.08–79.08 years; Table 1).
A marked positivity for ERK5 was observed in 9 cases (47.3%), while
the remaining 10 cases showed middle to low positivity (15.7%) or
not detectable ERK5 protein (36.8%; Table 1 and Figure 5D).
ERK2 levels were also analyzed, showing a marked positivity in all
the cases with almost no differences among them. A statistically sig-
nificant (P < .001) correlation between ERK5 positivity and tumor
stage at high risk (stages III and IV, in which four of them died or
needed chemotherapy during the follow-up; Table 1) was found.
Furthermore, tumors with high levels of ERK5 showed a tendency
for metastases at the moment of diagnosis (5 of 9), while tumors neg-
ative or with low positivity for ERK5 did not show any metastases at
the moment of diagnosis (10 of 10). This set of experiments suggests
that ERK5 could be a novel biomarker in CCRCC.
Table 1. Clinicopathologic Data of Patients Studied.
Case
 Age
(Years)
Sex
 Fuhrman
 pT
 pN
 pM
 TNM
Stage
ERK5
 Follow-Up
(Months)
Others
04/07
 48.48
 ♂
 3
 T1b
 Nx
 Mx
 I
 −
 42.97
 W/O treatment

09/07
 50.16
 ♂
 2
 T1a
 Nx
 M1
 IV
 +
 39.85
 W/O treatment

10/07
 65.56
 ♂
 2
 T1b
 Nx
 Mx
 I
 −
 39.75
 W/O treatment

14/07
 76.71
 ♂
 2
 T2a
 N0
 Mx
 II
 +/−
 36.37
 W/O treatment

15/07
 63.27
 ♂
 4
 T3b
 N1
 M1
 IV
 +
 21.75
 Exitus letalis

20/07
 60.00
 ♂
 2
 T3a
 Nx
 Mx
 III
 +
 33.38
 W/O treatment

05/08
 73.83
 ♀
 4
 T3a
 Nx
 Mx
 III
 +
 29.86
 W/O treatment

08/08
 60.55
 ♂
 1
 T1a
 Nx
 Mx
 I
 −
 27.79
 W/O treatment

13/08
 74.80
 ♀
 2
 T2a
 N0
 Mx
 II
 +/−
 21.82
 W/O treatment

18/08
 64.15
 ♂
 2
 T4
 Nx
 M1
 IV
 +
 28.94
 Chemotherapy

02/09
 79.88
 ♂
 3
 T2a
 N0
 Mx
 II
 −
 26.68
 Lost follow-up

03/09
 42.96
 ♀
 2
 T2a
 N0
 Mx
 II
 −
 17.05
 W/O treatment

04/09
 57.11
 ♂
 2
 T3a
 Nx
 Mx
 III
 +
 17.28
 W/O treatment

05/09
 70.81
 ♀
 3
 T2b
 Nx
 Mx
 III
 +
 18.37
 W/O treatment

06/09
 54.95
 ♂
 4
 T4
 N1
 M1
 IV
 +
 5.02
 Exitus letalis

07/09
 66.86
 ♀
 4
 T1b
 Nx
 M1
 IV
 +
 13.77
 Chemotherapy

08/09
 39.08
 ♂
 2
 T1a
 Nx
 Mx
 I
 −
 13.86
 W/O treatment

09/08
 68.38
 ♀
 1
 T1b
 Nx
 Mx
 I
 −
 14.00
 W/O treatment

12/09
 71.79
 ♀
 1
 T3a
 Nx
 Mx
 II
 −
 10.18
 W/O treatment
The above table summarizes demographic and pathologic data (sex, age, Fuhrman grade, and TNM stage)
of the patients studied and their follow-up (end of the study; TNM means tumor-node-metastasis,
W/O means without, + means strong positivity, +/− means low positivity, and − means negative).
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Discussion
The first conclusion from the present study is that ERK5’s expression
is tightly regulated, at the protein level, through the UPS. It has been
reported that ERK1/2 could be also ubiquitinated in stress condi-
tions, through the PHD domain of mitogen-activated protein kinase
kinase kinase 1 (MEKK1) [32], but no effect has been proposed in
nonstress conditions. The regulation of ERK5 by the proteasome fits
with its proposed role in cellular processes, such as REDOX or hypoxia
[2,33], that require a rapid response. Indeed, we have observed an in-
crease in ERK5 protein levels when cell lines as MCF7 or Caki-2 were
exposed to hypoxic conditions (Figure W7). Interestingly, ERK5 tran-
scriptional activity has been shown to be affected by the SUMOylation
machinery, through its mitogen-activated protein kinase kinase
(MAPKK) [34]. However, our data demonstrate a lack of involvement
of MEK5 activity in the ubiquitination of ERK5. Therefore, ERK5
biologic levels and functions are probably regulated through complex
mechanisms involving SUMOylation [35], ubiquitination (this report),
and other processes such as autophosphorylation [36,37].
Our second conclusion is that pVHL is an ERK5 ubiquitin ligase

and that ERK5 needs to be proline hydroxylated to be targeted for
proteasomal degradation. This represents a novel and important finding
in the ERK5 field and suggests that ERK5 is a novel member of the
growing list of EGLN/PHD-regulated proteins [38–43]. It is note-
worthy that ERK5 does not have an LXXLAP hydroxylation motif
described for HIF-1α [30,44]. However, it has been reported that
the main sequence determinant for PHD activity is the presence of
the proline hydroxy acceptor [45] and it has also been shown that
positions −1, −2, and −5 relative to proline hydroxy acceptor can accept
a large variety of substitutions [46,47]. In agreement, other well-
characterized substrates of PHDs, such as ATF4, do not have an
LXXLAP motif [40]. In this regard, the data obtained with the
ERK5-Pro1 mutant form lacking the C-terminal region that includes
the two specific proline-rich domains of ERK5, residues 434 to 485
and 578 to 701 with more than 60 proline residues, support the idea
that proline(s) affected by PHD could lie in these regions.
Interestingly, previous observation showed that 82% of genes that

seem to be specifically regulated by ERK5 under normoxic conditions
are also targets of HIF-1α in hypoxia [18]. Therefore, the control
exerted by pVHL onto ERK5 and HIF-1α at the same time could
ensure that the shared target genes receive a coherent set of input
signals and will allow the expression of target genes for HIF-1α not
only in hypoxic conditions. To this end, one possibility could be a
different sensitivity for this pVHL–prolyl hydroxylase–dependent
mechanism. In this model, HIF-1α is extremely sensitive to this
mechanism, while ERK5 could be less sensitive. In addition, our data
strongly support a model in which VHL regulates ERK5 expression
by affecting its degradation rather than at the RNA level, as has been
reported for other proteins as insulin-like growth factor 1 receptor
(IGF1R) [48], in agreement with the mechanism described for
HIF-1α. Nonetheless, other possibilities in addition to VHL, such
as c-Abl [5], should be considered to fully understand the molecular
basis of ERK5 expression levels and function, especially in a tumoral
context, where deregulation of tyrosine phosphorylation, protein
degradation, and many other processes are well established. Therefore,
further studies are necessary to fully clarify the molecular mechanism
that controls ERK5 in CCRCC.
Third, the role of VHL as a tumor suppressor gene is in nice agree-

ment with its inhibitory effect onto ERK5, a signaling molecule
activated by oncogenes and cell proliferation and that contributes
to cancer [49]. Therefore, ERK5 could be considered as a novel target
of the tumor suppressor pVHL, as has recently been proposed for
phosphorylated JAK2 [50], although the latter does not require pro-
line hydroxylation.

Finally, our findings demonstrate that high levels of ERK5 cor-
relate with stages associated to a worse prognosis in CCRCC [51],
suggesting that ERK5 could be considered a novel biomarker and
a potential therapeutic target. In fact, our data provide a possible
novel explanation for the characteristic vasculature of CCRCC [52].
For example, ERK5 exerts an inhibitory effect on thrombospondin-1
[53,54], known to mediate angiogenesis, proliferation, and tumor
aggressiveness in CCRCC [55]. In our experimental system or in
CCRCC samples, the lack of ERK5 results in decreased cell motility
in vitro and seems to correlate with a low metastatic potential. Inter-
estingly, in breast cancer, expression of ERK5 correlated with a worse
prognosis [11]. Therefore, it is possible that ERK5 targeting may be
therapeutically useful in CCRCC and probably in several solid tumors.
However, in lung cancer, a recent report indicated that loss of ERK5
function may be linked to aggressiveness [56] and that ERK5 is also
known to mediate the effect of antiangiogenic factors such as pigment
epithelium-derived factor (PEDF) [57]. Therefore, studies with ERK5-
specific inhibitors, such as XMD8-92 [58], and with other drugs that in-
terfere with ERK5 activity, such as TG02 that is currently in a phase I
clinical trial, will help to elucidate the value of ERK5 targeting in cancer.

In summary, this report presents a novel mechanism for the con-
trol of ERK5 protein level through the ubiquitin-proteasome machin-
ery, in which pVHL acts as the E3 ubiquitin ligase through a prolyl
hydroxylation–dependent mechanism. This new mechanism for con-
trolling ERK5 expression could have potential implications in tumors,
as CCRCC, in which VHL inactivation is a critical step.
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Figure W1. Effects of VHL mutant C162F onto HA-ERK5. Cos7
cells were transfected with HA-ERK5 WT alone or in the presence
of prc/CMV HA-pVHL WT or C162F mutant and processed as in
Figure 1B. TCLs (50 μg) were blotted against the indicated antibodies.

Figure W2. Subcellular distribution and binding to pVHL of HA-ERK5-AEF. (A) Cos7 cells were transfected with HA-ERK5-WT or HA-ERK5-
AEF and processed as in Figure 2D. (B) 293T cells were transfected (5 μg of HA-ERK5-WT or HA-ERK5-AEF plus 5 μg of Flag-VHL) and
processed as in Figure 2B. TCLs were blotted against Flag or tubulin.



Figure W3. (A) Representative fields of 769-P pLKO and shERK5 cells at 28 days. Soft agar assay was performed according to Guerrero
et al. [1]. (B) Histogram representing the mean ± SD of 12 different fields. Statistical comparison of differences from the means was
performed by the Student’s t test; ***P= .004. (C) Western blot analysis of ERK5 in parallel cultures of cells at the indicated time points of
the soft agar assay.
Figure W4. (A) 786-O cells were infected with control vector (pLKO) or carrying shRNA against ERK5 (shERK5). Selected pools were
evaluated by qRT-PCR. (B) Proliferation assays in 786-O cells. Values of OD at 570 nm at 24 hours were referred as 1. Image shows a
representative experiment performed in triplicate cultures of three. (C) Wound healing assays was performed in 786-O cells. Images
show a representative experiment of two independent experiments performed in duplicated cultures.



Figure W5. Xenograft model using 769-P cells. pLKO (n = 5) or
shERK5 769-P (n = 6) cells were injected subcutaneously (6 ×
106 cells) in nudemice (BALB/c), and volumeswere evaluated every
2 days until apparent tumor mass regresses. Mice were kept alive
until day 45 with no observable tumors.

Figure W6. Histologic features of diagnosed cases of CCRCC. Four representative images (40×) of different Fuhrman grades observed.
(A) Grade I (case 12/09). (B) Grade II (case 08/09). (C) Grade III (case 02/09). (D) Grade IV (case 06/09).



Figure W7. Effect of hypoxia onto ERK5 in Caki-2 and MCF7 cells.
For hypoxia treatments, cellswere grownat 37°C in sealed chambers
and flushed with 1% O2, 5% CO2, 94% N2 gas mixture for 9 hours.
As a positive control, cells were treated with DMOG (1.5 mM) for
9 hours.


