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Abstract
The human body is colonized by a vast array of microbes, which form communities of bacteria,
viruses and microbial eukaryotes that are specific to each anatomical environment. Every
community must be studied as a whole because many organisms have never been cultured
independently, and this poses formidable challenges. The advent of next-generation DNA
sequencing has allowed more sophisticated analysis and sampling of these complex systems by
culture-independent methods. These methods are revealing differences in community structure
between anatomical sites, between individuals, and between healthy and diseased states, and are
transforming our view of human biology.

The microbes that exist in the human body are collectively known as the human microbiota.
This amazingly complex and poorly understood group of communities has an enormous
impact on humans. An increasing number of conditions are being examined for correlative
and causative associations with the microbiome — which, in this Review, is used to refer to
the microbiota and the habitat it colonizes (Box 1). Each one of the many microbial
communities has its own structure and ecosystem, depending on the body environment it
exists in. The fundamental goal of human microbiome research is to measure the structure
and dynamics of microbial communities, the relationships between their members, what
substances are produced and consumed, the interaction with the host, and differences
between healthy hosts and those with disease.

BOX 1

Terminology

• Biodiversity is a measure of the complexity of a community. It is affected by
the number of taxa (richness) and their range of abundance (evenness). High
biodiversity occurs when many taxa (high richness) are present at similar
abundances (an even distribution).

• Commensals are organisms that benefit from another organism but that have no
harm or benefit themselves. Microbes of the microbiome were thought to be
commensals that benefited from the human host but did no harm. Many of these
organisms provide benefits to the human host and so have a mutualistic
relationship.

• Contig is a stretch of contiguous sequence in a genome assembly.
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• Coverage is the number of times a genome or gene is sequenced. In a genome
sequenced to coverage, each nucleotide in the sequence appears, on average, in
100 reads.

• Genome assembly is the process of constructing a genome sequence from short
subsequences by sequencing many random fragments from a sheared genome.
The random short sequences are compared, and overlapping common sequences
are used to determine their orientation and order with respect to each other. A
consensus sequence is constructed from this layout. Usually there are gaps, but
when contigs can be arranged in the correct order and orientation, these longer
stretches are called scaffolds.

• Metagenomics was defined83 as a process for identifying genes specifically by
their function by cloning them directly from the environment and expressing
genes in a surrogate host84. Therefore, gene function was known even if the
sequence was not sufficient for functional inference, such as when it encoded a
protein of previously unknown function. This definition, also known as
functional metagenomics, is widely used. More recently, metagenomics refers to
general analyses of microbial communities by culture-independent methods,
which do not necessarily focus on function. The combined genomes of the
microbes in a community are thought of as the community metagenome.
Another type of metagenomic analysis focuses on the structure of these
aggregate genomes in a community.

• Microbiome in this Review refers to the microbiota and the habitat it colonizes
and is analogous to the term biome in ecology. Microbiome is also used to refer
to the collective genomes of the microbes — what is now the metagenome, and
may have originally been coined by Joshua Lederberg (cited by Hooper and
Gordon85). However, it is also used for the more ecologically consistent
meaning. A microbiome can be a specific body site, such as the gut microbiome,
but the human microbiome is often used to refer to the collection of
microbiomes of the human body.

• Mutualism is a type of symbiosis in which both organisms benefit. This is one
type of relationship seen in the human microbiome.

• Operational taxonomic unit in microbiome research is a group of organisms
with 16S ribosomal RNA gene sequences that show a certain level of identity.
This group is often used as a surrogate for a species when the 16S rRNA
sequences are at least 97% identical.

• Pathogenic microbe is one with the potential to cause disease.

• Read is the primary output of DNA sequencing, consisting of a short stretch of
DNA sequence that is produced from sequencing a region of a single DNA
fragment.

• Shotgun sequencing is the process of randomly breaking (often by shearing) a
long DNA molecule (for example, a complete chromosome) and then
sequencing the resultant DNA fragments, which each come from a different
location in the original long DNA molecule.

• Virome is the collection of viruses in the microbiota.

Despite an explosion in human-microbiome research, these communities are still the dark
matter of the body. The microbiome has been called another organ1–4 because of its
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products, its responsiveness to the environment and its integration with other systems.
Sometimes referred to as our second genome5, the genes of microbes that make up the
microbiome outnumber human genes by more than 100-fold, with over 3 million bacterial
genes in the gut alone6,7. These extensive microbial ecosystems are not limited to the human
body. Microbes and their communities dominate the environment and occupy a vast range of
niches. Environmental metagenomics was developed extensively before being applied to the
human body8,9, and methods from other disciplines have had a significant effect on human-
microbiome research. Defining complicated microbial ecosystems and developing tools to
probe their workings is an important research enterprise of twenty-first century
microbiology.

The complexity of microbial communities makes studying them challenging. There may be
hundreds of different species, and enumerating what organisms are present with standard
microbiological techniques is not possible because many organisms have never been grown
in culture and may require special, as yet unknown, growth conditions. In addition, the
abundance of some microbes can range over orders of magnitude, so deep sampling is
required to detect the less-abundant members. Culture-independent methods of taking a
microbial census began about 25 years ago and were based on targeted sequencing of 5S and
16S ribosomal RNA genes10, which differ for each species and are a convenient identifier.
As this became a tractable research area, next-generation sequencing (NGS) technologies
(Table 1) were developed and allowed more extensive analyses, both targeted 16S rRNA
gene sequencing and whole-genome shotgun sequencing of microbes in communities en
masse. The number of culture-independent metagenomic investigations of the human
microbiome has mushroomed, and it is one of the most studied areas of microbiology with
significant potential to benefit clinical practice. This culture-independent methodology is
broadly applied outside human-microbiome research and is expanding our knowledge of the
environment. This Review describes how NGS approaches are transforming human-
microbiome studies, and posing questions and challenges for the future.

Single organisms and microbial communities
In the past, research on microbial interactions with humans has focused on single pathogenic
organisms. Studies of communities of non-pathogenic microbes in the body were limited
because the organisms were thought to be benign, with minor effects on human health
compared with pathogens. Microbiome research has led to new interest in the communities
of non-pathogenic microbes that inhabit the human body, and the need to describe the
genomes of these organisms to understand the human microbiome has been recognized.

Every community of the microbiome has its own characteristics (Table 2). For the gut
community, for example, high biodiversity is associated with a healthy state and reduced
biodiversity occurs in patients with conditions such as Crohn’s disease11, whereas for tissues
of the vagina, a lower biodiversity exists in healthy individuals and a bloom of organisms
occurs in patients with vaginosis12. To understand why different sites have different
properties, the mechanisms that lead to the disruption of ecosystems and to disease, and
exceptions to generalities about a tissue, researchers require knowledge of the structure and
behaviour of microbial communities.

Microbial communities benefit the host by providing functions such as digestion of
nutrients13 or protection against infection14. Antibiotic treatment perturbs the
microbiome15,16 by reducing its size and altering its composition. This disturbance can lead
to infection17–19, and antibiotic-resistant organisms such as Clostridium difficile —
normally controlled by the microbiome — can overgrow and create problems20. More
complex community contributions also exist, such as interactions with host immune and
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inflammatory systems21,22 or production of metabolites involving hybrid pathways from
multiple organisms, including host–microbe pathways23. Understanding these phenomena
will ultimately allow the microbiome to be manipulated so that, for example, transplants of
microbial communities could treat C. difficile infections24,25.

Whether the microbial ecology of the human body can be simplified to the properties of
single organisms is unknown. Many organisms have never been cultured and may be
adapted to life in a community environment rather than a pure culture. For organisms for
which growth requirements are understood, there is a dependence on secreted products from
other community members. For example, secreted siderophores26 are small molecules that
help microbes to scavenge iron, which is a limiting factor for growth in the body. So even
the study of individual organisms can be dependent on studying the community.

Dissecting a microbiome
Analysis of community structure (Fig. 1) focuses on either targeted regions (such as the 16S
rRNA gene) or shotgun sequencing to catalogue the genes that are present. Additional
analysis involves sequencing genomes of individual organisms to produce a catalogue of
reference genomes27, and analysing RNA to describe the transcriptome and identify RNA
viruses. Non-genomic analyses include proteomic and metabolomic studies, but these are
not discussed here. Every sample should be well-annotated with clinical metadata, so that,
ultimately, the microbiome’s genetic and community structures can be correlated with the
individual’s phenotype.

Census of organisms
Modern metagenomic analyses of microbial communities were developed from culture-
independent methods for taking a census of organisms present in a community and their
abundances. Although DNA reassociation kinetics provides information on community
diversity and structure28, there is no accounting for organisms that may be tracked between
samples. Methods more useful for providing information on the entire structure often focus
on signature sequences that distinguish taxa (detected by hybridization to arrays of
diagnostic oligonucleotides29), various methods for fingerprinting polymerase chain reaction
(PCR) products (such as single-strand conformation polymorphisms or terminal restriction
fragment length polymorphisms) or DNA sequencing of targeted PCR products. Sequencing
of 16S rRNA genes is the main method of taking a community census because
fingerprinting methods do not adequately measure low-abundance organisms30.

16S rRNA differs for each bacterial species. A bacterial species is hard to define, but is
often taken as organisms with 16S rRNA gene sequences having at least 97% identity — an
operational taxonomic unit (OTU). A 16S rRNA gene sequence of about 1.5 kilobases has
nine short hypervariable regions that distinguish bacterial taxa; the sequences of one or more
of these regions are targeted in a community census.

Before the introduction of NGS methods, the prevailing approach was to clone full-length
16S rRNA genes after PCR with primers that would amplify genes from a wide range of
organisms. Cloned 16S rRNA genes were sequenced by the Sanger method, which required
two or three reads to cover the entire gene. Accuracy was crucial because sequencing errors
led to misclassification. The cost and effort required for the Sanger method limited the depth
of sampling, and studies often produced about 100 sequences per specimen. This method
identified the dominant organisms in a community, but analysis of less abundant organisms
was limited.

Weinstock Page 4

Nature. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Introducing NGS to 16S rRNA gene analysis led to marked improvements in cost and depth
of sampling. The Roche–454 platform has dominated microbial community analysis31. As
the read length for 454 pyrosequencing is about 400 bases, only a portion of the 16S rRNA
gene can be sampled, and many different studies have targeted between one and three of the
hypervariable regions, with different hypervariable regions targeted in different studies.
Using a portion of the 16S rRNA gene led to a loss of sensitivity (some taxa cannot be
reliably defined at the species level, although high confidence identification of higher
taxonomic ranks is possible), nevertheless gains in depth of sampling and cost savings
outweigh this caveat. The US Human Microbiome Project (HMP)32 has sequenced more
than 10,000 specimens from healthy adults on the 454 platform by targeting V3 to V5
regions in the 16S rRNA gene and producing, on average, 7,000 sequences per specimen33,
which is a vast expansion on the Sanger method of sequencing analysis. The results of the
HMP, which sampled 18 body sites, provide an in-depth definition of the human
microbiome. Another study16 that focused on the effects of the antibiotic ciprofloxacin
reported the ‘rare biosphere’ in the gut. This study documented perturbation of taxa and
recovery from antibiotic treatment, as well as minor constituents that did not recover after
antibiotic treatment. Such analyses will be important in identifying individuals who are at
risk of side effects from antibiotic treatment, for example overgrowth of pathogens such as
C. difficile or life-threatening antibiotic-associated diarrhoea.

When using 16S rRNA gene sequencing to compare individuals it is not necessary to know
which organisms are present, only whether the spectra of 16S rRNA gene sequences are
similar and the degree of difference between samples. Projects that compare healthy cohorts
and those with disease to determine whether there is a difference in the microbiome, or
examine the effects of diet, antibiotic treatment or environmental factors on the microbiome,
all focus on detecting differences in communities, rather than identifying actual taxa. A loss
of sensitivity for organism identification can be tolerated, and NGS allows cost-effective
deep sampling of large cohorts, which is needed to reach statistically significant
conclusions. The Illumina sequencing platform has been applied to metagenomics
projects34–36, but because this sequencing platform currently produces reads of 100 bases
(HiSeq system) to 150 bases (MiSeq system), only a single hypervariable region can be
sequenced. However, this further loss of sensitivity does not preclude the use of the Illumina
platform for the comparative projects already described in this Review. An early application
of this platform was its use in a study of vaginal microbiomes in patients with HIV, for
which comparisons of patients with conditions such as vaginosis before and after antibiotic
therapy were examined37. As a result of the exceptional increases in numbers of reads and
the lower cost associated with the Illumina platform, it is becoming more widely used for
16S rRNA gene-sequence profiling and continues the microbiome-analysis trend of deeper
sampling at lower costs.

Shotgun sequencing for cataloguing organisms
Targeted sequencing is a powerful tool for assessing the organisms that are present in
microbial communities, but it is limited in terms of the functional and genetic information
produced. Organisms for which the genome sequences are known (currently there are
several thousand sequenced bacterial genomes) can be used to infer the genes and functional
capabilities of the community (Fig. 1). However, many organisms have no reference
sequence. Furthermore, a reference sequence does not completely describe the genes that are
contributed by an organism. There is considerable variation in the genomes between strains
of the same species. Two strains of Escherichia coli, O157:H7 and K-12, both have 16S
rRNA gene sequences of E. coli, but differ in hundreds of genes. There are limits to what
can be learned about the genetic content of communities from 16S rRNA gene sequences
alone.
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Moving beyond this level of functional inference requires a gene-based census. This
catalogue of genes can be provided by shotgun sequencing of DNA that has been extracted
from the community as a whole and samples the mixture of genomes that make up the
metagenome (Fig. 1). In a community in excess of hundreds of species with varying
abundance, deep sequencing is needed to sample minor constituents that are not necessarily
unimportant. The bacterial concentration in the gut can be 1011 cells ml−1 (refs. 38, 39), so
for an organism that is present at a concentration of 1 per 106 there are 105 cells ml−1, which
is sufficient for the organism’s products, such as metabolites and toxins, to have an effect on
the community and the host.

Illumina sequencing of faecal samples produced 4 gigabases per sample and 10 Gb per
sample in the Metagenomics of the Human Intestinal Tract (MetaHIT)6 and HMP33 projects,
respectively, which corresponded to tens of millions of reads per sample. At this depth of
sequencing, the genomes of minor constituents such as E. coli (with an abundance of about
1% or lower) are sampled almost completely, and organisms with an even lower abundance
have some of their genome represented. This extraordinary sampling of complex microbial
communities is made possible by producing large amounts of data and by the low cost of
NGS methods.

Shotgun sequence data, in addition to 16S rRNA gene analysis, provide information on the
organisms that make up communities. Extracting 16S rRNA gene sequences from shotgun
reads to determine the organisms present is possible; however, targeted 16S rRNA gene
sequencing tends to introduce biases (owing to the broad-range PCR used to amplify 16S
rRNA gene sequences or the choice of region within the 16S rRNA gene), which shotgun
sequencing does not. Shotgun sequencing is less sensitive than targeted rRNA sequencing
because a small fraction of the sequences are from 16S rRNA genes. Another approach is to
align shotgun sequences to bacterial reference genomes33,40,41, allowing the relative
abundance of species to be determined on the basis of the number of reads that align to each
reference genome (also useful for the comparative studies already described). The MetaHIT
project has used this approach to classify individuals into different groups, called
enterotypes, on the basis of the community structure in their faecal samples40. The same
enterotypes have been found in 16S rRNA gene-based analysis42. The vaginal microbiome
has also been classified into five groups43. These observations suggest the human
microbiome may exist in distinct states in different people, although correlation with
environmental, genetic or health status is not yet clear. Stratifying future studies depending
on which community class an individual belongs to may be important for identifying
correlations with phenotypic data.

The need for reference genome sequences is clear both to infer genetic content of organisms
identified by 16S rRNA genes and to identify sources of shotgun reads by aligning to
reference genomes, and so determining organismal content of communities from shotgun
data. NGS techniques have reduced the cost of bacterial sequences to less than US$1,000
per genome and led to an increase in the production of ‘complete’ genome sequences.
Current methodology relies mainly on Illumina shotgun sequencing and a variety of
methods to assemble the reads into a genome. The product is not a true complete genome,
but a high-quality draft that covers almost all of the genome and results in a high-quality
base sequence27. Programmes such as the HMP32,44 and the Genomic Encyclopedia of
Bacteria and Archaea (GEBA)45 are producing reference genomes by the thousands.

Although bacteria are the main components of the human microbiome, eukaryotic microbes
and viruses (both human viruses and bacteriophages) are also present (Table 2). The study of
eukaryotic microbes is not as advanced as that of bacteria46, but the organisms are identified
by signature sequences (such as fingerprinting and 18S rRNA) and shotgun sequencing
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analogous to bacteria. The number of reference genomes for eukaryotic microbes is smaller
than that for bacteria, and progress will depend on addressing this shortfall.

By contrast, considerable effort is being given to characterizing the genomes of human
viruses47 and bacteriophages48, known as the virome (Box 1). This work is based on
shotgun sequencing (Fig. 1), although oligonucleotides microarrays for virus detection are
also used49,50. Viral sequences can be detected in shotgun data from different body sites,
and viruses can also be enriched by processing samples before DNA extraction51. Virome
analysis by shotgun sequencing of microbial communities (discussed later) has led to the
identification of human viruses52–54, as well as the detection of known viruses in healthy
subjects and diseases of unknown aetiology55. Likewise, bacteriophages are found to be
highly diverse at different body sites56–58, with differences between individuals as a result
of diet59 or disease states60,61.

Sequencing for gene catalogues and functional inference
Metagenomic shotgun data also sample community gene content, which is useful to define
community capabilities and identify particular members. Deep sequencing, such as that used
in the MetaHIT and the HMP, broadly samples the genomes of even minor constituents,
facilitating the identification of genes present within a given community (Fig. 1). By using
the sequence reads themselves, or by first assembling them into contigs (Box 1), sequence
data can be compared with databases such as the National Institutes of Health’s GenBank to
identify which genes are present. De novo prediction of genes from metagenomic data is
also possible33, which provides motifs for functional inference even if the sequence does not
find a match in a database. Finally, alignment of reads or contigs to reference genomes
identifies which organisms are present, along with their known gene content. These methods
convert metagenomic sequence data into catalogues of genes that can be further analysed.

Gene catalogues can be compared with databases such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG)62, which sorts gene products into pathways and processes. Such
analyses provides lists of pathways, identify which pathway genes are in the community and
quantify the abundances of genes and pathways63. Comparing gene catalogues to specialized
metabolic databases, such as the Carbohydrate-Active Enzymes database64, is also useful.
Carbohydrate-degrading capabilities of communities differ between body sites, suggesting
the carbohydrate spectrum of each body site has determined which organisms and pathways
are present65.

In addition to pathway analysis, determining the presence and abundance of genes, such as
antibiotic-resistance genes or virulence factors, in a community is possible using similar
methods to those already described, and can shed light on pathogen burden in an individual
and consequences of antibiotic treatment. The importance of functional analyses cannot be
overemphasized, and functional properties of communities are thought to be more important
than their taxonomic composition66.

Computational tools and strategies
Metagenomic data are a rich source of information for the sequencing and analysis methods
already discussed67,68. The data analysis workflow has three phases. In the first phase,
primary data are processed and filtered depending on the application. For 16S rRNA gene
sequencing, the quality of analysis is important so that organisms are not misclassified.
Initial processing addresses read quality, chimaerism (a read formed from different 16S
rRNA genes), read length after removing low-quality bases and related issues69–73. For
shotgun sequence data6,33 — in addition to sequence quality — artefacts such as duplicate
reads must also be addressed, as well as computationally removing contamination from
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human sequences. Removal of human and bacterial sequences is important in read
processing for virome analysis47,55 (Fig. 1).

Following production of processed reads, the second phase involves generating various
derivative data sets. For 16S rRNA gene analysis, tables of taxa and abundance are produced
by comparisons with 16S rRNA sequence databases or by using software packages to cluster
the reads into OTUs74,75. Comparing shotgun reads to gene databases, such as GenBank or
KEGG, by using the Basic Local Alignment Search Tool (BLAST), for example, produces
lists of genes and the number of matched reads7,33,63. Alignment of reads to reference
genomes produces tables of breadth and depth of coverage, by reads of each genome41. In
each of these data sets, there is more biological information to be gleaned and added through
further analysis. Not all reads match sequences in databases because not all organisms have
a reference genome sequenced. In addition, reads may match genes whose function has not
been elucidated. These sequences of unknown origin or function can be a sizeable fraction
and the effect of this uninformative portion of data on analyses and conclusions is not clear.

The third phase of analysis uses these derivative data to produce trees or other
representations of the similarity of communities, abundance curves, biodiversity plots, and
other ecological and statistical descriptors of community structure74,75 (Fig. 1). A list of hits
from BLAST is used to build metabolic pathways for reconstruction of community
capabilities63. Alignments to reference genomes are further analysed for variants and
population genetics of communities. Computational analysis can also be used to determine
which organisms co-occur or rarely co-occur as evidence for symbiosis or competition,
respectively, or to follow the dynamics of community structure in longitudinal time series76.

Some analyses pose significant computational challenges. Comparisons to gene databases at
the protein level are particularly demanding because shotgun sequences must be translated
into polypeptides in all six reading frames, and each must be compared with a gene database
represented at the protein level. Using conventional BLASTx programs for this comparison
in large data sets, such as the HMP, could take decades, so supercomputers, accelerated
BLAST programs or both must be used33. A lack of efficient software and large enough
computer clusters are often bottlenecks for metagenomic analysis, because sequencing and
data production are not limiting factors. Management of large data sets and computing
resources are receiving more attention, with cloud-computing services seeming to be a
viable alternative77.

Future directions and challenges
The rapid rise in metagenomic studies has solved many problems but, as the field has grown,
other questions have been raised. Existing methodology is becoming more sophisticated, and
sequencing technology is making exponential advances (Table 1). The Illumina platform
introduced instruments that were more appropriate for sequencing smaller genomes, with
faster run times and longer read lengths, offering more flexibility for metagenomic
applications. The long read length of the PacBio platform has the potential to help
distinguish the reads from different organisms, which is a challenge for metagenomic
shotgun sequencing. The technology produced by Oxford Nanopore promises long reads and
short run times in a scalable system, and is therefore a good match for microbial
applications. Reducing the amount of DNA needed for shotgun sequencing will allow
communities in smaller anatomical regions, such as within the gastrointestinal tract, to be
studied separately rather than together with other regions as is the case with the current
methodology. Short run-time instruments and reductions in sample size will also hasten the
introduction of microbiome analysis to the clinic, where analyses of patient samples must be
quick and able to deal with limited amounts of material. Ultimately, the aim of human-
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microbiome research is its application as a diagnostic, therapeutic and preventive tool in the
clinic.

The main limitation of using shotgun data is the large number of organisms that have not
been cultured, let alone sequenced. These organisms are therefore under-represented in
databases, and their shotgun reads are anonymous. When community shotgun data are
assembled into genomes to obtain genome sequences for new organisms, contig sizes are
typically small as a result of lower organism abundance and the challenges associated with
assembly of a complex mixture. The long read lengths of PacBio and Oxford Nanopore
instruments should help with these challenges, as will the development of assembly
algorithms for metagenomic data. Expanding the catalogue of reference genomes by
producing reference sequences for individual uncultured organisms is an active area.
Methods that use cell sorting to isolate organisms, coupled with sequencing and assembly
techniques for single-cell DNA preparations, are producing new genome sequences78,79 and,
in high-throughput mode, could complement shotgun metagenomics for analysing
communities.

One problem associated with genomic data is that it does not address whether an organism is
alive or has succumbed to host defences or antibiotic treatment. However, the data can be
complemented with transcriptome analysis, or proteomic and metabolomic data sets, which
analyse gene expression and metabolic data that are more likely to be derived specifically
from living cells.

The simultaneous advances in human genetics and genomics offer opportunities for
combining studies of host genotype with microbiome phenotype. Methods for viewing the
microbiome as a quantitative trait and relating this to host genotype are being developed80.
Advances in host–microbiome studies are also coming from combining immunology and
human-microbiome research81,82. Moreover, continued development of statistical methods
in microbiome research, such as advances in power analysis, will aid experimental design
and future analysis.
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Figure 1. Data and analysis workflow for microbiome analysis
From a microbiota sample, DNA, RNA and protein can be extracted, and metadata and
strains of bacteria obtained. Data from DNA can be supplemented with proteome and
transcriptome analysis. During primary analysis, shotgun techniques can produce reads from
DNA, which are then aligned to reference genomes to identify variants and community
population genetics, assembled into contigs to make gene predictions or compared with
databases. Alternatively, targeted sequencing such as 16S rRNA gene sequencing can be
used to take a community census, and these data are then compared with databases to create
tables of taxa and abundance, or analysed with software programs to cluster the reads into
OTUs to create tables of abundance. The derivative data is used in secondary analysis for
ecological metrics or competition and symbiosis analysis. In addition, shotgun reads and
comparisons with reference genomes and databases can be used to build pathways and
reconstruct the capabilities of a community. The combination of these analyses will
contribute to understanding the differences within and between individuals.
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Table 2

Characteristics of bacteria, microbial eukaryotes and viruses in the human microbiome

Characteristic Bacteria Viruses Eukaryotic microbes

Genome size 0.5–10 megabases 1–1,000 kilobases 10–50 megabases

Number of taxa in the human
microbiome

At least thousands Unknown, but could be as many as
bacteria

Unknown, but may be fewer than
bacteria

Relative abundances Highly variable Highly variable Unknown

Targeted detection methods Sequencing of genes such as
5S and 16S rRNA

No universal method for genes, but
virus-specific polymerase chain
reaction assays for some

Sequencing of 18S rRNA gene
Spacer region in rRNA

Shotgun approach to analyses Alignment to reference
genomes or database
comparison

Database comparison Alignment to reference genomes
or database comparison

Subspecies or strain diversity Modest sequence variation
Horizontal gene transfer also
contributes

High sequence variation Unknown
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