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Transplantation is often the only viable treatment for pediatric patientswith end-stage liver disease.Makingwell-informeddecisions
onwhen to proceedwith transplantation requires accurate predictors of transplant survival.The standard Cox proportional hazards
(PH) model assumes that covariate effects are time-invariant on right-censored failure time; however, this assumption may not
always hold. Gray’s piecewise constant time-varying coefficients (PC-TVC) model offers greater flexibility to capture the temporal
changes of covariate effects without losing the mathematical simplicity of Cox PH model. In the present work, we examined the
Cox PH and Gray PC-TVC models on the posttransplant survival analysis of 288 pediatric liver transplant patients diagnosed
with cancer. We obtained potential predictors through univariable (𝑃 < 0.15) and multivariable models with forward selection
(𝑃 < 0.05) for the Cox PH andGray PC-TVCmodels, which coincide.While the Cox PHmodel provided reasonable average results
in estimating covariate effects on posttransplant survival, the Gray model using piecewise constant penalized splines showed more
details of how those effects change over time.

1. Introduction

Transplantation is often the only viable treatment for children
with end-stage liver disease [1], but the shortage of donor
livers means that not every child on the waiting list can
receive a transplant. Since 2002, prioritization on the waiting
list is determined by the model for end-stage liver disease
(MELD)/pediatric end-stage liver disease (PELD) severity
score, which allocates organs to the sickest individuals first
[2]. However, survival outcomes still vary, suggesting that
long-term survival is affected by factors other than illness
severity at time of transplant.

For example, posttransplant survival is particularly poor
for certain diagnoses such as primary liver malignan-
cies (cancer). Among children transplanted during the
MELD/PELD era, disease-specific Kaplan-Meier survival
plots indicate that transplant recipients with cancer had
significantly lower posttransplant survival rates than those
with other diseases (logrank test 𝑃 < 0.001).

We used this subgroup of transplant recipients to com-
pare two alternative methods for estimating posttransplant
survival and its significant covariates. Traditionally, survival
models have been developed usingCox proportionalHazards
(PH) models [3], but some diseases do not adhere to the
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basic assumption of proportional hazards, implying that the
covariate effects are not constant over time. In such cases, an
alternative survival model that accounts for varying covariate
effects must be used, and we chose Gray’s piecewise constant
time-varying coefficient (PC-TVC) model [4]. The objective
of the paper is to demonstrate that Gray PC-TVC model can
provide more flexibility in capturing the temporal dynamics
of covariate effects during posttransplant period.

2. Methods

2.1. OPTN Data. The organ procurement and transplanta-
tion network (OPTN) maintains national-level data on all
transplant candidates. We obtained a standard transplant
analysis and research (STAR) file and restricted the file to
76,233 adult and pediatric liver transplant candidates listed
since theMELD/PELD scoring systemwas first implemented
(02/27/2002 through 06/25/2010). We then removed adults
age of 18 years or older (𝑛 = 70,506). Of the remaining
candidates, we excluded 2,252 patients who never received
a transplant, who received a multiorgan transplant, or
whose transplantation date occurred before listing, leaving
a pediatric cohort of 3,471 liver transplant recipients for the
posttransplant patient survival analysis. We then selected 288
(8.3%) pediatric recipients from the cohort with a diagnosis
of cancer at time of transplant as the final cohort.

2.2. Covariates. The following 26 variables are included
in our study: recipient age, gender, blood type, African-
American ethnicity, or other; donor age, gender, blood
type, race/ethnicity, donor type (cadaveric, living); recipient-
donor blood type compatibility, transplant year, procurement
distance, “exceptional” transplant case (indicating medical
concerns that are not fully reflected in the candidate’s
MELD/PELD score), waiting time, laboratory values (albu-
min, bilirubin, INR, creatinine) at time of transplant, posi-
tive cytomegalovirus (CMV) test, transplant center location
(based on 11 geographic regions defined byUNOS), allocation
type, presence of ascites, split liver; presence of portal vein
thrombosis, on ventilator at time of transplant, and previous
abdominal surgery.

Among 288 children, one recipient had missing values in
recipient age, donor age, donor gender, donor type, transplant
year, and ventilator use; 18 recipients did not have serum
creatinine values (6.25%). Since there is no strong clinical
reason to believe that these missing values are related to
survival or to other covariates, we treated the missing type as
missing completely at random (MCAR) and used complete-
case analysis in our original paper. We later performed a sen-
sitivity analysis, treating missing type as missing at random
(MAR) and rerunning the multivariable Gray’s models based
on multiple imputed data (5 imputations were used).

Other potential covariates were excluded for myriad
reasons, including substantial proportion of missing values
(cold ischemia time, growth failure), collinearity (use of life
support at time of transplant), and lack of variation within
the cancer subgroup (encephalopathy, spontaneous bacterial
peritonitis, portal hypertensive bleeding).

2.3. Models. To assess the covariate effects on posttransplant
patient survival for the cancer cohort, we used two models in
our analysis: Cox PH model and Gray PC-TVC model. Cox
PH model provides the estimated average effects while Gray
PC-TVC model provides the estimated temporal effects for
the covariates of interest. Detailed specifications of these two
models are described below.

2.3.1. Cox Proportional Hazards Model. First, we used the
Cox PH model, a semiparametric model commonly used in
survival analysis. By assuming that the effect of a covariate is
multiplicative with respect to the hazard rate and is constant
over time, the model is of the form

ℎ (𝑡 | X) = ℎ0 (𝑡) exp (𝛽
X) , (1)

where ℎ
0
(𝑡) is an unspecified baseline hazard function at time

𝑡, X is a vector of covariates, and 𝛽 is the same dimensional
vector of unknown covariate coefficients.
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the Efron method [5] to adjudicate tied failure times. Note
that the model implies the property of proportional hazards,
which needs to be tested.

2.3.2. Gray Piecewise Constant Time-Varying Coefficients
Model. Gray PC-TVC model is an extension of the Cox PH
model. By using a penalized smoothing spline function, Gray
PC-TVC model can be used to examine the proportional
hazards assumption and to estimate time-varying covariate
effects for right-censored data. The model specifies the
hazards with the form

ℎ (𝑡 | X) = ℎ
0
(𝑡) exp (𝛽(𝑡)X) , (3)

where 𝛽
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this spline function represents the time-varying coefficient
of the 𝑗th covariate; 𝐵
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(𝑡), 𝑘 = 1, . . ., 𝐾 is a set of 𝐵-spline

basis functions; 𝛼
𝑗𝑘

is the corresponding basis coefficient.
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The𝐵-spline basis functions are determined by the number of
knots and their locations. Knot locations are usually chosen at
the times of failure andwith roughly equal amounts of failures
in between two knots. Under Gray PC-TVCmodel, the time-
varying coefficients are assumed to be constant in between
two knots; that is, 𝛽

𝑗
(𝑡) is constant for 𝑡 ∈ [𝜏

𝑘
, 𝜏
𝑘+1
) where 𝜏

𝑘

is the 𝑘th knot, 𝜏
1
= 0, and 𝜏

𝐾+1
= 𝑇 represents themaximum

observed time of failure.The right-continuous step functions
of time with jumps may occur at any internal knots [6].

To estimate the unknown parameters, a penalty function
is added to the log partial likelihood function to prevent
overfitting of the data. As for cubic splines, the penalty
function has the form
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function helps to control the smoothness of the fitted
curve through 𝜆

𝑗
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penalty applied. The larger the 𝜆
𝑗
, the smoother the curve.

The smoothing parameters are usually solved by specifying
degrees of freedom. Cubic spline functions tend to be
unstable in the right tail of distribution when right censoring
yields sparse failure times [4, 7]. In addition to cubic splines,
quadratic splines and piecewise constant spline functions
can also be applied. The piecewise constant function has the
penalty with the form
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The basis parameters 𝛼 are estimated by maximizing the
penalized log partial likelihood function
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where ℓ(𝛼) is the standard log partial likelihood of Cox
model. The penalty function shrinks the size of the jumps at
each internal knot in the step functions.

There are two hypotheses of interest: the hypothesis that
the 𝑗th covariate has no overall effect (𝐻

0
: 𝛼
𝑗𝑘

= 0 for all
knots 𝑘) and the hypothesis that the 𝑗th covariate satisfies
the condition of proportional hazards (𝐻

0
: 𝛼
𝑗𝑘
= 𝛼
𝑗1
where

𝛼
𝑗1
𝐵
𝑗1
is a linear term in the 𝑗th covariate coefficient).

There are several conventional methods to check the
proportional hazards assumption. For instance, we can create
time-covariate interactions and include them in the model
with other covariates. Alternatively, we can use graphicmeth-
ods such as checking the Schoenfeld residual plot. Gray PC-
TVC model offers a method of checking the PH assumption
by testing whether all piecewise constant coefficients are the
same throughout the follow-up time period. It is worth noting
that the order and knots of penalized spline functions can
be changed based on the characteristics of the data to suit
different conditions. After variable selection, a mixed effect
analysis can be accomplished by specifying time-independent

variables and time-varying variables. The advantage of Gray
PC-TVC model is its flexibility on estimating covariate
effects, because it can directly capture the temporal changes
of covariates when the assumption of proportional hazards is
not satisfied.

2.4. Statistical Analysis. The outcome is posttransplant sur-
vival, measured from time of transplantation to death. Recip-
ients who were retransplanted, truncated due to adminis-
trative censoring, or lost to followup were subject to right
censoring in the analysis.

The selection of explanatory variables in predicting post-
transplant survival consists of two steps, univariable selection
andmultivariable selection. In the univariable selection, each
potential covariate specified in the list above was individually
fitted using Gray PC-TVC model with 4 degrees of freedom.
The number of degrees of freedom used was suggested
by Gray [4]. Dummy variables were created at each level
of the categorical variables (recipient blood type, donor
race/ethnicity and blood type, allocation type, and transplant
center location) except for the reference category. Variables
with significance at the level of 0.15 were then fitted into
the multivariable Gray PC-TVC model to obtain final set of
predictors using the forward selection with entry 𝑃 value
less than or equal to 0.05. We used the same final set of
covariates to refit the data using Cox PH model. All data
management and data analyses were implemented in SAS
version 9.2 (SAS Institute, Cary, NC, USA) and R version
2.10.0. The Gray PC-TVC models were fit using package
coxspline (http://cran.r-project.org/) in R.

3. Results

The descriptive statistics for the covariates considered in the
univariable models are presented in Table 1. These statistics
are shown for all transplant recipients (𝑛 = 288) and are
also broken down by patients who were alive (𝑛 = 237) and
those who died (𝑛 = 51) during the posttransplant follow-up
period.Median follow-up time of all recipients was 612.5 days
(1.68 years).

In the overall sample of 288 recipients, there were 11
recipients with blood type AB, only one of whom died. The
number of days of posttransplant survival and the vital status
for these 11 recipients are provided in Appendix A. Kaplan-
Meier survival estimates of the posttransplant survival time
between thosewith blood typeAB and thosewith other blood
types (Appendix A) show that recipients with other blood
types died faster compared to those with blood type AB. For
blood type AB group, the only jump on the survival function
occurred at follow-up day 616 when the recipient died after
two subjects were right-censored. The two survival curves
do not cross, and the recipients with blood type AB seem
to have higher overall survival than that of those with other
blood types, but the difference between the two curves is not
significant (logrank test 𝑃 = 0.336).

We also estimatedKaplan-Meier survival curves by donor
blood type (Appendix B) and found that survival curves

http://cran.r-project.org/
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Table 1: Characteristics of the covariates considered in the univariable models.

Characteristics All recipients (𝑁 = 288) Patient outcome
Alive (𝑁 = 237) Died (𝑁 = 51)

Recipient characteristics
Demographics

Age, median, mean ± SD (years)∗ 2.00, 4.36 ± 4.83 2.00, 4.12 ± 4.82 4.00, 5.51 ± 4.78
Gender, no. (%)

Female 121 (42.01) 98 (41.35) 23 (45.10)
Male 167 (57.99) 139 (58.65) 28 (54.90)

Race/ethnicity, no. (%)
Black 24 (8.33) 20 (8.44) 4 (7.84)
Nonblack 264 (91.67) 217 (91.55) 47 (92.16)

Medical/clinical covariates
Blood type, no. (%)

A 106 (36.81) 91 (38.40) 15 (29.41)
AB 11 (3.82) 10 (4.22) 1 (1.96)
B 38 (13.19) 32 (13.50) 6 (11.76)
O 133 (46.18) 104 (43.88) 29 (56.86)

On ventilator, no. (%)
Yes 16 (5.56) 10 (4.22) 6 (11.76)
No 271 (94.10) 226 (95.36) 45 (88.24)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)

Laboratory values, median, mean ± SD
Albumin (g/dL) 3.80, 3.66 ± 0.74 3.80, 3.70 ± 0.71 3.60, 3.48 ± 0.83
Bilirubin (mg/dL) 0.50, 2.06 ± 5.91 0.40, 1.63 ± 4.53 0.70, 4.11 ± 9.92
Serum creatinine (mg/dL)† 0.40, 0.45 ± 0.26 0.40, 0.42 ± 0.23 0.55, 0.59 ± 0.37
INR 1.10, 1.32 ± 0.87 1.10, 1.30 ± 0.91 1.20, 1.39 ± 0.64

Presence of ascites, no. (%)
Yes 38 (13.19) 27 (11.39) 11 (21.57)
No 166 (57.64) 139 (58.65) 27 (52.94)
Unknown 84 (29.17) 71 (29.96) 13 (25.49)

Presence of portal vein thrombosis, no. (%)
Yes 13 (4.51) 11 (4.64) 2 (3.92)
No 265 (92.01) 217 (91.56) 48 (94.12)
Unknown 10 (3.47) 9 (3.80) 1 (1.96)

Previous abdominal surgery, no. (%)
Yes 124 (43.06) 99 (41.77) 25 (49.02)
No 145 (50.35) 123 (51.90) 22 (43.14)
Unknown 19 (6.59) 15 (6.33) 4 (7.84)

Positive cytomegalovirus (CMV) test, no. (%)
Yes 81 (28.13) 60 (25.32) 21 (41.18)
No 207 (71.88) 177 (74.68) 30 (58.82)

Other characteristics
Donor type, no. (%)

Deceased 256 (88.89) 210 (88.61) 46 (90.20)
Living 31 (10.76) 26 (10.97) 5 (9.80)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)

Donor age, median, mean ± SD (years)‡ 14.00, 15.35 ± 14.53 12.00, 14.40 ± 14.07 17.00, 19.75 ± 15.92
Donor gender, no. (%)

Female 112 (38.89) 90 (37.97) 22 (43.14)
Male 175 (60.76) 146 (61.60) 29 (56.86)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)
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Table 1: Continued.

Characteristics All recipients (𝑁 = 288) Patient outcome
Alive (𝑁 = 237) Died (𝑁 = 51)

Donor race/ethnicity, no. (%)
White 152 (52.78) 129 (54.43) 23 (45.10)
Black 51 (17.71) 42 (17.72) 9 (17.65)
Hispanic 70 (24.31) 56 (23.63) 14 (27.47)
Asian 12 (4.17) 7 (2.95) 5 (9.80)
Other 3 (1.04) 3 (1.27) 0 (0.00)

Donor blood type, no. (%)
A 85 (29.51) 76 (32.07) 9 (17.65)
AB 2 (0.69) 0 (0.00) 2 (3.92)
B 21 (7.29) 18 (7.59) 3 (5.88)
O 179 (62.15) 142 (59.92) 37 (72.55)
Unknown 1 (0.35) 1 (0.42)

ABO compatible, no. (%)
Yes 283 (98.26) 233 (98.31) 50 (98.04)
No 4 (1.39) 3 (1.27) 1 (1.96)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)

Transplantation-related characteristics
Active exception at time of transplant, no. (%)

Yes 128 (44.44) 109 (45.99) 19 (37.25)
No 160 (55.56) 128 (54.01) 32 (62.75)
Unknown 0 (0.00) 0 (0.00) 0 (0.00)

Transplant year, no. (%)
2002 16 (5.56) 10 (4.22) 6 (11.76)
2003 18 (6.25) 15 (6.33) 3 (5.88)
2004 41 (14.24) 32 (13.50) 9 (17.65)
2005 41 (14.24) 32 (13.50) 9 (17.65)
2006 35 (12.15) 27 (11.39) 8 (15.69)
2007 33 (11.46) 26 (10.97) 7 (13.73)
2008 47 (16.32) 40 (16.88) 7 (13.73)
2009 32 (11.11) 32 (13.50) 0 (0.00)
2010 24 (8.33) 22 (9.28) 2 (3.92)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)

Center location (region), no. (%)
(1) CT, ME, MA, NH, RI 12 (4.17) 10 (4.22) 2 (3.92)
(2) DC, DE, MD, NJ, PA, WV 49 (17.01) 40 (16.88) 9 (17.65)
(3) AL, AR, FL, GA, LA, MS, PR 27 (9.38) 22 (9.28) 5 (9.80)
(4) OK, TX 20 (6.94) 15 (6.33) 5 (9.80)
(5) AZ, CA, NV, NM, UT 75 (26.04) 66 (27.85) 9 (17.65)
(6) AK, HI, ID, MT, OR, WA 8 (2.78) 6 (2.53) 2 (3.92)
(7) IL, MN, ND, SD, WI 25 (8.68) 18 (7.59) 7 (13.73)
(8) CO, IA, KS, MO, NE, WY 20 (6.94) 16 (6.75) 4 (7.842)
(9) NY, VT 14 (4.86) 12 (5.06) 2 (3.92)
(10) IN, MI, OH 27 (9.38) 23 (9.70) 4 (7.84)
(11) KY, NC, SC, TN, VA 11 (3.82) 9 (3.80) 2 (3.92)

Allocation type, no. (%)
Local 134 (46.53) 106 (44.73) 28 (54.90)
Regional 106 (36.81) 87 (36.71) 19 (37.25)
Other 47 (16.32) 43 (18.14) 4 (7.84)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)
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Table 1: Continued.

Characteristics All recipients (𝑁 = 288) Patient outcome
Alive (𝑁 = 237) Died (𝑁 = 51)

Procurement distance, median, mean ± SD (miles)§ 156.00, 300.36 ± 411.36 169.00, 313.10 ± 421.48 89.00, 241.43 ± 358.70
Partial or split donor organ, no. (%)

Partial or split 109 (37.85) 88 (37.13) 21 (41.18)
Whole 178 (61.81) 148 (62.45) 30 (58.82)
Unknown 1 (0.35) 1 (0.42) 0 (0.00)

Waiting time, median, mean ± SD (days) 29.00, 45.35 ± 74.38 28.00, 48.00 ± 80.87 30.00, 33.04 ± 26.42
SD: standard deviation.
∗The age at time of transplant of one child (alive) was missing.
†Serum creatinine values were missing for 18 children: 15 alive and 3 dead.
‡The age of one donor was missing.
§Procurement distance values were missing for one child (alive).

Table 2: Estimated log hazard ratios for testing overall covariate effects and the test results of nonproportionality (nonprop) using Cox
proportional hazards (PH) model and Gray piecewise constant time-varying coefficients (PC-TVC) model.

Covariate Cox PH Gray PC-TVC
Log hazard ratio (95% CI) 𝑃 value 𝑃 value Nonprop∗𝑃 value

Donor blood type
A −0.711 (−1.484, 0.062) 0.071 0.163 0.498
B −0.343 (−1.534, 0.847) 0.572 0.679 0.480
AB 0.482 (−1.208, 2.171) 0.576 0.001 0.001

Serum creatinine (mg/dL) 1.635 (0.695, 2.575) 0.001 0.001 0.527
On ventilator 0.828 (−0.166, 1.821) 0.102 0.002 0.012
Positive CMV 0.686 (0.096, 1.275) 0.023 0.017 0.163
Female gender −0.143 (−0.731, 0.445) 0.633 0.045 0.007
∗Null hypothesis: the proportional hazards (PH) assumption is not violated.

for the four blood types (A, B, AB, and O) were not par-
allel. The Tarone-Ware test indicates a significant difference
of posttransplant survival rates among donor blood types
(Tarone-Ware Chi-square statistic = 8.0053 with 3 degrees of
freedom,𝑃 = 0.046), with donor blood type O having a lower
posttransplant survival rate than other donor blood types.

Similarly, only 16 recipients used ventilator at the time
of transplant and 6 (37.5%) of them died. Given the details
in Appendix C, the overall survival for recipients who used
ventilator at time of transplant is lower than those who did
not (Tarone-Ware test 𝑃 = 0.001). This indicates that the
recipients who used ventilator are transplanted with a worse
health condition than those who did not and are unlikely to
survive for a long period.

After fitting univariable Gray PC-TVCmodels, covariates
that were statistically significant at the level of 0.15 included
recipient characteristics (age, female gender, race (recoded as
black versus non-black); laboratory values (albumin, biliru-
bin, creatinine) at time of transplant; positive CMV; use of
a ventilator at time of transplant; presence of ascites at trans-
plant); donor characteristics (age, blood type, race/ethnicity);
and recipient-donor blood type compatibility.

Based on these results from the univariable models,
significant covariates were then included in the forward
selection procedure with entry 𝑃-value of 0.05 to obtain

the final multivariable Gray PC-TVC model. Starting with
the most significant, explanatory variables were sequentially
added to the model until none of the remaining variables
was significant (𝑃 < 0.05). The final multivariable model
included 5 covariates: donor blood type, recipient creatinine
at time of transplant, use of a ventilator at time of transplant,
positive CMV, and recipient gender.We checked the two-way
interactions for the final multivariable models, but none of
the interaction terms was significant at level of 0.05. We then
performed a Cox PH model with these 5 variables.

Table 2 summarizes the estimation and hypothesis testing
results for both of these models. Beginning with the Cox PH
model, the table presents the estimated average coefficients
(log hazard ratio) with 95% confidence intervals, as well
as 𝑃-values of testing the significance of the average effect.
Based on these results, only creatinine (𝑃 = 0.001) and
positive CMV (𝑃 = 0.023) had significant average effects
on posttransplant survival. Recipients with higher creatinine
levels had increased risk of death; likewise, recipients with
positive CMV had higher risks of death than those testing
negative.

The remainder of the table presents results from the Gray
PC-TVCmodel, with𝑃-values indicating (1) the overall effect
of the covariate on posttransplant survival and (2) whether
the covariate violates the proportional hazards assumption.
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Table 3: Estimated time-varying and time-invariant coefficients and 𝑃 values for testing overall covariate effects and proportional hazards.

Covariate Log hazard ratio Overall 𝑃 value Nonprop 𝑃 value
Min Max

Donor blood type
A −1.081 −0.333 0.140 0.481
B −0.900 0.208 0.700 0.510
AB −2.741 5.370 0.001 0.001

Serum creatinine
(mg/dL) 1.622 <0.001

On ventilator −0.844 2.364 0.002 0.011
Positive CMV 0.697 0.010
Female gender −0.738 1.013 0.040 0.006

As noted above, all five variables significantly affect survival
and were therefore retained in the final model. In addi-
tion, the 𝑃-values associated with the proportional hazards
assumptions indicated that donor blood type AB, use of
a ventilator, and female gender violate the proportional haz-
ards assumption, indicating that the effects are not constant
over time. Therefore Cox PH model may not be sufficient to
capture the temporal changes of these covariate effects.

Figure 1 depicts changes in the covariate effects over
time based on the final multivariable Gray PC-TVC model.
The covariate effects in black solid lines are from Gray PC-
TVC model with 4 degrees of freedom for each variable,
with pointwise 95% confidence intervals shaded in grey. For
comparison, the estimated average covariate effects fromCox
PH model are shown in red.

Themost notable effect is that recipients who received liv-
ers from donors of blood type AB tend to have lower risks of
death in the first two years, but then experience significantly
higher risks afterwards. The Gray PC-TVCmodel shows that
donor blood type AB has a strong nonproportional effect on
posttransplant survival for recipients diagnosed with cancer,
a finding that cannot be observed at all in the Cox PH
model. (It is unclear why recipients who received livers from
donors with AB blood type had better survival. The most
obvious hypothesis is that this finding pointed to the benefit
of exact matches between recipient and donor blood types.
Unfortunately, the data do not support this hypothesis).

Ventilator use at time of transplant results in a strong
decreasing trend. In the short term, patients who required
ventilator support at time of transplant are sicker and have
higher risks of death than thosewho do not, but the difference
diminishes over time and these patients have better long-term
survival. In contrast, results of the Cox PH model suggest
that ventilator use is not significant with average hazard
ratio of 2.3 (e0.83). Similarly, female recipients tend to have
higher risk at the beginning, but better survival on the long
run than male recipients. The effect of gender is marginally
significant in the Gray PC-TVC model, but trivial in the
Cox PH model. For other covariates like creatinine at time
of transplant and positive CMV, Cox and Gray both report
significance, but none of the effects varies over time. For
these variables, as the proportional hazards assumption is not

violated, it may be reasonable to use the Cox PH model. It is
therefore of interest to consider an additional model allowing
for both time-varying and time-invariant covariate effects.
This was accomplished by a Gray PC-TVCmodel combining
both linear terms and spline functions of covariates. Based
on the previous results, we fit donor blood type, recipient
gender, and ventilator usage as spline-based time-varying
effect functions and positive CMV and serum creatinine as
linear fixed effect covariates.The results are shown in Table 3.
Compared with the results of our previous fitted Gray model
(all covariate effects are time-varying), the estimated time-
varying effects of covariates in the additional model are very
similar. In addition, the estimated time-invariant effects of
covariates also show similar magnitude as the coefficients
obtained from the previous Cox model (all covariates are
time-invariant).

Finally, we reran the multivariable Gray model with the
same final set of covariates as in complete-case analysis based
on the multiple imputed data. The results are shown in
Table 4. Compared to the results in Table 2 (assumedMCAR),
the magnitude and functional trend of estimated coefficients
in Table 4 do not change noticeably. However, the effect of
recipient gender becomes nonsignificant from 𝑃 = 0.045

to 0.084. Figure 2 depicts the estimated covariate effects for
gender when missing data was treated as MCAR Figure 2(a)
and treated as MAR, Figure 2(b). Although 𝑃-value changes,
the difference in patterns of the time-varying effects is not
detectable.

4. Discussion

Liver transplant survival analyses often apply standard Cox
PHmodel for estimation. In the present paper, we applied the
Gray penalized splinemethod as an alternative to the Cox PH
model to determine the important predictors and estimate
their time-varying effects. The time-invariant effects were
estimated as well using standard Cox PH model on the same
set of predictors. We included only the pediatric patients
with a diagnosis of cancer (primary liver malignancy) from
the UNOS data. The results were reported graphically and
numerically, showing key differences between two models.
Donor AB blood type, ventilator use, and recipient gender
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Figure 1: Time-varying covariate effects (black solid lines) with 95% confidence intervals (shaded areas) are from the final Gray PC-TVC
model with 4 degrees of freedom for each variable. The constant covariate effects (red solid lines) are estimated from the Cox PH model.
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Table 4: Estimated coefficients and test 𝑃 values using multiple imputed data.

Covariate Cox PH Gray PC-TVC
Log hazard ratio (95% CI) 𝑃 value 𝑃 value Nonprop 𝑃 value

Donor blood type
A −0.608 (−1.341, 0.126) 0.104 0.234 0.547
B −0.387 (−1.577, 0.803) 0.524 0.694 0.533
AB 0.486 (−1.205, 2.176) 0.573 0.001 0.003

Serum creatinine (mg/dL) 1.698 (0.768, 2.626) <0.001 <0.001 0.468
On ventilator 0.842 (−0.149, 1.834) 0.096 0.003 0.016
Positive CMV 0.670 (0.098, 1.243) 0.022 0.014 0.134
Female gender −0.178 (−0.750, 0.394) 0.542 0.084 0.018
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Figure 2: Time-varying covariate effects of recipient gender from the data with missing values (a) and with multiple imputation (b). The
constant covariate effects (red solid lines) are estimated from each Cox PH model.

are significant in Gray PC-TVC model but not significant
in Cox PH model. Furthermore, their effects vary over time
after transplant. Although Cox PH model provided average
estimates of coefficients, it failed to capture changes during
observation period.

While the multiplicative hazards assumption holds with-
out specifying the parametric form of baseline hazard func-
tion, Gray PC-TVC model has greater flexibility when the
regression covariate effects change over time. It also can be
used to check the proportional hazards assumption for the
data. Many methods can be used to check the adequacy
of a Cox model; however, no methods published can be
used to check the overall goodness-of-fit for a Gray PC-
TVC model. Based on the method proposed by Kang [8],
the graphical check of goodness-of-fit for the final Gray PC-
TVC model and Cox PH model using pseudoresiduals is
presented in Figures 3 and 4, respectively. In the figures,
the pseudoresiduals were calculated and plotted along with

the lowess smoothed curves against the estimated survival
rates at each of the nine preselected time points. Since the
lowess smoothed curves of pseudoresiduals in Figure 3 stay
around zero and are stable at most of time points (except
time points 2 and 3) without any significant departure or
tendency, we can conclude that the final multivariable Gray
model shows a good fit in estimating posttransplant survival
function. In Figure 4, however, the pseudoresiduals clearly
illustrate departure from zero and some tendency. Therefore,
final multivariable Cox model shows lack of fit to the data.

The main limitation of this analysis is the small sample
size, which limits the generalizability of our findings and the
set of covariates that could be considered. To examine the
stability of the results given the uneven distribution of donor
blood type and small sample sizes, we conducted sensitivity
analysis.Wefirst removed two observationswith donor blood
type AB and refit the final multivariable Gray PC-TVC and
Cox PHmodels.The results showed that after removing these
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Figure 3: Goodness-of-fit test for Gray PC-TVC model using pseudoresiduals (dotted points) and lowess smoothed curves (red solid lines)
against the estimated survival rates at each of the preselected time points.
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Figure 4: Goodness-of-fit test for Cox PHmodel using pseudoresiduals (dotted points) and lowess smoothed curves (red solid lines) against
the estimated survival rates at each of the preselected time points.
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Figure 5: Kaplan-Meier survival estimates of the posttransplant
survival time between recipients with blood type AB and those with
other blood types (logrankChi-square statistic = 0.9264,𝑃 = 0.336).

two observations, recipient gender becomes nonsignificant
from𝑃 = 0.045 to𝑃 = 0.057. After checking the time-varying
pattern of the recipient gender effects (Appendix D), the
effects are very similar and do not show noticeable difference.

However, transplant recipients with liver cancer were
an appropriate cohort for meeting the primary goal of this
paper, comparing Cox PH and Gray PC-TVC models and
demonstrating the usefulness of more flexible approaches
for estimating survival in some diseases. As the data here
illustrated, using a Cox PH model in diseases where the
proportional hazards assumptions are not satisfied can
potentially lead to incorrect specifications and ignore the
effect of important covariates.

5. Conclusions

While Cox PH model provided reasonable average results in
estimating covariate effects on posttransplant survival, Gray
model with piecewise constant penalized splines showed
more details of how the effects change over time. An example
of this is the effect of being on a ventilator at time of
transplant. Requiring ventilator support indicates significant
acute illness, often not directly related to liver disease. It
therefore makes sense that the effect of being on a ventilator
might dramatically affect early postoperative mortality but
that the effect would decline over time as the reason for
ventilator support was treated. Because the Cox PH model
must average these effects to be constant over time, the
higher early mortality “cancels” the lower later mortality and
the effect of that variable is not significant in a Cox PH
model.
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Figure 6: Kaplan-Meier survival estimates of the posttransplant
survival by donor blood type (Tarone-Ware Chi-square statistic =
8.0053, 𝑃 = 0.046).
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Figure 7: Kaplan-Meier survival estimates of the posttransplant
survival time between recipients who used ventilator at time of
transplant and those without using ventilator (Tarone-Ware Chi-
square statistic = 11.4723, 𝑃 = 0.001).

Choosing the optimal time to perform transplantation
is an essential way to improve patient survival. The time-
varying coefficients model is more flexible than the tradi-
tional Cox PHmodel to estimate temporal changes that influ-
ence timing decisions and predictions about posttransplant
survival.
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Table 5: Numbers of days of posttransplant survival for the 11 recipients with blood type AB.

Survival time 616 1124 387 968 726 1724 1600 1266 1092 1773 72
Died 1 0 0 0 0 0 0 0 0 0 0

Table 6: Results of sensitivity analysis.

Covariate Gray model A∗ Gray model B∗∗

Overall 𝑃 value Nonprop 𝑃 value Overall 𝑃 value Nonprop 𝑃 value
Donor blood type

A 0.163 0.498 0.143 0.394
B 0.679 0.480 0.695 0.500
AB 0.001 0.001

Serum creatinine (mg/dL) 0.001 0.527 0.001 0.545
On ventilator 0.002 0.012 0.002 0.034
Positive CMV 0.017 0.163 0.020 0.210
Female gender 0.045 0.007 0.057 0.010
∗

Previous final multivariable Gray model.
∗∗Gray model with two observations removed.
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Figure 8

Appendices

A. The Posttransplant Survival Functions for
Recipients with Blood Type AB

See Table 5 and Figure 5.

B. The Posttransplant Survival Functions by
Donor Blood Type

See Figure 6.

C. The Posttransplant Survival
Functions for Ventilator Users and
Nonusers at Time of Transplant

See Figure 7.

D. Sensitivity Analysis for the Impact of
Extreme Distribution of Donor Blood Type
on Covariate Effects

See Table 6 and Figure 8.
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