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Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical
latch that hooks onto microtubules to support directional movement of chromosomes. The
structure also brings in a number of signaling molecules, such as kinases and phosphatases, which
regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is
destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein
complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex,
while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by
recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by
unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on
kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the
kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and
Spc7 in fission yeast). Recruitment of protein phosphatase 1 (PP1) to KNL1 is necessary to silence
the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the
mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is
converted to these and other chemical signals that control microtubule attachment and the SAC.
Rapid progress in the field is revealing the existence of an intricate signaling network created right
on the kinetochore. Here we review the current understanding of phosphorylation-mediated
regulation of kinetochore functions and discuss how this signaling network generates an accurate
switch that turns on and off the signaling output in response to kinetochore-microtubule
attachment.
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Introduction
Equal distribution of genetic material to dividing cells relies on the segregation of each
replicated pair of sister chromatids. This task is carried out by the bipolar attachment of
spindle microtubules to each pair of kinetochores assembled on the centromeric DNA of
sister chromatids that are topologically linked. Each kinetochore is composed of a variety of
conserved multi-protein complexes that form multiple connections between centromeric
DNA on the “inner” side to microtubules at the “outer” edge of the kinetochore (Figure 1)
(Cheeseman and Desai 2008; Przewloka and Glover 2009; Takeuchi and Fukagawa 2012).
Resolution of sister chromatids or cell division prior to proper bipolar attachment leads to

funabih@rockefeller.edu, Phone: 1-212-327-7291, Fax: 1-212-327-7292.

NIH Public Access
Author Manuscript
Chromosoma. Author manuscript; available in PMC 2014 June 01.

Published in final edited form as:
Chromosoma. 2013 June ; 122(3): 135–158. doi:10.1007/s00412-013-0401-5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



random segregation of chromosomes and causes aneuploidy, which is closely associated
with cancers and birth defects (Nagaoka, et al. 2012; Weaver and Cleveland 2006). To
prevent this, the spindle assembly checkpoint (SAC) signaling pathway is activated on
unattached kinetochores to inhibit the metaphase-to-anaphase transition (Kops and Shah
2012; Musacchio and Salmon 2007), while erroneous kinetochore-microtubule attachments
are actively corrected (Lampson, et al. 2004; Tanaka 2010; Tanaka, et al. 2002). Once sister
chromatids are separated upon SAC silencing, they can never re-establish cohesion to repeat
the chromosome segregation process. Thus, SAC silencing is a critical decision-making
step, which must be triggered only after all chromosomes accomplish bioriented attachment.
Several protein kinases and phosphatases play essential roles in these processes by
controlling the phosphorylation of a number of kinetochore proteins (Supplementary Table
S1, and Figure 2). Discovery of the kinetochore phosphoepitope “3F3/2”, whose presence
depends on a lack of tension at the kinetochore, hinted at the existence of a mechanosensory
mechanism to monitor the status of kinetochore-microtubule attachments and convert that
status into a chemical signal (Gorbsky and Ricketts 1993; Nicklas, et al. 1995).

Although pairs of sister kinetochores in mitosis are arranged in opposing directions,
providing an intrinsic geometric preference for bipolar attachment (Indjeian and Murray
2007; Sakuno, et al. 2009), erroneous attachments, such as syntelic attachment (both sister
kinetochores attached to the same pole) and merotelic attachment (one kinetochore attached
to both poles), are also formed. Correction of these erroneous configurations is mediated by
destabilization of kinetochore-microtubule attachment, which is facilitated by kinases such
as Aurora B (Cimini, et al. 2006; Lampson, et al. 2004; Tanaka, et al. 2002), a subunit of the
chromosomal passenger complex (CPC), which also contains INCENP, Survivin and
Borealin (also known as Dasra) (Carmena, et al. 2012; van der Waal, et al. 2012). The CPC
is localized to the inner centromere from prophase to metaphase where it controls
kinetochore-microtubule attachment and the SAC. Aurora B-dependent phosphorylation of
substrates at the kinetochore is sensitive to kinetochore-microtubule attachment status, with
levels of phosphorylation greatest on kinetochores without microtubule attachment and
reduced on those with bipolar attachment (Figure 2) (Deluca, et al. 2011; Liu, et al. 2009;
Welburn, et al. 2010). Therefore, it has been predicted that a mechanism exists to switch
from phosphorylation to dephosphorylation of Aurora B substrates upon bipolar attachment
(Kelly and Funabiki 2009; Lampson and Cheeseman 2010; Maresca and Salmon 2010;
Tanaka 2010). Inactivation of Aurora B stabilizes syntelic and merotelic attachments
(Cimini, et al. 2006; Ditchfield, et al. 2003; Hauf, et al. 2003), indicating that this phospho-
switch is important to selectively stabilize proper bipolar attachments. Aurora B-dependent
destabilization of erroneous attachments helps correct these attachments but also creates
unattached kinetochores, which would activate the SAC (Biggins and Murray 2001; Pinsky,
et al. 2006; Tanaka, et al. 2002).

The SAC generates a cell cycle arrest by inhibiting the Anaphase Promoting Complex/
Cyclosome (APC/C), an E3 ubiquitin ligase complex that ubiquitylates mitotic cyclins and
securin to target them for proteosomal degradation to promote cell cycle progression and
sister chromatid separation (Peters 2006). Correlated with the fact that SAC activity is
induced by unattached kinetochores, critical components of the SAC, such as Mad1, Mad2,
Bub1, BubR1 (Mad3 in yeasts), Bub3, and Mps1, are recruited to kinetochores (Abrieu, et
al. 2001; Chan, et al. 1999; Chan, et al. 1998; Chen, et al. 1998; Chen, et al. 1996; Fisk and
Winey 2001; Kops and Shah 2012; Li and Benezra 1996; Taylor, et al. 1998; Taylor and
McKeon 1997; Waters, et al. 1998). Binding of Mad2 to Mad1 at the kinetochore triggers a
structural conversion of Mad2, which stimulates Mad2 binding to the APC/C activator
Cdc20 (Luo and Yu 2008; Musacchio and Salmon 2007; Yang, et al. 2008), resulting in
inhibition of Cdc20’s stimulatory activity toward the APC/C (Chao, et al. 2012). The Mad2-
Cdc20 complex further assembles into the mitotic checkpoint protein complex (MCC) with
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Bub3 and BubR1, which acts as a pseudosubstrate to inhibit the APC/C (Burton and
Solomon 2007; Chao, et al. 2012; King, et al. 2007; Lara-Gonzalez, et al. 2011; Sczaniecka,
et al. 2008; Sudakin, et al. 2001). While Mad1 and Bub1 stably associate with unattached
kinetochores, the MCC proteins all show dynamic kinetochore localization, indicating that
the MCC formed at an unattached kinetochore diffuses to inhibit cellular APC/C (Howell, et
al. 2004; Shah, et al. 2004). Upon microtubule attachment, the levels of all these SAC
proteins at the kinetochore decrease, with Mad1 and Mad2 showing the most robust
reduction while a substantial fraction of Bub1 remains (Howell, et al. 2004; Liu, et al. 2003;
Martinez-Exposito, et al. 1999; Shah, et al. 2004; Taylor, et al. 1998). One mechanism for
removal of checkpoint proteins from kinetochores is dynein-mediated transport along
microtubules (Gassmann, et al. 2010; Howell, et al. 2001; Kasuboski, et al. 2011). However,
other dynein-independent mechanisms exist as Mad1 and Mad2 are removed from
kinetochores after microtubule attachment in mammalian cells depleted of the protein
Spindly, which is required for kinetochore recruitment of dynein (Gassmann, et al. 2010),
and in yeasts dynein dependent removal of kinetochore components does not appear to be
conserved (Mayer, et al. 2006; Yeh, et al. 1995). It has also been shown in yeasts that PP1 at
the kinetochore is essential for SAC silencing, indicating that dephosphorylation at the
kinetochore is required for SAC silencing upon microtubule binding (Pinsky, et al. 2009;
Rosenberg, et al. 2011; Vanoosthuyse and Hardwick 2009).

Robust coupling between microtubule attachment status and SAC signaling is critical. If the
SAC is erroneously silenced prior to bipolar attachment, it triggers a series of irreversible
events, including sister chromatid separation and cell division. The SAC system is tuned so
that a single unattached kinetochore can effectively generate the “wait anaphase” signal, but
that signal is swiftly silenced upon attachment of the last unattached kinetochore (Clute and
Pines 1999; Rieder, et al. 1995). This decision making process depends on phosphorylation
and dephosphorylation of substrates present in small numbers at each kinetochore. If these
kinetochore targets are “good” substrates for mitotic kinases and phosphatases, i.e. there are
low kinetic barriers for the phosphorylation and dephosphorylation reactions, then they
would be vulnerable to the stochastic actions of kinases/phosphatases that exist abundantly
in the cytoplasm. How might the system insulate kinetochores from this type of
inappropriate signaling while still maintaining the ability to rapidly respond to proper
bioriented attachment? To address this question, we will first review the current
understanding of phospho-regulation at the kinetochore critical for controlling microtubule
attachment and SAC signaling. Then, we will discuss hypothetical mechanisms that could
produce this tight coupling between microtubule attachment status and signaling outputs.

Phosphorylations that control kinetochore-microtubule attachment
It is widely believed that proper anaphase chromosome movements rely on attachment
between the dynamic plus-ends of microtubules and kinetochores (end-on attachments).
However, detailed live analysis of kinetochore motions corroborated with electron
microscopy revealed that stable end-on attachments are not immediately accomplished upon
entry into mitosis or meiosis (Kitajima, et al. 2011; Magidson, et al. 2011). Instead, a
majority of kinetochores in early prometaphase form transient, unstable attachments to the
sides of microtubule filaments (Figure 3). Conversion from initial lateral attachments to end-
on attachments is also observed in budding yeast (Tanaka, et al. 2005). Although these
lateral attachments can assist bioriented attachment, support positioning of chromosomes at
the spindle equator, and facilitate partial removal of SAC proteins Mad1 and Mad2 from
kinetochores (DeLuca, et al. 2003), more stable attachments rely on forming end-on
attachments, which occurs during late prometaphase and metaphase.
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Phospho-regulation of lateral attachment
At least two motor proteins are known to contribute to lateral attachments in vertebrates, the
minus-end-directed cytoplasmic dynein and the plus-end-directed kinesin-7 motor, CENP-E
(Kapoor, et al. 2006; Rieder and Alexander 1990; Vorozhko, et al. 2008; Wood, et al. 1997).
In the absence of dynein activity or CENP-E, congression of chromosomes to the metaphase
plate is severely inhibited (Firestone, et al. 2012; Kapoor, et al. 2006; Schaar, et al. 1997;
Varma, et al. 2008; Vorozhko, et al. 2008; Wood, et al. 1997), supporting the importance of
these lateral interactions for establishing end-on attachments. Both motors are preferentially
localized to unattached kinetochores in an Aurora B-dependent manner (Ditchfield, et al.
2003; Emanuele, et al. 2008; Kasuboski, et al. 2011), which suggests that Aurora-B plays a
role in establishing attachments in addition to its role in destabilizing attachments (Figure 3).

It has been proposed that kinetochore recruitment of dynein is mediated by Aurora B-
dependent phosphorylation of Zwint-1, which associates with the kinetochore component
KNL1 and recruits the dynein-dynactin complex through interaction with the RZZ complex,
composed of Rod, Zwilch and ZW10 (Figure 3) (Kasuboski, et al. 2011; Kiyomitsu, et al.
2011; Lin, et al. 2006; Petrovic, et al. 2010). There are multiple consequences of Aurora B
inhibition that are all rescued by expressing a phosphomimetic mutant of Zwint-1, including
failure in kinetochore recruitment of dynein and ZW10, dynamic chromosome movement,
and metaphase plate formation (Kasuboski, et al. 2011), indicating the functional
significance of this Zwint-1 phosphorylation. However, it remains to be established whether
Zwint-1 residues are phosphorylated directly by Aurora B in vivo, as the sites studied are
only remotely related to the consensus target motif for Aurora B (R-X-[S/T]-Φ, where Φ is
any hydrophobic amino acid except Pro) (Alexander, et al. 2011).

Kinetochore recruitment of CENP-E is also facilitated by Aurora B (Ditchfield, et al. 2003;
Emanuele, et al. 2008; Vigneron, et al. 2004), perhaps through enriching BubR1, which is
important for CENP-E recruitment (Chen 2002; Johnson, et al. 2004; Mao, et al. 2003).
CENP-E is phosphorylated by Aurora B (and Aurora A, which concentrates at the spindle
poles) at its neck domain (Kim, et al. 2010), which decreases its affinity for microtubules
and its motor processivity. This phosphorylation is essential for congression of
chromosomes from the poles to the spindle equator (Kim, et al. 2010). The high levels of
Aurora B-dependent phosphorylation at the kinetochore specifically on unattached
kinetochores may facilitate rapid lateral attachments through recruitment of dynein and
CENP-E, prior to the establishment of end-on attachment.

Aurora B-dependent destabilization of kinetochore-microtubule attachments
Aurora B is required for destabilizing erroneous attachments (Cimini, et al. 2006; Lampson,
et al. 2004; Tanaka, et al. 2002). The major targets of this phosphoregulation are the
components of the KMN network, composed of KNL1 (also known as Blinkin, Spc105
[budding yeast and Drosophila] and Spc7 [fission yeast]), the Mis12 complex (also known
as MIND) and the Ndc80 complex, which is critical for load-bearing end-on attachment
(Cheeseman, et al. 2006; Cheeseman and Desai 2008; Cheeseman, et al. 2004; Ciferri, et al.
2008; DeLuca, et al. 2006; Foley and Kapoor 2012; Kiyomitsu, et al. 2007; Perpelescu and
Fukagawa 2011; Petrovic, et al. 2010; Wei, et al. 2007). Microtubule binding of the KMN
network is supported by Ndc80 (also known as Hec1 in human cells) and KNL1 in a
cooperative manner (Cheeseman, et al. 2006), while the Mis12 complex is important for
kinetochore recruitment of the KNM network and other outer kinetochore components (De
Wulf, et al. 2003; Kline, et al. 2006; Obuse, et al. 2004).

Ndc80 has two distinct microtubule-binding modules, the calponin homology domain
(CHD) and the unstructured, positively charged N-terminal tail (Alushin, et al. 2010; Ciferri,
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et al. 2008; Tooley, et al. 2011), the latter of which is subject to Aurora B-dependent
regulation. Binding of the CHD to microtubules is sensitive to structural changes in
microtubules, showing substantial binding to taxol-stabilized microtubules, which have
straight ends, but not with vinblastin-induced tubulin spirals, which mimic peel structures
seen at depolymerizing microtubule ends. In contrast, the N-terminal tail interacts with the
negatively charged C-terminal tail of tubulin and thus can bind microtubules laterally or at
microtubule ends regardless of polymerization status (Ciferri, et al. 2008; DeLuca, et al.
2006; Miller, et al. 2008; Tooley, et al. 2011; Wei, et al. 2007). The Ndc80 tail also
promotes clustering of the Ndc80 complex on microtubules, further stabilizing its
microtubule-binding capacity (Alushin, et al. 2010; Ciferri, et al. 2008). Aurora B
phosphorylates multiple sites on the N-terminal tail of Ndc80 and weakens both the
microtubule-induced clustering and the microtubule-binding affinity in vitro (Alushin, et al.
2010; Cheeseman, et al. 2006; Ciferri, et al. 2008; DeLuca, et al. 2006; Deluca, et al. 2011).
Aurora B-dependent phosphorylation of Ndc80 is important for kinetochore-microtubule
attachment in human cells, as phosphomimetic Ndc80 mutants are unable to support stable
K-MT attachments (Guimaraes, et al. 2008) while unphosphorylatable mutants are sufficient
to cause the accumulation of syntelic and merotelic attachments in tissue culture cells
(DeLuca, et al. 2006; Deluca, et al. 2011; Kasuboski, et al. 2011). Aurora B-dependent
phosphorylation of other kinetochore proteins that interact with the Ndc80 complex, such as
KNL1, Dsn1 (a member of the Mis12 complex) and CENP-U (a member of the CCAN
complex) also weaken microtubule attachment (Hua, et al. 2011; Welburn, et al. 2010). In
addition, Nek2-dependent phosphorylation of Ser165 at the CHD of Ndc80 has been
implicated in destabilization of microtubule-attachment and recruitment of Mad1 and Mad2
(Wei, et al. 2011). Thus, it is possible that the microtubule-binding modules of Ndc80 are
negatively regulated by Aurora B and Nek2 in a cooperative manner (Figure 4A).

The function of the Ndc80 complex to support end-on attachment is augmented by
additional microtubule binding proteins that are also subject to phosphoregulation. In S.
cerevisiae, whereas the contribution of Aurora B-dependent phosphorylation of Ndc80 is
subtle (Akiyoshi, et al. 2009; Kemmler, et al. 2009), the Dam1 complex is the major
functional target of Aurora B for microtubule attachment control because the temperature
sensitive growth of Aurora B mutant cells (ipl1-2) can be partially suppressed by
phosphomimetic mutations of Dam1 (Cheeseman, et al. 2002). Like the Ndc80 complex, the
Dam1 complex can accomplish load-bearing attachment to dynamic microtubules and
phosphorylation weakens this attachment (Gestaut, et al. 2008). The Dam1 complex forms a
ring-shaped oligomer that encircles microtubules and also directly interacts with the Ndc80
complex, which enhances the processivity of microtubule binding. Both of these Dam1
functions are opposed by Aurora B (Lampert, et al. 2010; Tien, et al. 2010). Phosphorylation
of the Ser20 residue of Dam1 disrupts its binding to the Ndc80 complex (Tien, et al. 2010)
while phosphorylation of C-terminal residues compromises Dam1 oligomerization (Wang,
et al. 2007). Although phosphorylation-mediated regulation of Dam1 does not seem to be
conserved in fission yeast (Buttrick, et al. 2012), in higher eukaryotes Aurora B-mediated
phosphorylation negatively regulates kinetochore-localization and microtubule binding of
the Ska complex, which has very similar functions as the Dam1 complex despite no apparent
structural similarity (Jeyaprakash, et al. 2012). The Ska complex binds to the Ndc80
complex and supports kinetochore-microtubule attachment by providing affinity for curved
protofilaments, which facilitates binding to depolymerizing microtubules (Chan, et al. 2012;
Schmidt, et al. 2012).

Kinetochore-microtubule attachment is also controlled by proteins affecting microtubule
stability. The kinesin-13 family proteins MCAK and Kif2b, which catalyze microtubule
depolymerization, are localized to the centromere and the kinetochore and contribute to the
error-correction mechanism. During prometaphase, phosphorylation by Plk1 promotes
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localization of Kif2b at the outer kinetochore through its interaction with CLASP1, and this
destabilizes kinetochore-microtubule attachment, which is required for correction of
erroneous attachments (Hood, et al. 2012). When Aurora B-dependent phosphorylation at
the kinetochore is suppressed upon bioriented attachment, the astrin-kinastrin/SKAP
complex displaces Kif2b from CLASP1 to stabilize microtubule attachment (Dunsch, et al.
2011; Manning, et al. 2010; Schmidt, et al. 2010). However, it is not clear how this potential
role of Plk1 in kinetochore-microtubule destabilization is coordinated with its critical
function for establishing and maintaining stable end-on microtubule attachments (see below)
(Lenart, et al. 2007).

MCAK is required for correcting merotelic attachments and is recruited to centromeric
chromatin by Aurora B-dependent phosphorylation of MCAK itself and Sgo2 (Andrews, et
al. 2004; Lan, et al. 2004; Tanno, et al. 2010). A role for Aurora B in recruiting centromeric
MCAK is at odds with its effect on MCAK function, as Aurora B-dependent
phosphorylation of MCAK reduces its microtubule depolymerization activity (Andrews, et
al. 2004; Lan, et al. 2004; Ohi, et al. 2004). However, Aurora B-dependent inhibition of
another kinesin-13 family protein Kif13a is neutralized by a centromeric protein ICIS in
vitro (Knowlton, et al. 2009), so centromeric MCAK activity may also be maintained by
ICIS at the centromere despite high Aurora B activity.

The small Rho GTPase Cdc42 and its downstream effector mDia3 (mammalian diaphanous-
related formin 3), which is localized to mitotic kinetochores, support stable kinetochore-
microtubule attachment by a mechanism independent of mDia3’s capacity to nucleate actin
(Cheng, et al. 2011; Yasuda, et al. 2004). The formin homology domain (FH) of mDia3 can
directly bind and stabilize microtubules in vitro, but its phosphorylation by Aurora B
neutralizes these activities. Since a phosphomimetic mutant of mDia3 cannot fully support
stable bipolar attachment, phosphoregulation of mDia3 appears to control the stability of
kinetochore-microtubule attachment (Cheng, et al. 2011).

The kinase cascades regulating kinetochore-microtubule attachment
Aurora B’s role in destabilizing kinetochore-microtubule attachment is supported by Mps1.
In yeast and human cells, Mps1 is required for correcting erroneous kinetochore-
microtubule attachments (Jelluma, et al. 2008; Maure, et al. 2007; Sliedrecht, et al. 2010).
However, its underlying mechanism remains to be established. While it has been reported
that Mps1-dependent phosphorylation of the CPC subunit Borealin stimulates Aurora B
activity at the kinetochore in human cells (Jelluma, et al. 2008), this was not seen in other
studies (Maciejowski, et al. 2010; Maure, et al. 2007). This discrepancy may be due to the
use of different cell lines, or the specific requirement of Mps1 for initial stimulation but not
maintenance of Aurora B activity (Sliedrecht, et al. 2010). Recently, it was demonstrated
that Mps1-dependent phosphorylation at multiple residues of Spc105/Spc7/KNL1 is
necessary and sufficient for its recruitment of the Bub1-Bub3 complex (Figure 4B) (London,
et al.; Shepperd, et al. 2012; Yamagishi, et al. 2012), which is required for proper
kinetochore-microtubule attachment (Bernard, et al. 2001; Logarinho, et al. 2008; Meraldi
and Sorger 2005; Warren, et al. 2002). Phosphorylation site mutants of fission yeast spc7
show an increased level of chromosome missegregation, similar to deletion mutants of mph1
(fission yeast mps1) and bub1 (Shepperd, et al. 2012; Yamagishi, et al. 2012). Although a
requirement for this pathway in the error-correction mechanism remains to be established,
these data indicate that one of the major functions of Mps1 is to target Bub1-Bub3 to KNL1.

The checkpoint protein Bub1 is a protein kinase whose major established substrate is histone
H2A at Ser121 in fission yeast or at Thr120 in human (Kawashima, et al. 2010).
Phosphorylation of H2A at Thr120 (in human residue notation) recruits shugoshin proteins
(Sgo1 and Sgo2) to the inner centromere (Kawashima, et al. 2010). Shugoshin proteins then
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recruit the CPC by interacting with Survivin (in fission yeast) or Borealin (in human) that is
phosphorylated by Cdk1 (Figure 4C) (Tsukahara, et al. 2010). In fission yeast, a Bub1
kinase-dead mutant, a histone H2A S121A mutant, deletion of Sgo2 (the sole mitotic form
of shugoshin in fission yeast), and Cdk1-phosphorylation site mutants of Survivin defective
in Sgo2-binding all show comparable defects in chromosome segregation (Kawashima, et al.
2010; Tsukahara, et al. 2010). Artificial targeting of INCENP to the centromere bypassed
the requirement of Bub1 kinase activity for chromosome alignment in mouse cells (Ricke, et
al. 2012), confirming the model that Bub1 promotes proper kinetochore-attachment by
regulating centromeric localization of the CPC.

The clear role of Aurora B-dependent phosphorylation of Ndc80 and its interacting proteins
in destabilizing microtubule attachment makes the observation that the highest levels of
phosphorylation on these substrates are present on unattached kinetochores enigmatic,
because these kinetochores must prepare to capture microtubules (Deluca, et al. 2011;
Welburn, et al. 2010). This enigma may be explained if dynein and CENP-E, whose
kinetochore recruitment are facilitated by Aurora B, and perhaps other microtubule binding
proteins, not the Ndc80 complex, support initial kinetochore-microtubule attachment during
prophase. Consistent with this hypothesis, initial kinetochore-microtubule attachments
during early prometaphase are unstable and they are independent of the Ndc80 complex
(Cai, et al. 2009; Magidson, et al. 2011). In addition, it was recently proposed that another
kinase, Plk1, promotes kinetochore-microtubule attachment in part through counteracting
the action of Aurora B (Liu, et al. 2012; Suijkerbuijk, et al. 2012). The tension-sensitive
3F3/2 epitope depends on Plk1 (Ahonen, et al. 2005; Wong and Fang 2007), and the
reduction of Plk1-dependent phosphorylation at the kinetochore upon bipolar attachment has
been confirmed using a FRET-based sensor (Liu, et al. 2012). One of the critical kinetochore
substrates for Plk1 is BubR1 (Figure 4D) (Elowe, et al. 2007; Matsumura, et al. 2007;
Suijkerbuijk, et al. 2012). Plk1-dependent phosphorylation of BubR1 at the Kinetochore
Attachment Regulatory Domain (KARD) is important for recruitment of PP2A-B56α to
counteract the action of Aurora B and thus to stabilize kinetochore-microtubule attachment
(Suijkerbuijk, et al. 2012). In addition, Plk1 is likely to phosphorylate other substrates, such
as CLIP-170, which can bind microtubule plus ends (Li, et al. 2010). Plk1 also promotes
kinetochore-recruitment of CENP-E (Ahonen, et al. 2005; Nishino, et al. 2006), which
drives chromosome congression to the metaphase plate through supporting lateral
attachment (Kapoor, et al. 2006). During chromosome congression, microtubules bind
laterally to the side of the leading kinetochore, while the trailing kinetochore attaches the
ends of microtubules (Kapoor, et al. 2006). It has been shown that the Plk1-dependent
phosphoepitope 3F3/2 is high at the leading kinetochore but is low at the trailing
kinetochores (Gorbsky and Ricketts 1993). Thus, high Plk1 activity on the laterally attached
kinetochore may recruit PP2A, which can promote dephosphorylation of Aurora B
substrates to help the conversion from lateral attachment to end-on attachment.

Phosphorylations that support the SAC
The metaphase-to-anaphase transition is triggered by the APC/C-mediated ubiquitylation of
cyclin B and securin (Peters 2006). Recognition of these substrates by the APC/C is
mediated by Cdc20, which is the primary target of the SAC. The APC/C is inhibited by the
MCC, composed of Mad2, BubR1, Bub3 and Cdc20, whose assembly is controlled by
kinetochore-dependent and –independent mechanisms (Kulukian, et al. 2009; Maciejowski,
et al. 2010; Malureanu, et al. 2009; Meraldi, et al. 2004; Sudakin, et al. 2001; Tang, et al.
2001). The kinetochore-independent MCC is constitutively required for inhibition of the
APC/C during interphase and early M phase to set a basal duration from entry into mitosis to
anaphase onset. The kinetochore-dependent generation of the MCC responds to unattached
kinetochores to activate and maintain the SAC until all kinetochores accomplish bioriented
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microtubule attachments (Meraldi, et al. 2004). Laser ablation of a single unattached
kinetochore triggers anaphase (Rieder, et al. 1994), supporting the idea that the kinetochore
is critical for generation of SAC signaling. This view was confirmed by the fact that
kinetochores assembled on magnetic beads can activate the SAC in Xenopus egg extracts
(Guse, et al. 2011). Unattached kinetochores recruit Mad1, which converts the cytoplasmic
open form of Mad2 (O-Mad2) into the closed form of Mad2 (C-Mad2), which binds and
inhibits Cdc20 (Musacchio and Salmon 2007). This amplification mechanism to generate C-
Mad2 explains how a single unattached kinetochore can produce the robust signal to inhibit
cell cycle progression. However, artificial recruitment of Mad1-Mad2 to the kinetochore (by
a Mis12-Mad1 fusion protein) but not to bulk chromatin (by a H2B-Mad1 fusion) is able to
activate the SAC (Maldonado and Kapoor 2011), indicating that generation of C-Mad2 and/
or formation of the MCC must require co-localization of Mad1 with other kinetochore
proteins, such as Bub3, BubR1, Bub1 and Mps1.

Bub1 and BubR1
Although Bub1 has kinase activity and it has been reported that Bub1 phosphorylates Cdc20
to inhibit the catalytic activity of the APC/C (Tang, et al. 2004), its kinase activity is not
directly required for SAC activation in yeasts (Fernius and Hardwick 2007; Kawashima, et
al. 2010; Warren, et al. 2002), Xenopus egg extracts (Sharp-Baker and Chen 2001) and
mammalian cells (Klebig, et al. 2009; Perera and Taylor 2010; Ricke, et al. 2012). Instead,
the N-terminal non-kinase domain supports the SAC by recruiting proteins critical for SAC
activation, such as Mad1-Mad2, Bub3, BubR1/Mad3 and CENP-E (Klebig, et al. 2009;
Rischitor, et al. 2007). However, Bub1 kinase activity contributes to SAC activation through
H2A phosphorylation, which indirectly recruits Aurora B (Kawashima, et al. 2010; Ricke, et
al. 2012) (discussed above). This may explain why the SAC is partially compromised in
Bub1-depleted Xenopus egg extracts supplemented with kinase-deficient Bub1 (Chen 2004).

BubR1, a paralog of Bub1, plays a critical role in inhibiting the APC/C through formation of
the MCC. In addition to assisting the kinetochore recruitment of Mad1-Mad2 at the
kinetochore, its N-terminal KEN-box acts as a pseudosubstrate of Cdc20-APC/C (Lara-
Gonzalez, et al. 2011). BubR1 has a kinase domain, though the functional significance of the
kinase domain has been a subject of debate. Several motifs critical for canonical kinases are
mutated or absent in BubR1, while Mad3, the yeast BubR1 homolog, lacks the entire kinase
domain. Kops and colleagues recently proposed that the kinase domain of BubR1 does not
function as an enzyme but as a structural stabilizer (Suijkerbuijk, et al. 2012). A study using
mouse BubR1 knockout cells indicates that the kinase domain is dispensable for the
kinetochore-independent inhibition the APC/C, further confirming the kinase-independent
function of BubR1 for SAC activity (Malureanu, et al. 2009). However, in that same study
kinetochore recruitment of BubR1 including the kinase domain partially contributed to
prolonged mitotic arrest in response to nocodazole or taxol. In addition, it has been shown
that BubR1 kinase activity depends on binding to the kinetochore motor protein CENP-E
(Mao, et al. 2003; Mao, et al. 2005; Zhang, et al. 2007) and is required for SAC activation
and kinetochore recruitment of other SAC components, such as Mad2, though other studies
conflict with this observation (Chen 2002). Very recently, Mao’s team demonstrated that
CENP-E-dependent BubR1 phosphorylation supports the SAC and chromosome alignment
in human cells (Guo, et al. 2012). Lack of this phosphorylation resulted in reduced
phosphorylation of Ndc80 by Aurora B and reduced levels of Mad2 on unattached
kinetochores. Based on the observation that a phosphomimetic BubR1 mutant bypasses the
requirement for CENP-E in metaphase chromosome alignment, Mao and colleagues
proposed that the major function of CENP-E for the SAC and kinetochore-microtubule
attachment is to activate BubR1 (Guo, et al. 2012). The apparent conflict regarding BubR1
kinase activity is highlighted by an observation that a D911N mutation in human BubR1,
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which would nullify conventional kinases, can still support the SAC and chromosome
alignment (Suijkerbuijk, et al. 2012). Testing whether this mutation indeed inactivates
CENP-E-dependent BubR1 kinase activity will help reconcile this issue.

Mps1
One of the key upstream regulators of the SAC is Mps1, a kinase that is recruited to
kinetochores by an unclear mechanism dependent on the Ndc80 complex (Abrieu, et al.
2001; Martin-Lluesma, et al. 2002; Stucke, et al. 2004; Stucke, et al. 2002). Inhibition of
Mps1 causes displacement of SAC proteins from mitotic kinetochores, and also dissociates
Cdc20 from Mad2 and BubR1 during interphase and mitosis, indicating that Mps1 activity is
constitutively required for both kinetochore-independent and –dependent mechanisms of
MCC assembly (Maciejowski, et al. 2010; Sliedrecht, et al. 2010; Tighe, et al. 2008). In
fission yeast, Mps1-dependent phosphorylation of Mad2 at Ser92 contributes to maintenance
of the SAC by supporting the interaction of the MCC with the APC/C (Zich, et al. 2012).
For the kinetochore-dependent mechanism, Mps1 contributes to SAC activation by
phosphorylating Spc105 and recruiting the Bub1-Bub3 complex (London, et al.; Shepperd,
et al. 2012; Yamagishi, et al. 2012), which further recruits BubR1, and the Mad1-Mad2
complex (Chen 2002; Hewitt, et al. 2010; Johnson, et al. 2004; Meraldi, et al. 2004;
Yamagishi, et al. 2012). However, recruitment of Bub1-Bub3 to the kinetochore is
insufficient to recruit Mad1 and Mad2 (Ito, et al. 2011; Yamagishi, et al. 2012), indicating
an additional requirement for Mad1-Mad2 recruitment. In budding yeast, Mps1-dependent
phosphorylation of Ndc80 contributes to SAC maintenance without affecting bioriented
kinetochore-microtubule attachment (Kemmler, et al. 2009).

The kinetochore recruitment of Mps1 depends on an N-terminal region containing the
tetratricopeptide repeat (TPR), which also exists in Bub1 and BubR1 (Lee, et al. 2012;
Maciejowski, et al. 2010). This domain is required for kinetochore localization of Bub1 and
long-lasting SAC maintenance, but not for SAC activation in human tissue culture cells
(Maciejowski, et al. 2010). Therefore, kinetochore localization of Mps1 can contribute to,
but is normally dispensable for SAC function. However, Mps1 kinetochore localization is
critical for SAC activation and chromosome alignment in female mouse meiosis I (Hached,
et al. 2011), indicating a context-dependent requirement of Mps1 at the kinetochore.

Aurora B
Aurora B contributes to activation of the SAC by at least three distinct mechanisms:
destabilizing kinetochore-microtubule attachment, which leads to generation of unattached
kinetochores; kinetochore recruitment of SAC components; and an unknown process after
the kinetochore recruitment of Mad1 and Mad2. While the CPC is clearly important for SAC
activation in response to lack of microtubule attachment in Xenopus egg extracts and in
fission yeast (Kallio, et al. 2002; Petersen and Hagan 2003; Vanoosthuyse and Hardwick
2009; Vigneron, et al. 2004), its contribution to the SAC in budding yeast appears to be
limited to creating unattached kinetochores prior to bipolar attachment (Pinsky, et al. 2006).
Similarly, in human cells the effect of Aurora B inhibition is more pronounced in cells
treated with taxol, which stabilizes microtubules and reduces tension at the kinetochore, than
those treated with nocodazole, which inhibits microtubule polymerization and creates
unattached kinetochores, supporting the idea that Aurora B plays a limited role in activating
the SAC in response to unattached kinetochores (Ditchfield, et al. 2003). This result is in
line with the finding that in budding yeast Mad3 phosphorylation by Aurora B is important
for SAC signaling induced by a lack of tension but not by a lack of attachment (King, et al.
2007).
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In vertebrates, Aurora B promotes kinetochore recruitment of SAC proteins (Mad1, Mad2,
Bub1, BubR1 Mps1 and CENP-E) and outer kinetochore proteins such as the RZZ complex
and dynein (Ditchfield, et al. 2003; Emanuele, et al. 2008; Kasuboski, et al. 2011; Saurin, et
al. 2011; Vigneron, et al. 2004). It was proposed that Aurora B-dependent phosphorylation
of Zwint-1 recruits the RZZ complex (Kasuboski, et al. 2011), which is important for
recruitment of the dynein-dynactin complex and the Mad1-Mad2 complex, but it remains to
be tested whether Zwint-1 is an in vivo target of Aurora B as discussed above. Intriguingly,
the requirement of Aurora B for Mad2 recruitment is most evident during prophase and
early prometaphase, but not in late prometaphase (Saurin, et al. 2011). This correlates with
the observation that Aurora B inhibition delays rapid activation of the SAC upon entry into
mitosis, but that the SAC eventually engages. Since this early requirement of Aurora B is
bypassed by a forced targeting of Mps1 to the kinetochore, Aurora B appears to promote
SAC activation by recruiting Mps1 to the kinetochore (Saurin, et al. 2011). Consistent with
the auxiliary role of Aurora B for SAC activation in response to unattached kinetochores,
Aurora B becomes indispensable for SAC activation upon partial inhibition of Mps1,
depleting Ndc80 (Hec1), which is critical for kinetochore recruitment of Mps1 (Santaguida,
et al. 2011; Saurin, et al. 2011), or depleting members of the constitutive centromere-
associated network (CCAN), CENP-H, CENP-I and CENP-N, which also contribute to
kinetochore recruitment of Mad1 and Mad2 (Matson, et al. 2012). Mps1 and Aurora B are
not only required for Mad1-Mad2 recruitment but also for conducting the SAC signal after
Mad1-Mad2 recruitment (Maldonado and Kapoor 2011), likely through controlling MCC
formation (Maciejowski, et al. 2010) and the MCC-APC/C interaction (Morrow, et al. 2005;
Vanoosthuyse and Hardwick 2009).

Cdk1 and MAPK
Cdk1 is the major cell-cycle driver, whose activity is controlled by cyclins. The primary
Cdk1 substrate recognition motif is [S/T]Px[R/K], where the [R/K] residue at the +2
position relative to the phosphorylation site facilitates but is dispensable for phosphorylation
(Alexander, et al. 2011; Ubersax, et al. 2003). Since Cdk1-cyclin B is the major downstream
target for the SAC, it has been difficult to demonstrate a specific role for Cdk1 in SAC
regulation. The role of phosphorylation at [S/T]P motifs in SAC components can be
examined as possible Cdk1 targets, however, it has been shown that mitogen-activated
protein kinase (MAPK), which also phosphosphorylates [S/T]P motifs, is required for SAC
activation in Xenopus egg extracts and in somatic vertebrate cells (Minshull, et al. 1994;
Takenaka, et al. 1997; Wang, et al. 1997). Studies in Xenopus egg extracts elegantly
demonstrated the importance of phosphorylation at multiple residues of the N-terminal
region of Cdc20 for SAC activation by promoting association with Mad2 and inhibiting
association with the APC/C (Chung and Chen 2003; D'Angiolella, et al. 2003; Labit, et al.
2012). Among these residues, phosphorylation of Thr64 and Thr68 depends on MAPK
activity while Ser50 and Thr79 are potential Cdk1 target sites and all are all required for
SAC activation (Chung and Chen 2003). Interestingly, phosphatases for Thr64, Thr68,
Thr79, but not for Ser50, are active in mitotic extracts (Labit, et al. 2012). How the balance
between phosphorylation and dephosphorylation of these sites is controlled in response to
SAC activation and silencing is an important future question.

In addition, MAPK contributes to SAC activation by phosphorylating at least two more
substrates. MAPK dependent phosphorylation at Ser844 of Xenopus Mps1 is critical for
SAC activation by promoting kinetochore localization of Mps1 and other checkpoint
components, such as Mad1, without affecting the kinase activity of Mps1 (Zhao and Chen
2006). It was also reported that five residues of Bub1 are targets of MAPK, and this is
important for Bub1 kinase activity, thereby partially contributing to the SAC (Chen 2004).
Since cyclin B1 and the active phosphorylated form of MAPK are preferentially localized to
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unattached kinetochores during prometaphase (Bentley, et al. 2007; Shapiro, et al. 1998;
Zecevic, et al. 1998), it would be interesting to examine whether phosphorylation by Cdk1-
cyclin B and MAPK at the kinetochore is regulated by microtubule attachment status.

Roles of phosphatases at the kinetochore and the centromere
PP1

The identification of PP1 mutants showing mitotic arrest phenotypes revealed a specific role
for PP1 in mitotic progression (Booher and Beach 1989; Doonan and Morris 1989; Ohkura,
et al. 1989). More recently, it has become clear that these mitotic arrests are largely due to a
failure in silencing the SAC (Espeut, et al. 2012; Meadows, et al. 2011; Pinsky, et al. 2009;
Rosenberg, et al. 2011; Vanoosthuyse and Hardwick 2009). A variety of PP1 functions can
be modulated by its regulatory subunits, which often contain PP1-docking segments called
SILK and RVxF motifs (Hendrickx, et al. 2009). The essential role of PP1 during mitosis is
mediated by recruitment of PP1 to the highly conserved RVxF motif of the kinetochore
protein KNL1 (Figure 4E) (Espeut, et al. 2012; Liu, et al. 2010; Meadows, et al. 2011;
Rosenberg, et al. 2011). Mutation of this RVxF motif is lethal, and this lethality can be
rescued by deleting Mad2 in budding yeast (Rosenberg, et al. 2011), indicating that the
essential role of PP1 bound to KNL1 (Spc105) is silencing the SAC in that organism, not
regulating kinetochore-microtubule attachment. In contrast, the RVxF motif mutant of
KNL1 in C. elegans shows delayed formation of load-bearing kinetochore-microtubule
attachments and enhanced lethality upon Mad2 depletion (Espeut, et al. 2012), indicating a
more important role in regulating kinetochore-microtubule attachment in that system. In
vertebrates, the RVxF motif mutant of KNL1 (Blinkin) is lethal and mildly defective in
stabilization of kinetochore-microtubule attachment (Liu, et al. 2010), but its impact on SAC
silencing remains to be established. Vertebrates express three isotypes of PP1 (α, β, γ) and
their localization is most prominent on unattached kinetochores and is reduced upon
microtubule attachment (Posch, et al. 2010; Trinkle-Mulcahy, et al. 2006; Trinkle-Mulcahy,
et al. 2003). Phosphorylation of KNL1 by Aurora B can weaken the PP1-KNL1 interaction,
raising the possibility that PP1 localization at the kinetochore is negatively regulated by
Aurora B (Figure 4E) (Liu, et al. 2010; Rosenberg, et al. 2011). Furthermore, the catalytic
activity of PP1 is suppressed by Cdk1-cyclin B (Dohadwala, et al. 1994; Yamano, et al.
1994). Since cyclin B1 is preferentially localized to unattached kinetochores but is
dissociated from kinetochores at the metaphase plate (Bentley, et al. 2007), the catalytic
activity of PP1 may also be regulated by microtubule attachment.

A series of genetic, biochemical and cell biological experiments strongly supports the idea
that PP1 acts to oppose the function of Aurora B (Francisco, et al. 1994; Hsu, et al. 2000;
Pinsky, et al. 2006; Pinsky, et al. 2009; Vanoosthuyse and Hardwick 2009). Consistently,
lethality of the spc105 RVxF mutant and temperature sensitivity of the ipl1 (Aurora B)
mutant partially complement each other (Rosenberg, et al. 2011). It may be surprising that
recruitment of PP1 to Spc105 (KNL1) is dispensable for kinetochore-microtubule
attachment in budding yeast since dephosphorylation of Aurora B substrates is important for
accomplishing stable kinetochore-microtubule attachments. One possible explanation is that
different levels of dephosphorylation may be required for stable kinetochore-microtubule
attachment and SAC silencing. For example, since the multisite phosphorylation of the
KMN network has synergistic effects on microtubule binding (Welburn, et al. 2010), partial
dephosphorylation by PP1 may provide the kinetochore with substantial affinity to
microtubules to achieve load-bearing attachment but more robust dephosphorylation may be
required for SAC silencing and thus require the high local concentration of kinetochore-
bound PP1.
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Alternatively, specific substrates relevant for SAC signaling, but not for microtubule
attachment, may require PP1 recruitment to KNL1. One candidate for a SAC-specific
substrate is KNL1 itself, whose Mps1-dependent phosphorylation recruits Bub1. However, it
is unlikely that Bub1 dissociation from the kinetochore triggers SAC silencing since Bub1
remains on bioriented kinetochores (Howell, et al. 2004; Shah, et al. 2004). Other candidates
include Mad3 (BubR1), which is phosphorylated by Ipl1 (Aurora B) (King, et al. 2007) and
Ndc80, which is phosphorylated by Mps1 in budding yeast (Kemmler, et al. 2009). In higher
eukaryotes, it has been suggested that dephosphorylation of Zwint-1 is necessary for SAC
silencing, as a phosphomimetic mutant of Zwint-1 delays metaphase with accumulated SAC
components even on kinetochores aligned at the metaphase plate (Kasuboski, et al. 2011).

Consistent with the idea that PP1 bound to KNL1 can dephosphorylate only a subset of
kinetochore substrates, other kinetochore proteins also interact with PP1 through their RVxF
motifs. These PP1-binding proteins include Fin1 in budding yeast (Akiyoshi, et al. 2009),
kinesin-8 (Klp5 and Klp6) in fission yeast (Meadows, et al. 2011) and CENP-E in human
cells (Kim, et al. 2010). The PP1-binding motifs in Klp5 and Klp6 contribute to both SAC
silencing and kinetochore-microtubule attachment. Like KNL1, Aurora-dependent
phosphorylation of an RVxF motif in CENP-E causes it to dissociate from PP1. This
dissociation has been implicated in establishment of stable kinetochore-microtubule
attachment (Kim, et al. 2010), though the specific role of PP1-binding to CENP-E remains
to be established.

Direct fusion of PP1 to the N-terminus of Spc105 (KNL1) bypasses the requirement for
Spc105’s RVxF motif in budding yeast (Rosenberg, et al. 2011), indicating that association
of the RVxF motif with PP1 does not affect PP1’s catalytic activity. However, PP1 activity
is likely to be regulated by Sds22, which binds PP1 through its leucine-rich repeats (LRRs)
(Ceulemans, et al. 2002; Stone, et al. 1993) and plays an essential role for mitotic
progression (Ohkura and Yanagida 1991; Stone, et al. 1993). Cells with reduced Sds22 show
a metaphase delay with mild chromosome misalignment (Ohkura and Yanagida 1991;
Posch, et al. 2010; Stone, et al. 1993). Consistent with its augmenting PP1 function,
reduction of Sds22 in mammalian cells causes enhanced levels of Aurora B
autophosphorylation and Aurora B-dependent phosphorylation of a member of the Mis12
complex, Dsn1 (Wurzenberger, et al. 2012), though it was also reported that
phosphorylation of Ndc80 and MCAK were rather decreased (Posch, et al. 2010). This
difference may reflect the role of Sds22 as an inhibitor for specific substrates but not others
(Stone, et al. 1993). Although Sds22 does not contribute strongly to kinetochore-
microtubule attachment in metaphase, it does do so during anaphase chromosome
movement, along with Repo-Man, which recruits PP1 to anaphase chromosomes
(Wurzenberger, et al. 2012). Altogether, the major role of PP1-Sds22 at the kinetochore
appears to be silencing the SAC with an auxiliary function for kinetochore-microtubule
attachment.

PP2A
Phosphorylation of kinetochore proteins is also controlled by type 2A phosphatase (PP2A),
which shows a stronger contribution to kinetochore-microtubule attachment than to the SAC
(Foley, et al. 2011). The PP2A holoenzyme is composed of a catalytic subunit, a scaffolding
A subunit and a regulatory B subunit. Among a variety of B subunits, the B56 (B’) family
(α, β, γ, δ, and ε) members localize to kinetochores during mitosis and seem to be the major
regulatory subunits controlling PP2A’s role in microtubule attachment. The localization of
the B56 subunits is most prominent on unattached kinetochores, and their levels are reduced
(α, ε) or undetectable (β, γ, δ) on kinetochores with bioriented attachment. Upon depletion
of B56 subunits, the levels of KNL1 and Dsn1 phosphorylation by Aurora B, and BubR1
phosphorylation by Plk1 increase and kinetochore-microtubule attachment is compromised.
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This reduced kinetochore-microtubule attachment is rescued by inhibiting Aurora B,
indicating that PP2A-B56 antagonizes Aurora B to support stable association of
microtubules at the kinetochore (Foley, et al. 2011). Although PP2A-B56 has been
implicated in the maintenance of sister chromatid cohesion through interaction with
Shugoshin proteins (Kitajima, et al. 2006; Riedel, et al. 2006; Tang, et al. 2006), its role in
kinetochore-microtubule attachment appears to be distinct from its regulation of sister
chromatid cohesion. As mentioned above, kinetochore recruitment of the B56 subunit is
mediated by Plk1-dependent phosphorylation of BubR1 (Figure 4D) (Suijkerbuijk, et al.
2012).

Taken together, studies to date suggest a division of labor between mitotic phosphatases in
which PP2A-B56 promotes dephosphorylation of kinetochore substrates at unattached
kinetochores to promote kinetochore-microtubule attachment while PP1 supports SAC
silencing and maintenance of kinetochore-microtubule attachment on attached kinetochores.
How the actions of these two phosphatases are coupled to kinetochore-microtubule
attachment and how they can play distinct functions are subjects of future study.

Making an effective switch at the kinetochore in response to microtubule
attachment

Kinetochore-microtubule attachments are stabilized when chromosomes achieve bipolar
microtubule attachment, but erroneous attachments must be corrected by destabilizing them.
The SAC can be activated by a sole unattached kinetochore in a cell, while bipolar
attachment of the last unattached kinetochore swiftly silences the SAC (Clute and Pines
1999; Rieder, et al. 1994). As discussed above, a number of protein kinases and
phosphatases are required to control these processes, and so far Aurora B- and Plk1-
dependent phosphorylations of kinetochore substrates are known to be sensitive to the status
of microtubule attachments: high at unattached kinetochores and low at kinetochores with
bipolar attachment (Ahonen, et al. 2005; Cheng, et al. 2011; Deluca, et al. 2011; Elowe, et
al. 2007; Lan, et al. 2004; Liu, et al. 2012; Liu, et al. 2009; Nishino, et al. 2006;
Suijkerbuijk, et al. 2012; Welburn, et al. 2010). Coincidentally, many of the kinases and
phosphatases are also recruited to kinetochores and centromeres, and their local levels are
affected by microtubule attachment status (Figure 2). For example, more Mps1, Bub1, Plk1,
Cdk1-cyclin B1 and PP2A-B56 are recruited to unattached/misaligned kinetochores than to
kinetochores with bioriented attachment (Bentley, et al. 2007; Foley, et al. 2011; Hori, et al.
2008; Howell, et al. 2004; Liu, et al. 2012; Saurin, et al. 2011), while more PP1 is recruited
to kinetochores upon bioriented attachment (Liu, et al. 2010). Strikingly, either disruption of
the PP1 (Glc7)-KNL1 (Spc105) interaction or recruitment of an extra copy of PP1 to KNL1
is lethal in budding yeast (Rosenberg, et al. 2011), suggesting that the exact amount of PP1
residing at the kinetochore must be tightly tuned for proper phosphoregulation. Enrichment
of these signaling components at the kinetochore may help couple regulation of kinetochore-
microtubule dynamics and the SAC (Foley and Kapoor 2012). Furthermore, local regulation
of phosphorylation/dephosphorylation allows the system to correct erroneous microtubule
attachments at an individual kinetochore without affecting the established attachments at
other kinetochores even if other kinetochores are very close by. It also allows each
kinetochore to act as an independent sensor to detect its own microtubule attachment status
and generate a diffusible SAC signal. But how can phosphorylation levels accurately
respond to kinetochore-microtubule attachment status? Below we discuss several potential
mechanisms.
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Feedback mechanisms that control kinetochore localization of kinases and phosphatases
Cooperativity and feedback can contribute to formation of a switch-like response
(Pomerening, et al. 2003) and can be generated by enzymes whose activity affects their own
localization either directly or indirectly. Plk1 and Aurora B are known to promote their own
localization at the kinetochore and centromere. Plk1 is recruited to kinetochores through its
C-terminal Polo-box domain (PBD), which recognizes a phosphorylated serine or threonine
preceded by a serine residue (S-Sph/Tph) (Elia, et al. 2003). Plk1 activity can thus create its
own phospho-docking site on targets, such as NudC (Nishino, et al. 2006; Zhou, et al. 2003)
and the CCAN component CENP-U (CENP-50, PBIP1) (Hori, et al. 2008; Kang, et al.
2006). Since binding ligands through its PBD stimulates the catalytic activity of Plk1, a
cluster of CENP-U proteins may lead to the spreading of active Plk1 on a kinetochore as it
phosphorylates adjacent CENP-U molecules and generates new Plk1-binding sites (Park, et
al. 2011). However, the importance of this mechanism of Plk1 recruitment to kinetochores
in prometaphase is unclear since CENP-U is primarily required for kinetochore recruitment
of Plk1 during late G2 phase (Hori, et al. 2008; Kang, et al. 2006) and its chicken homolog,
CENP-50, is not essential in DT40 cells (Minoshima, et al. 2005). Cdk1-dependent
phosphorylation of Bub1, BubR1 and INCENP also generates Plk1 docking sites at the
kinetochore (Goto, et al. 2006; Qi, et al. 2006; Wong and Fang 2007), but it remains to be
established whether this docking merely represents substrate recognition or also contributes
to enrich Plk1 at the kinetochore to facilitate phosphorylation of other neighboring
substrates.

The mechanism of Plk1 dissociation from the kinetochore, which is coupled to bipolar
microtubule-attachment (Hori, et al. 2008; Lenart, et al. 2007) and SAC silencing (Liu, et al.
2012), could be the simple reversal of the mechanisms that generates its recruitment.
Consistent with the PBD-dependent kinetochore recruitment of Plk1, PP1 and PP2A-B56
are both required for dissociation of Plk1 from metaphase kinetochores (Foley, et al. 2011;
Liu, et al. 2012). Thus, dissociation of Plk1 from the kinetochore is likely to be caused by
decreased Plk1 activity or increased dephosphorylation of the PBD recognition sites. Since
the activation loop of Plk1 at the kinetochore is phosphorylated by Aurora B (Carmena, et
al. 2012), downregulation of Aurora B-dependent phosphorylation upon bioriented
attachment could contribute to dissociation of Plk1.

Centromeric enrichment of Aurora B is regulated by positive feedback involving two
histone kinases, Haspin, which phosphorylates H3T3, and Bub1, which phosphorylates H2A
T120. Phosphorylated H3T3 (H3T3ph), which is not restricted to the centromere at the entry
into mitosis, recruits Aurora B to mitotic chromatin by directly binding the Survivin subunit
of the CPC (Kelly, et al. 2010; Wang, et al. 2010; Yamagishi, et al. 2010), while
phosphorylated H2A, which is localized to the kinetochore-proximal region of the
centromere, also recruits the CPC as described above. Local enrichment of Aurora B can
facilitate phosphorylation at its activating loop and at the C-terminal TSS motif of INCENP
(Kelly, et al. 2007), both of which are critical for full activation of Aurora B. Activated
Aurora B can in turn phosphorylate Haspin to stimulate H3T3 phosphorylation (Wang, et al.
2011). In addition, Aurora B contributes to kinetochore accumulation of Bub1 (Boyarchuk,
et al. 2007; Morrow, et al. 2005; Vigneron, et al. 2004). These feedback mechanisms drive
local enrichment of H3T3ph and Aurora B at the inner centromere (Figure 4C) (Ricke, et al.
2012; Wang, et al. 2011; Yamagishi, et al. 2010), and this enrichment is functionally
important for Aurora B-dependent control of kinetochore-microtubule attachment and SAC
activation. Artificial targeting of the CPC to the centromere and kinetochore by fusing
INCENP to CENP-B and Mis12, respectively, destabilizes kinetochore-microtubule
attachment (Liu, et al. 2009), while CENP-B-INCENP fusion bypasses the requirement for
H3T3ph in SAC activation (De Antoni, et al. 2012; Wang, et al. 2012). In addition,
abrogating CPC targeting to the centromere causes severe chromosome misalignment
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defects (De Antoni, et al. 2012; Lens, et al. 2006; Wang, et al. 2010; Wang, et al. 2012)
(except in chicken DT40 cells, where CPC mislocalization by Survivin depletion does not
have strong impacts on chromosome alignment (Yue, et al. 2008)). Although this positive
feedback regulation of Aurora B is important for centromeric enrichment of Aurora B,
turning off this positive feedback may not be the major trigger for SAC silencing. Aurora B
shows preferential accumulation on centromeres of unattached/misaligned chromosomes by
a Plk1-dependent mechanism in untransformed cell lines, but such a preference is not seen
in HeLa cells (Salimian, et al. 2011). Instead, removal of the CPC from the centromere
depends on Cdk1-inactivation (Hummer and Mayer 2009; Parry, et al. 2003), the process
that requires SAC silencing.

In mammals, bioriented attachments facilitate kinetochore recruitment of PP1 (Deluca, et al.
2011; Liu, et al. 2010), potentially supporting a mechanism that couples kinetochore-
microtubule attachment and dephosphorylation. Aurora B-dependent phosphorylation of
KNL1 dissociates the PP1-KNL1 interaction (Liu, et al. 2010; Rosenberg, et al. 2011),
creating a double negative feedback loop to potentially support the switch-like behavior of
phosphorylation status (Figure 4E). However, evidence in budding yeast indicates that PP1
recruitment is insufficient for this switch. Although the constitutive recruitment of PP1 to
the kinetochore (via fusion of PP1 to the N-terminus of Spc105 [KNL1] with a mutation at
the authentic RVxF motif) supports normal chromosome segregation, it does not cause a
premature silencing of the SAC (Rosenberg, et al. 2011). Therefore, PP1 recruitment to
Spc105 is necessary but not sufficient to turn off the SAC in the absence of microtubule
attachment.

Budding yeast is so far unique in that the critical phosphorylation site for Cdk1-dependent
inhibition on PP1 is not conserved (Dohadwala, et al. 1994; Yamano, et al. 1994). In other
organisms, inhibition of PP1 catalytic activity by Cdk1-cyclin B could generate additional
feedback regulation. Cyclin B1 is localized to the unattached kinetochore, but dissociates
from the kinetochore upon bioriented attachment (Bentley, et al. 2007). Since its kinetochore
localization depends on Mad2, dissociation of cyclin B1 from the kinetochore may be
caused by Mad2 dissociation. Lowering Cdk1-cyclin B1 could promote dephosphorylation
of kinetochore substrates, including PP1 itself. This would remove Cdk1-depenedent PP1
inhibition and further stimulate dephosphorylation of kinetochore substrates.

Plk1-dependent recruitment of PP2A potentially generates negative feedback. As mentioned
above, Plk1-dependent phosphorylation of kinetochore substrates promotes its own
kinetochore localization as well as the antagonistic phosphatase PP2A-B56 (Suijkerbuijk, et
al. 2012). PP2A-B56 in turn dephosphorylates Plk1 substrates at the kinetochore, promoting
dissociation of Plk1 at the kinetochore (Foley, et al. 2011). Since microtubule attachment
defects upon PP2A-B56 depletion can be rescued by inhibition of Plk1, dissociation of Plk1
stabilizes kinetochore-microtubule attachment. In addition, this correlates with dissociation
of PP2A-B56 from kinetochores with bioriented attachment (Foley, et al. 2011). Although it
is not clear whether dissociation of PP2A-B56 has a functional consequence, it may help
keep a low level of phosphorylation that is required for the integrity of kinetochore
architecture, dynamic association of microtubules, or prevention of merotelic attachments.
Indeed, the level of Aurora B-dependent phosphorylation decreases but does not necessarily
vanish upon bipolar attachment (Deluca, et al. 2011; Kops and Shah 2012; Welburn, et al.
2010). Similarly, saturated phosphorylation of kinetochore substrates may have to be
avoided to support initial kinetochore-microtubule attachment. The negative feedback could
be utilized for adaptation or oscillation (Pomerening, et al. 2003), but more quantitative
measurements of kinetochore phosphorylation levels during mitotic progression are needed
in the presence or absence of microtubule attachment to understand the functional meaning
of this negative feedback.
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In summary, feedback mechanisms control the localization of critical enzymes at the
kinetochore and the centromere, but it remains to establish whether modulations of these
feedback mechanisms upon microtubule attachment act as a critical trigger for kinetochore-
microtubule stabilization or SAC silencing.

Changing the catalytic activity of enzymes
Bipolar microtubule attachment at the kinetochore may directly affect the catalytic activity
of enzymes. However, few examples of this type of regulation have been demonstrated. It
was reported that the kinase activity of BubR1 is silenced by CENP-E-mediated microtubule
attachment (Mao, et al. 2005), though the presence of BubR1 kinase activity has been
questioned (Suijkerbuijk, et al. 2012). Aurora B activity is stimulated by microtubule-
binding (Kelly, et al. 2007; Rosasco-Nitcher, et al. 2008; Tseng, et al. 2010), and this
activation was implicated in correcting merotelic attachments, a configuration in which
Aurora B at the inner centromere may have better access to microtubules (Knowlton, et al.
2006). However, this mechanism does not explain the high Aurora B-dependent
phosphorylation of kinetochore substrates in nocodazole-treated cells.

Since Aurora B can be activated by binding to chromatin (Kelly, et al. 2010; Kelly, et al.
2007), a change in chromatin structure at the centromere upon microtubule attachment could
potentially alter Aurora B activity. Although the underlining mechanism remains unclear, it
has been indicated that Aurora B-dependent phosphorylation of CENP-A or histone H3 is
greatly reduced upon depletion or inhibition of DNA topoisomerase II (Topo 2). Since Topo
2 is important for DNA decatenation, Aurora B activity may be sensitive to the topological
status of the centromeric DNA. Centromeric localization of Topo 2 depends on
SUMOylation (Dawlaty, et al. 2008), but Topo 2 SUMOylation also inhibits Topo 2 activity
(Ryu, et al. 2010). It would be interesting to learn how Topo 2 SUMOylation is regulated by
kinetochore-microtubule attachments.

Spatial separation between enzymes and substrates
Microtubule attachment may alter the accessibility of substrates to kinases and
phosphatases. It has been proposed that the change in the physical distance between Aurora
B located at the inner centromere and PP1 at the outer kinetochore alters the relative
kinetochore substrate accessibility (Kelly and Funabiki 2009; Lampson and Cheeseman
2010; Maresca and Salmon 2010; Tanaka, et al. 2002). In addition, PP2A-B56, which is
localized to the kinetochore, contributes to kinetochore-microtubule attachment regulation
(Foley, et al. 2011). In this spatial separation model, Aurora B, which is activated at the
inner centromeric chromatin, diffuses to act on substrates at the kinetochore. Biorientation
increases the distance between the kinetochore and the inner centromere, and thus reduces
Aurora B’s access to kinetochore substrates while phosphatases retain access. Supporting
this idea, the levels of Aurora B-dependent phosphorylation at sites in the inner centromere
are less sensitive to microtubule attachment status than the levels of phosphorylation at sites
in the outer kinetochore (Liu, et al. 2009; Welburn, et al. 2010). However, it is not clear
whether the dynamic range of this “Aurora B gradient” is large enough to support switch-
like behavior over the small spatial change in substrate positioning within the kinetochore in
response to bipolar attachment (at most ~50 nm) (Maresca and Salmon 2009; Uchida, et al.
2009; Wan, et al. 2009; Welburn, et al. 2010). Furthermore, kinetochore structure fluctuates
very rapidly in response to microtubule-dependent forces (Uchida, et al. 2009). Thus,
information about the separation between centromere and outer kinetochore has to be
filtered by the SAC silencing machinery by, e.g., time-averaging or scoring incidents that
the distance becomes larger than a threshold. In principle, enzyme kinetics could accomplish
this type of filtering, but we currently have insufficient quantitative enzymological
information for the relevant kinases and phosphatases to support that model.
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Changing the stability of enzyme-substrate interactions
Microtubule-dependent force may directly alter the structure of binding modules that
support substrate-enzyme interactions. In this model, stabilization of substrate-enzyme
interactions is the major determinant for critical phosphorylation/dephosphorylation. Such a
mechanism has an advantage when the system has to deal with small numbers of molecules.
Proteins responsible for microtubule attachment (e.g., Ndc80) on each kinetochore are found
in low numbers (~20 per kinetochore microtubule) (Coffman, et al. 2011; Lawrimore, et al.
2011). When an enzyme targets a small number of substrates, the reaction follows stochastic
rather than deterministic (mass-action) rate equations. The stochastic nature of substrate-
enzyme recognition can be transformed into a deterministic signal if the substrate and
enzyme interaction is stabilized (or the local concentration of substrates and enzymes is
high). Conversion to a stable interaction can also drive the phosphorylation/
dephosphorylation of an intrinsically “poor” but functionally critical substrate sequence. A
stable interaction can be supported by a specific enzyme-binding module (such as the Cy/
RxL motif in substrates of Cdk1-cyclin (Koivomagi, et al.; Takeda, et al. 2001)), or a
scaffold that can bring the substrate and the enzyme together (such as Ste5 in the MAP
kinase cascades (Good, et al. 2011)). This interaction stability hypothesis may explain why
some enzymes can execute proper functions without full enrichment at the kinetochore, as
long as their substrate interaction regulation remains intact. To test this hypothesis,
identification of substrate-recognition modules of kinases and phosphatases is critical. The
PBD of Plk1 is responsible for this function, but retention of Plk1 at metaphase kinetochores
by inhibiting PP1 or PP2A indicates that microtubule attachment does not directly interfere
with substrate recognition (Foley, et al. 2011; Liu, et al. 2012). It will be important to
investigate whether Aurora B and Mps1 posses similar substrate-recognition modules and, if
so, whether those modules are altered by microtubule attachment.

Requirement of phosho-independent mechanisms for SAC silencing
Although PP1 at the kinetochore is required for SAC silencing, a switch-like change in
phosphorylation status may not be necessary as long as critical substrates are
dephosphorylated below the threshold level upon microtubule attachment. In this case, the
switch-like response of SAC silencing must be ensured by a phospho-independent
mechanism, such as microtubule-dependent stripping of SAC components. Interestingly,
KNL1 in C. elegans has a microtubule-binding domain that is required for SAC silencing
independently of its role in PP1 recruitment (Espeut, et al. 2012). Since KNL1 also recruits
Bub1-Bub3, which generates the MCC with Mad1 and Cdc20, microtubule binding of
KNL1 may influence the formation of the MCC. Furthermore, it has been suggested that
deacetylation of BubR1 is required for silencing the SAC by promoting its own
ubiquitylation and degradation through the APC/C (Choi, et al. 2009). While BubR1
acetylation does affect BubR1 phosphorylation, it remains to be tested whether acetylation/
deacetylation is controlled by phosphorylation and/or microtubule-attachment. Disassembly
of MCC by p31comet and APC-dependent Cdc20 autoubiquitylation also contribute to SAC
silencing (Foster and Morgan 2012; Jia, et al. 2011; Mansfeld, et al. 2011; Reddy, et al.
2007; Stegmeier, et al. 2007; Teichner, et al. 2011; Uzunova, et al. 2012; Westhorpe, et al.
2011). These phospho-independent mechanism may create a strong AND gate with
phospho-dependent mechanisms to support a switch-like response of SAC activation and
inactivation.

Outstanding questions
In spite of the extensive investigation into kinetochore composition and function, a complete
picture of how microtubule attachment is monitored and relayed into cell cycle progression
feedback is still emerging. Below, we highlight some of the critical questions to be
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addressed and major challenges that must be overcome to obtain a more complete picture of
kinetochore regulation.

Regulating composition and architecture of the kinetochore
Kinetochore recruitment of proteins that play direct roles in kinetochore-microtubule
attachment regulation and/or in SAC signaling is mostly limited to mitosis. Little is known
about the molecular basis for this cell-cycle dependent recruitment of proteins to the
kinetochore. Recruitment of the KMN network by Cdk1-dependent phosphorylation on
CENP-T is one mechanism (Gascoigne, et al. 2011), but it is likely that phosphorylation and
dephosphorylation of many other proteins also regulate assembly and disassembly of the
kinetochore during the cell cycle.

In Xenopus egg extracts, Aurora B activity is critical for assembly of a wide variety of outer
kinetochore proteins important for kinetochore-microtubule attachment (the KMN network)
and SAC signaling (Emanuele, et al. 2008), but almost nothing is known about the
underlining molecular basis. The importance of Aurora B for kinetochore assembly raises
the question of how some of these proteins dissociate (e.g., Mad1–Mad2) while others (e.g.,
the KMN network, Bub1) remain recruited to metaphase and anaphase chromosomes upon
silencing of the Aurora B-pathway. It is likely that residual phosphorylations on attached
kinetochores can maintain a subset of protein recruitment, but how is the quantity or quality
of this subset of phosphorylation determined? Dissecting the critical phosphorylation sites
that contribute to kinetochore recruitment will help answer this question. Particularly,
identification of the kinetochore protein that directly recruits the Mad1-Mad2 complex and
Mps1 is critical.

Phosphorylation of subsets of kinetochore proteins may be differentially regulated by
interaction with specific substrate recognition modules on each kinase and phosphatase (and
their potential regulatory subunits). Among the kinases discussed here, Plk1 has an
established substrate recognition module, the PBD, but other kinases may have intricate
mechanisms to support robust and accurate substrate recognition that is sensitive to
microtubule attachment status. Similarly, it will be important to understand how the
substrate recognition of PP1 and PP2A-B56 is regulated. Specifically, Sds22 has been
implicated in providing the substrate specificity for PP1 (Stone, et al. 1993). Characterizing
the role of Sds22 in PP1 substrate-specificity on kinetochore proteins will be helpful to
address this question.

It is also possible that accessibility of enzymes to their substrates may be governed by the
physical proximity that is changed by microtubule-dependent force. Recent advancements in
super-resolution microscopic techniques and immuno-electron microscopy have started to
help reveal the dynamic architectural changes in the kinetochore upon microtubule
attachment (Dumont, et al. 2012; Maresca and Salmon 2009; Suzuki, et al. 2011; Uchida, et
al. 2009; Wan, et al. 2009). Further characterization of the physical and biochemical bases
for substrate recognition by kinases and phosphatases is critical to understand how
microtubule-attachment status can be converted into chemical signals.

Microtubule attachment and error correction
Although we now know a great deal of molecular players involved in kinetochore-
microtubule attachment and in regulating the dynamics of kinetochore microtubules, it is
still far from clear how these activities are coordinated to regulate different modes of
attachment. As we discussed above, it remains to be established how microtubules can make
initial attachments to a kinetochore that is predicted to have the weakest capacity to establish
end-on attachment due to high Aurora B dependent phosphorylation of kinetochore proteins
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such as Ndc80. Although lateral attachments mediated by dynein and CENP-E likely
contribute to these processes, little is known about how the conversion from lateral
attachment to end-on attachment is controlled. It will be important to examine whether
lateral attachment causes differential effect on substrates of Aurora B (e.g., Ndc80) and Plk1
(e.g., BubR1). The microtubule motors CENP-E and kinesin-8 can both bind to PP1 (Kim, et
al. 2010; Meadows, et al. 2011). It was suggested that dephosphorylation of CENP-E’s PP1-
binding module is important for conversion from lateral attachment to end-on attachment
since microinjection of phospho-specific antibodies recognizing this site disrupt stable
bipolar attachments (Kim, et al. 2010). Human kinesin-8, Kif18A, which has a conserved
PP1-binding module, is recruited to the kinetochore in a microtubule-dependent manner to
suppress dynamic kinetochore movements (Stumpff, et al. 2008). Therefore, it would be
interesting to test whether CENP-E and/or Kif18A support(s) stable bipolar microtubule
attachment by recruiting PP1 and dephosphorylating Ndc80 upon microtubule attachment.

Mps1 is also important for kinetochore-microtubule attachment control, and recent work
indicates that KNL1 is an important substrate to recruit Bub1, which contributes to the
centromeric localization of Aurora B. Does Mps1 then regulate kinetochore-microtubule
attachment through Aurora B localization? Perplexingly, this is not the case: Mps1 is not
required for Aurora B localization at the centromere (Jelluma, et al. 2008; Maciejowski, et
al. 2010; Maure, et al. 2007; Vigneron, et al. 2004). Although the presence of Aurora B in
the absence of the Mps1-Bub1 pathway may be explained by the redundant function of the
Haspin pathway, it does not explain why Mps1 inhibition leads to chromosome
missegregation. It is likely that Mps1 has additional substrates, such as Borealin, CENP-E
and BubR1 (Espeut, et al. 2008; Huang, et al. 2008; Jelluma, et al. 2008) through which it
regulates kinetochore-microtubule attachment. More interestingly, the lack of clear impacts
of Mps1 inhibition on Aurora B localization begs the question of how the strength/
importance of Mps1’s regulation of Aurora B is determined within the complex feedback
loop of the kinase network.

SAC regulation
Identification of KNL1 as a critical Mps1-dependent phosphorylation for Bub1/BubR1
recruitment and SAC activation was a landmark discovery (London, et al. 2012; Shepperd,
et al. 2012; Yamagishi, et al. 2012). However, this phosphorylation is insufficient to recruit
Mad1-Mad2 and to activate the SAC, indicating that there are other phospho-dependent
mechanisms regulating SAC activation. In addition to their roles in kinetochore recruitment
of proteins important for SAC activation, Aurora B and Mps1 support the SAC downstream
of Mad1-Mad2 recruitment at the kinetochore (Maldonado and Kapoor 2011). Establishing
the Aurora B- and Mps1-dependent phosphorylation sites required for SAC activation and
maintenance will be necessary to understand how dephosphorylation of these sites is
coupled to kinetochore-microtubule attachment status.

Prolonged mitotic arrest caused by microtubule poisons in human cells leads to various
fates, such as apoptosis during mitosis, and mitotic escape, which is sometime followed by
apoptosis in interphase (Gascoigne and Taylor 2008). These differences are linked to the
level of sustained cyclin B during mitotic arrest. Although the cancer cells studied in that
work contain “intact” SAC activity, it is possible that the quality of the SAC is
compromised. This variation can be due to subtle difference in the amount of SAC
regulators at the kinetochore, as seen in the case of Mps1 (Maciejowski, et al. 2010;
Salimian, et al. 2011). Thus, identifying the proteins whose kinetochore levels determine
sensitivity to the effects of microtubule poisons may help predict the effectiveness of these
drugs during chemotherapy.
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Quantifying phosphorylation levels on the kinetochore
We have just begun accumulating knowledge of the phosphorylation sites responsible for
kinetochore-microtubule attachment and SAC regulation. Quantitative analysis of these
phosphorylation events has been very limited, despite its necessity for understanding how
the phospho-switch works at the kinetochore. The current difficulty in quantitative
characterization of kinetochore phosphorylation is due to technical limitations. Most current
studies rely on indirect immunofluorescence using phospho-specific antibodies, but absolute
quantitation by this method is difficult. Specifically, since the dynamic range and linearity of
immunofluorescence signals are usually not addressed, it has been hard to validate the
significance of observed differences in published data. Recent FRET-based phospho-sensor
techniques have provided more quantitative data (Liu, et al. 2009), but the dynamic range of
these tools is a limitation and the method relies on artificial marker substrates. Thus,
although this method has been useful to detect the spatial distribution of phosphorylation
and dephosphorylation reactions by diffuse enzymes, it may not reflect reactions mediated
by specific interactions governed by complex substrate recognition modules of enzymes.
These technical issues must be resolved to obtain more quantitatively useful data amenable
to simulation analysis. Quantitative analysis of isolated kinetochores from budding yeast or
in Xenopus egg extracts (Akiyoshi, et al. 2010; Guse, et al. 2011) may help tackle this
problem.

There are many hurdles to overcome before answering the question of how kinetochore-
microtubule attachment status can be sensed and transduced into signaling pathways that
control dynamic microtubule attachments and the SAC. However, with the list of critical
enzymes and substrate complexes likely to be near complete, a growing list of critical
phosphorylation sites being characterized, and the combined power of innovative in vivo
imaging and new biochemical approaches currently being developed in diverse systems, we
have powerful tools to dissect this complex, medically important biological mechanism.
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Figure 1. Schematic architecture of the vertebrate kinetochore
Kinetochore components are arranged to highlight the overall geometry of the kinetochore,
with more chromosome-proximal components considered inner and the microtubule-
proximal components considered outer.
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Figure 2. Phosphorylation sites at the kinetochore
A comparison of known phosphorylations present at the kinetochore of a chromosome
before (top panel) and after (bottom panel) achieving bioriented microtubule attachments.
The unattached kinetochore is generating the spindle assembly checkpoint (SAC) cell cycle
arrest via formation of the mitotic checkpoint complex (MCC). The color and letter within
each phosphorylation (star shapes) correspond to the kinase responsible (see legend, top).
Question marks in the lower panel denote phosphorylations that may be retained upon
borientation but for which more information is required.
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Figure 3. Lateral attachments
Diagram of the kinetochore components important for establishing initial, lateral
attachments to microtubules early in prometaphase. The dual roles of Aurora B dependent
phosphorylation in recruiting the microtubule-interacting motor proteins dynein and CENP-
E to kinetochores and destabilizing the interactions between microtubules and the Ndc80
complex are shown.
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Figure 4. Phospho-regulation of kinetochore functions
Schematic illustrations of kinase and phosphatase signaling networks controlling
kinetochore function. Colored arrows and inhibition symbols show the activity of kinases
and phosphatases of the corresponding color. Large black arrows and inhibition symbols
denote the functional consequences and feedback loops generated by this phospho-signaling,
with small black arrows representing subprocesses within each signaling network.
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