
A MULTI-PATCH MALARIA MODEL WITH LOGISTIC GROWTH
POPULATIONS*

DAOZHOU GAO† and SHIGUI RUAN†

†Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
(dzgao@math.miami.edu, ruan@math.miami.edu)

Abstract
In this paper, we propose a multi-patch model to study the effects of population dispersal on the
spatial spread of malaria between patches. The basic reproduction number  is derived and it is
shown that the disease-free equilibrium is locally asymptotically stable if  and unstable if

. Bounds on the disease-free equilibrium and  are given. A sufficient condition for the
existence of an endemic equilibrium when  is obtained. For the two-patch submodel, the
dependence of  on the movement of exposed, infectious, and recovered humans between the
two patches is investigated. Numerical simulations indicate that travel can help the disease to
become endemic in both patches, even though the disease dies out in each isolated patch.
However, if travel rates are continuously increased, the disease may die out again in both patches.
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1. Introduction
Malaria is a parasitic vector-borne disease caused by the Plasmodium, which is transmitted
to people via the bites of infected female mosquitoes of the genus Anopheles. People with
malaria often experience fever, chills, and flu-like illness. If not treated promptly or
effectively, an infected individual may develop severe complications and die. Vaccines for
malaria are under development, with no approved vaccine yet available. About half of the
world's population is at risk of malaria. This leads to an estimated 225 million malaria cases
and nearly 781, 000 deaths worldwide in 2008, the vast majority are children under five in
Africa region (WHO [48]).

Following the pioneering work of Ross [35] and Macdonald [24, 25, 26], mathematical
modelling of malaria transmission has been developed rapidly. Among these, we would like
to mention Dietz et al. [12], Aron and May [4], Nedelman [30], Koella [22], Gupta et al.
[16], Ngwa and Shu [33], Ngwa [32], Chitnis et al. [7, 8], Ruan et al. [36], Lou and Zhao
[23], and the references cited therein.

In paper [33] (also Ngwa [32]), Ngwa and Shu introduced a compartmental model described
by ordinary differential equations (ODEs) for the spread of malaria involving variable
human and mosquito populations, in which the human population is classified as
susceptible, exposed, infectious and recovered and the mosquito population is divided into
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classes containing susceptible, exposed and infectious individuals. They established a
threshold below which the disease-free equilibrium is stable and above which the disease
can persist. Chitnis et al. [7, 8] extended the model in Ngwa and Shu [33] and Ngwa [32] to
generalize the mosquito biting rate, include human immigration and exclude direct
infectious-to-susceptible human recovery. They presented a bifurcation analysis in [7],
defined a reproductive number and showed the existence and stability of the disease-free and
endemic equilibria. To determine the relative importance of model parameters in disease
transmission and prevalence, sensitivity indices of the reproductive number and the endemic
equilibrium were computed in [8].

Malaria varies greatly in different regions in the vectors that transmit it, in the species
causing the disease and in the level of intensity. It can be easily transmitted from one region
to other regions due to extensive travel and migration (Martens and Hall [27], Tatem et al.
[41]). This leads to new outbreaks in some former malaria-free or lower transmission areas.
For instance, even though malaria has been eliminated in the United States since 1950's,
about 1,500 malaria cases are diagnosed every year in this country, of which approximately
60% are among US travelers (Newman et al. [31]). Thus it is necessary to distinguish the
regions and understand the influence of population dispersal on the propagation of the
disease between regions, which may improve malaria control programs.

Multi-patch models have been developed to study the spatial spread of infectious diseases by
many researchers over the past three decades. In particular, models of malaria in this
direction include Dye and Hasibeder [13], Hasibeder and Dye [17], Torres-Sorando and
Rodriguez [44], Rodriguez and Torres-Sorando [34], Smith et al. [38], Auger et al. [5],
Cosner et al. [9], Arino et al. [3], etc. For references on general epidemic models in a patchy
environment, we refer the reader to two review articles by Wang [46] and Arino [2]. Most of
these studies focus on evaluating the basic reproduction number R0 and establishing the
existence and stability of the disease-free and endemic equilibria. One of the goals in
considering multi-patch epidemic models is to study how the dispersal of individuals, in
particular of the exposed and infectious individuals, contributes to the spread of diseases
from regions to regions. Mathematically, one way to investigate this problem is to determine
how R0 depends on model parameters, especially those describing the movement of exposed
and infectious individuals. This indeed is a very interesting and challenging problem and
there are very few results on this aspect (see Theorem 4.2 in Hsieh et al. [20] and Lemma
3.4 in Allen et al. [1]). The reason is that for a multi-patch model R0 usually cannot be
expressed analytically in terms of model parameters and the monotone dependence of R0 on
model parameters is very complicated.

In this paper, based on the model of Ngwa and Shu [33] (also Ngwa [32] and Chitnis et al.
[7, 8]), we propose a multi-patch model to examine how population dispersal affects malaria
spread between patches. The paper is organized as follows. In next section, we describe our
model in detail. The basic reproduction number  is derived and shown to be a threshold in
section 3. In section 4, we analyze the dependence of  on the model parameters, in
particular on the travel rates of exposed, infectious, and recovered humans, for the two-patch
submodel using the matrix theory. In section 5, numerical simulations are performed to
investigate the effects of human movement on disease dynamics. Section 6 gives a brief
discussion of main results and future work.

2. Model formulation
We model the transmission dynamics of malaria between humans and mosquitoes within a
patch and the spatial dispersal between n patches. Within a single patch, our model is based
on that of Ngwa and Shu [33] (also Ngwa [32] and Chitnis et al. [7, 8]) with an SEIRS
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structure for humans and an SEI structure for mosquitoes. Hereafter, the subscript i refers to

patch i and the superscript h/v refers to humans/mosquitoes. Let , ,  and 
denote, respectively, the number of susceptible, exposed, infectious, and recovered humans
in patch i at time t. The total human population in patch i at time t is

. Similarly, ,  and  denote, respectively, the
number of susceptible, exposed, and infectious mosquitoes in patch i at time t. The total
mosquito population in patch i at time t is . The mosquito
population has no recovered class since we assume that the mosquito's infective period ends
with its death.

For patch i, all newborns in both populations are assumed to be into the susceptible class (no

vertical transmission). Susceptible humans, , may become exposed when they are bitten

by infectious mosquitoes. The exposed humans, , become infectious as the incubation

period ends. Infectious humans, , either reenter the susceptible class or recover into the

immune compartment, , where they remain for the period of their immunity before
returning to the susceptible class. Susceptible mosquitoes, , can be infected when they bite
infectious or recovered humans and once infected they progress through the exposed, ,
and infectious, , classes. Both human and mosquito populations follow a logistic growth
and migrate between patches, with humans having additional disease-induced death. The
flowchart of malaria transmission for patch i omitting density-dependent death and travel is
illustrated in Fig 2.1. Solid arrows denote within-species progression while dotted arrows
denote interspecies transmission.

The interactions between humans and mosquitoes in patch i (with i = 1, 2, …, n) based on
the above assumptions are then described by the following differential equations with non-

negative initial conditions satisfying :

(2.1)

where

 is the density-dependent death rate for humans;

 is the density-dependent death rate for mosquitoes;

 is the birth rate of humans;

 is the birth rate of mosquitoes;
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 is the mosquito biting rate;

 is the probability that a bite by an infectious mosquito on a susceptible human will
transfer the infection to the human;

 is the probability that a bite by a susceptible mosquito on an infectious human will
transfer the infection to the mosquito;

 is the probability that a bite by a susceptible mosquito on a recovered human will
transfer the infection to the mosquito;

 is the progression rate that exposed humans become infectious;

 is the progression rate that exposed mosquitoes become infectious;

 is the recovery rate that infectious humans become susceptible;

 is the recovery rate that infectious humans become recovered;

 is the disease-induced death rate for humans;

 is the rate of loss of immunity for humans;

 for K = S, E, I, R is the immigration rate from patch j to patch i for i ≠ j of
susceptible, exposed, infectious, and recovered humans, respectively;

 for L = S, E, I is the immigration rate from patch j to patch i for i ≠ = j of
susceptible, exposed, and infectious mosquitoes, respectively;

 for K = S, E, I, R is the emigration rate of susceptible, exposed, infectious, and
recovered humans in patch i, respectively;

 for L = S, E, I, is the emigration rate of susceptible, exposed, and infectious
mosquitoes in patch i, respectively.

For simplicity, death rates and birth rates of the individuals during travel are ignored. Thus,
we have

Unless otherwise indicated, the travel rate matrices  for K = S, E, I, R and  for
L = S, E, I are assumed to be irreducible. Here the movement of humans and mosquitoes
between patches is governed by the Eulerian approach (Cosner et al. [9]), that is, humans
and mosquitoes change their residences when they move from one patch to another patch. It
is worth noting that they may have different spatial scales because humans can travel much
longer distances than mosquitoes.

In the absence of disease and dispersal, both human and mosquito populations in each patch
are modeled by the logistic growth. For the persistence of the dispersal system, we assume
that
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where s denotes the spectral bound of a matrix which is the largest real part of any
eigenvalue of the matrix and δij denotes the Kronecker delta (i.e. 1 when i = j and 0

otherwise), or else they will die out in all patches. This implies that  and  for
some i and j.

Furthermore, it is assumed that all parameters in the model are strictly positive with the
exception of the travel rates.

Let  and . The following theorem demonstrates that
model (2.1) is mathematically well-posed and epidemiologically reasonable.

THEOREM 2.1. Consider model (2.1) with non-negative initial conditions satisfying 
for i = 1, … , n. Then the system has a unique solution and all disease state variables remain
non-negative for all time t ≥ 0. Moreover, both the total human population Nh(t) and the
total mosquito population Nν(t) are bounded.

Proof. The vector field defined by (2.1) is continuously differentiable, so the initial value
problem has a unique solution which exists for all t ≥ 0. The non-negative property of state
variables can be easily verified.

Denote  and . Then

Hence, by a comparison theorem, Nν(t) is bounded from above by max{nχν/(ρν, Nν(0)}.
Similarly, we can find an upper bound for Nh(t). The proof is complete.

3. Threshold dynamics
We first show the existence of a disease-free equilibrium (DFE) for (2.1), then calculate the
basic reproduction number  and give an estimate of it. Uniform persistence of the disease
and the existence of an endemic equilibrium are discussed at the end of this section.

3.1. Disease-free equilibrium
A disease-free equilibrium is a steady state solution of system (2.1) where there is no

disease, namely, , , and all other variables , , , ,  for i = 1,

2, … , n. The partially immune human, , is regarded as infected because individuals in this

status are still infective to susceptible mosquitoes. Mathematically, if  for
all i at a steady state, then by summing the fourth equation of (2.1) up from 1 to n, we have
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Hence, . This implies  for i = 1, 2, … , n.

Let  and . Thus there is a DFE for (2.1) if and
only if Sh* and Sν* are positive equilibria to the subsystems

(3.1)

and

(3.2)

respectively. They are guaranteed by the following lemma.

LEMMA 3.1. Let  be the interior of . For system (3.1), there is a unique nonzero

equilibrium  which is globally asymptotically stable with respect to .

Moreover, if  for 1 ≤ i ≤ n, we have

where  for 1 ≤ i ≤ n, and  is the unique solution to

with  for 1 ≤ i ≤ n − 1 and . Similar result holds for system (3.2).

Proof. It is easy to see that system (3.1) is cooperative and irreducible. The existence,
uniqueness and global asymptotic stability of Sh* can be proved by applying Theorem 6.1 in
Hirsch [18] or Corollary 3.2 in Zhao and Jing [50].

Let  be the right eigenvector of the irreducible matrix 
corresponding to the principal eigenvalue 0 normalized so that its last entry equals 1. The
existence, uniqueness and positivity of Lh is proved in Lemma 1 of Cosner et al. [9] or

Lemma 2.1 of Guo et al. [15]. We denote by fh the vector field defined by (3.1) and let 
denote the corresponding flow. Then the ith component of fh evaluated at mLh satisfies
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for m > 0 and i = 1, … , n. Thus fh(mLh) ≥ 0 for  and fh(mLh) ≤ 0 for

. In particular, fh(Ph) ≥ 0 and fh(Qh) ≤ 0. It follows from the theory of monotone

dynamical systems (Smith [39]) that  is non-decreasing and  is non-increasing

for t ≥ 0. Since both  and  converge to Sh*, we have Ph ≤ Sh* ≤ Qh.

3.2. The basic reproduction number
To derive the basic reproduction number  for (2.1), we order the infected variables first
by disease state, then by patch, i.e.,

and follow the recipe from van den Driessche and Watmough [45] to obtain

where
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The terms A64, A73 and A75 are named after the partial derivatives of the vector fields of
susceptible humans to infectious mosquitoes, susceptible mosquitoes to infectious humans,
and susceptible mosquitoes to recovered humans, respectively.

Since Aii for i = 1, … , 5, is a strictly diagonally dominant matrix, by the Gershgorin circle

theorem, the real parts of its eigenvalues are positive and therefore  exists. So the inverse
of V exists and equals

Thus, the next generation matrix (see Diekmann et al. [11]) is
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where  and . Note that Mν and Mhν

account for new human infections due to each infectious mosquito and new mosquito
infections due to each infectious or recovered human, respectively.

By calculating (FV−1)2, we find the basic reproduction number

where ρ denotes the spectral radius and M is the product of Mνh and Mhν, i.e.,

The first term in M represents infections related to infectious humans, while the second one
describes infections related to recovered humans who survive the infectious class and
acquire partial immunity.

THEOREM 3.2. The disease-free equilibrium of (2.1) is locally asymptotically stable if  and
unstable if .

Proof. To prove the stability of DFE, we need to check the hypotheses (A1)–(A5) in van den
Driessche and Watmough [45]. (A1)–(A4) are easily verified while (A5) is satisfied if all
eigenvalues of the 7n × 7n matrix

have negative real parts. Here J3 is a 2n × 5n matrix and J4 = diag{Dfh(Sh*), Dfν(Sν*)}
where fν denotes the vector field defined by (3.2). By Lemma 3.1, s(J4) < 0. So is s(J).

REMARK 3.3. The basic reproduction number for the ith patch in isolation (i.e., there is no
travel between patch i and other patches) is given by

(3.3)

This is slightly different from Ngwa and Shu's [33] which is .

It is easy to see that in calculating , the matrix M is a positive matrix (all entries are
positive) and hence ρ(M) is an eigenvalue of M and it is simple. In fact, it follows from

Corollary 3.2 in Smith [39] that , i = 1, … , 5, is a positive matrix. Moreover, as a
consequence of Theorem 2.5.4 in Horn and Johnson [19], we know the determinants of both

 for i = 1, … , 5 and  are positive. So is M. In particular, M has two
distinct positive eigenvalues when n = 2. This fact will be used later.

Similar to Theorem 2.3 in Salmani and van den Driessche [37] and Theorem 3.2 in Hsieh et
al. [20], we have the following result which gives bounds on the basic reproduction number.

GAO and RUAN Page 9

SIAM J Appl Math. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



THEOREM 3.4. , where

and

Proof. The lower bound can be proved by applying Fischer's inequality (see Theorem

2.5.4(e), Horn and Johnson [19]) to estimate the diagonal entries of matrix , i = 1, … , 5.

In fact, for example, let A11 = (aij)n×n and , then 1/aii ≤ αii for i = 1, … , n and
therefore

To establish the upper bound of , observe that, for example,

where  and . This implies

that the spectral radius of  is 1 and hence

Finally, the proof is complete with the properties ρ(M1M2) = ρ(M2M1) and ρ(M1 + M2) ≤
ρ(M1) + ρ(M2) for any square matrices M1, M2 with the same order.

REMARK 3.5. The trick in finding an upper bound for the basic reproduction number seems
very useful for general epidemic patch models. With such a trick, one can prove the upper
bound in Theorem 2.3 of Salmani and van den Driessche [37] without any additional
restriction on the parameters which is a nice improvement. Also, the trick can be used to
prove the upper bound in Theorem 3.2 of Hsieh et al. [20] without assuming that di = d for i
= 1, 2, … , n.
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REMARK 3.6. When  and  for 1 ≤ i ≤ n, a combination of Lemma 3.1 and Theorem
3.4 yields an estimation of  which only depends on model parameters. However, this
result might have little use, because we omitted some terms in the process of estimation.

3.3. Uniform persistence and the endemic equilibrium
Under certain conditions, we can use the techniques of persistence theory (Freedman et al.
[14], Thieme [43], Cantrell and Cosner [6], Smith and Thieme [40]) to show the uniform
persistence of the disease and the existence of at least one endemic equilibrium when .
The proof is similar to Theorem 2.3 in Wang and Zhao [47] and Theorem 3.2 in Lou and

Zhao [23]. For convenience, we denote the vector  by Sh(t) for t ≥ 0. Eh(t),
Ih(t), Rh(t), Sν(t), Eν(t) and Iν(t) can be introduced similarly.

THEOREM 3.7. Let ε11 denote the disease-free equilibrium of (2.1), Ws(ε11) be the stable

manifold of ε11, and X0 be . Suppose that , then we have
Ws(ε11) ∩ X0 = ∅. If, in addition, assume that

(i)  for i = 1, 2, … , n;

(ii)  for K = S, E, I, R, i, j, = 1, 2, … , n, i ≠ j;

(iii)  for i = 1, 2, … , n (or  for i, j = 1, 2, … , n).

Then the disease is uniformly persistent among patches, i.e., there is a constant κ > 0 such
that each solution Φt(x0) ≡ (Sh(t), Eh(t), Ih(t), Rh(t), Sν(t), Eν(t), Iν(t)) of system (2.1) with
X0 ≡ (Sh(0), Eh(0), Ih(0), Rh(0), Sν(0), Eν(0), Iν(0)), ∈ X0 satisfies

and (2.1) admits at least one endemic equilibrium.

Proof. We show first that Ws(ε11) ∩ X0 = ∅ whenever . Define

and M∊ = F − V − ∊Δ. It follows from Theorem 2 in van den Driessche and Watmough [45]
that  if and only if s(F − V) > 0. Thus, there exists an ∊1 > 0 such that s(M∊) > 0 for ∊
∈ [0, ∊1]. Let | · | be the Euclidean norm in . Choose η small enough such that

for i = 1, 2, … , n, |x0 − ε11| ≤ η. We now show that
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Suppose, by contradiction, that there is a T > 0 such that |Φt(x0) − ε11| ≤ η for t ≥ T. Pick ΦT
(x0) ∈ X0 as new x0, then |Φt(x0) − ε11| ≤ η for t ≥ 0 and

Consider an auxiliary system

(3.4)

Note that M∊1 is an irreducible, cooperative matrix for sufficiently small ∊1. Using the
Perron-Frobenius theorem, s(M∊1) > 0 is a simple eigenvalue associated to a positive
eigenvector. It then follows that any solution of (3.4) with positive initial value goes to
infinity as t → ∞. By the comparison theorem, we have

Suppose (i) and (ii) hold. Let . We now claim that
there exist n + 1 positive constants ζ1, ζ2, … , ζn and Λ such that
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is closed positively invariant and each orbit of (2.1) starting in X eventually enters into .
The proof of this claim is straightforward, but tedious, we refer to Theorem 2 of Cui and
Chen [10] for the approach.

Let , and . It

is sufficient to prove that system (2.1) is uniformly persistent with respect to .

Obviously,  is relatively open in . It is easy to check that  is positively invariant.
Theorem 2.1 implies that system (2.1) is point dissipative. Define

We claim that M∂, = D1 ∪ D2. Clearly, D1 ∪ D2 ⊂ M∂. It suffices to show that M∂ ⊂ D1 ∪
D2. For any , we have , i = 1, 2, … , n, and

By the form of (2.1) and the irreducibility of travel rate matrices, it follows that
. Hence x0 ∉ M∂ and the claim is proved.

Let . It is easy to verify that there are exactly two equilibria in M∂, i.e.,

 and . Clearly, the total mosquito
population Nν(t) is permanent with respect to X0 provided that (iii) holds, and hence there is
a δ > 0 such that

Consequently, both {ε10} and {ε11} are isolated invariant sets in X, Ws(ε10) ∩ X0 = ∅ and
Ws(ε11) ∩ X0 = ∅. Notice that every trajectory in M∂ converges to either ε10 or ε11, and
{ε10} and {ε11} are acyclic in M∂. It follows from Theorem 4.6 in Thieme [43] that system

(2.1) is uniformly persistent with respect to .

A well-known result in uniform persistence theory says that a bounded and uniformly
persistent system has at least one interior equilibrium (see Hutson and Schmitt [21] or
Theorem 2.4 in Zhao [49]). Since system (2.1) is bounded and uniformly persistent, we

conclude that it has an equilibrium . By the first and fifth
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equations of (2.1), we find that  and  which indicates that  is an
endemic equilibrium of (2.1).

REMARK 3.8. For n = 1, the theorem is an improvement of Proposition 3.3 of Ngwa and Shu
[33]. By using the method in this proof, one can get similar or better results for some other
epidemic metapopulation models such as those in Hsieh et al. [20] and Salmani and van den
Driessche [37].

4. The dependence of  on parameters
In an epidemic model, once the basic reproduction number is calculated and shown to be a
threshold for the dynamics of the disease, a natural question about disease control is how the
reproduction number depends on the model parameters. Is the dependence in a monotone
way (Müller and Hadeler [29])? For a very special case of a two-patch epidemic model,
Hsieh et al. [20] showed that (Theorem 4.2) R0 decreases when the travel rate of infected
individuals increases. See also Allen et al. [1] (Lemma 3.4). In general there are very few
results on this aspect. For model (2.1), it is easy to see that all parameters are directly or

indirectly contained in . Obviously,  increasing with respect to , ,  or . By

Theorem 2.5.4 in Horn and Johnson[19], an increase in ,  or  will decrease . The
dependence of  on other parameters is more complicated. For example, unlike in the
single patch model, the following result indicates that in a multi-patch model the parameters

 or  can decrease or increase  and even more complicated dependence may exist.

Recall that , where ρ denotes the spectral radius and

. Only A31 and A11 contain  while only A42

and A22 contain . Then we have , where

 and  are
positive matrices with positive determinants. For n = 2, that is for the two-patch submodel,
the question is reduced to a matrix problem.

PROPOSITION 4.1. Let , where all involving
parameters are positive and satisfy eh > fg. Then ρ(A) is decreasing in ν1 if

and increasing otherwise.

Proof. The matrix A is the product of three matrices which correspond to Ah, A31 and 

(or, Aν, A42 and ) in M, respectively. So here νi represents  and ki represents

 for i, j = 1, 2 and i ≠ j.

Note that A has two distinct positive eigenvalues and the inverses of the eigenvalues of A
are the eigenvalues of A−1. Thus it suffices to consider the monotonicity of the smaller
eigenvalue λ1 = 1/ρ(A) of A−1 on ν1.
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Let  and , and let , then x, y, z, w > 0 and xw > yz.
The characteristic equation of matrix A−1 is , where

Thus,  and , where

 and

. Then

The second inequality is equivalent to

(4.1)

Claim: (4.1) implies . In fact, we have

The proof is complete by substituting  and  into (4.1).

REMARK 4.2. The biological interpretation of the inequality in Proposition 4.1 is not easy.
However, if the emigration rate k1 = 0, then the inequality is always failed and ρ(A) is
consistently increasing in ν1. So, the decreasing phenomenon is due to the emigration of the
corresponding exposed class and shortening the exposed period (1/ν1) makes them migrate
less to the other patch.

In the rest of this section, we will study the dependence of  on the movement of exposed,
infectious, and recovered humans for the two-patch case. As far as we know, there are very
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few results on this topic (Theorem 4.2 in Hsieh et al. [20], see also Allen et al. [1]). Note

that only A11 contains  and only A33 contains . We know ,

where  and

 are positive matrices with positive determinants.
We first consider the case when the travel rates of exposed, infectious, and recovered
humans from one patch to the other depend on both the residence and disease status. The
question then becomes a matrix problem as follows.

PROPOSITION 4.3. Let , where all involving parameters are
positive and satisfy eh > fg. Then ρ(A) is decreasing in k1 if (e + g)/a1 > (f + h)/a2 and
increasing otherwise.

Proof. The matrix A is the product of two matrices which correspond to AE and  (or, AI

and ) in M, respectively. Here ki represents  (or ) for i, j = 1, 2 and i ≠ j.

It suffices to consider the monotonicity of the smaller eigenvalue λ1 = 1/ρ(A) of A−1 on k1.

Let . Then x, y, z, w > 0 and xw > yz. The characteristic equation of
matrix A−2 is 

Thus, . Direct calculation yields

, where  and

. Then

which is equivalent to

(4.2)

or

(4.3)

Since xk2 + y(a2 + k2) > 0 and xw > yz, (4.3) is reduced to (x + y)a1 < (z + w)a2. It is easy to
verify that (4.2) implies (4.3). Therefore, when (x + y)a1 < (z + w)a2, i.e., (f + h)/a2 < (e +
g)/a1, ρ(A) is decreasing in k1.
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REMARK 4.4. The conclusion in Proposition 4.3 still holds if e, h, a1, a2 > 0, f, g, k1, k2 ≥ 0, eh
> fg, and hk2 + f(a2 + k2) > 0 (namely, k2 > 0 or f > 0 which implies that there is also
infected (exposed, infectious, or recovered) human or infected mosquito migration from
patch 2 to patch 1). In particular, when only the two classes associated to k1 and k2 travel

between patches, ρ(A) is decreasing in k1 if .
Biologically, this means that the disease outbreak becomes less severe if more people
migrate from the high transmission area to the low transmission area.

REMARK 4.5. If hk2 + f(a2 + k2) = 0, namely k2 = 0 and f = 0, which means no infected
(exposed, infectious, or recovered) human or infected mosquito migrates from patch 2 to
patch 1, then

We have ρ(A) = max{e/(a1 + k1), h/a2} which is non-increasing in k1.

The following result assumes that the travel rates of exposed, infectious, and recovered
humans depend on disease states but are independent of residences (i.e., the travel rate

matrices  and  are symmetric).

PROPOSITION 4.6. Let , where all involving parameters are
positive and satisfy eh > fg. Then ρ(A) is decreasing in k if (e+f)/a1 > (g+h)/a2 and (e + g)/a1
> (f + h)/a2, or (e + f)/a1 < (g + h)/a2 and (e + g)/a1 < (f + h)/a2; and increasing otherwise.

Proof. We use the same notations as in Proposition 4.3 and consider the monotonicity of the
smaller eigenvalue λ1 = 1/ρ(A) of A−1 on k. The characteristic equation of matrix A−1 is

, where  and .

Obviously,  and . Then

which is equivalent to

(4.4)

or

(4.5)

Since xw > yz, the solutions to (4.5) satisfy (x + z)a1 < (y + w)a2 and (x + y)a1 < (z + w)a2,
or (x + z)a1 > (y + w)a2 and (x + y)a1 > (z + w)a2. It is easy to verify that (4.4) implies (4.5).
The proof is complete.

REMARK 4.7. The monotonicity of ρ(A) is still true if e, h, a1, a2 > 0, f, g, k ≥ 0 and eh > fg.
Epidemiologically, this means that the disease trend depends on a double-side effect. If f = g
= 0, ρ(A) is always non-increasing in k which means that travel can reduce the disease
severity when only the two classes associated to k migrate between patches.
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So far all our analyses are carried out for all three classes of humans: exposed, infectious
and recovered. However, one would expect that the effect of the recovered human
movement is different from that of the other two classes. In fact, the last two propositions do

not work for the movement of recovered humans  which is related to different matrices,

i.e.,  and

, where all parameters are positive and eh > fg. A
tentative analysis suggests that similar, but more complicated, results may hold for the
recovered class.

Therefore, for the two-patch submodel, the basic reproduction number  varies
monotonically with the travel rates of exposed, infectious, and recovered humans depending
on their disease states. This demonstrates that if there is enough travel of humans between
the two regions malaria can be sustained in the region with lower or no transmission.
Screening at borders usually can help to identify infected individuals with symptoms but not
those individuals with subpatent parasitaemia or those with only liver stage infections
(exposed). The analysis in this section shows that the travel of the infected individuals, with
or without symptoms, can contribute to the spread of the disease from one patch to another.
Thus, as far as malaria is concerned, screening at borders is not an effective control measure.

These results can be applied to general multi-patch models when the impact of population
dispersal on the spatial spread of an infectious disease is concerned. When the travel rate is
independent of the disease state, but may or may not be independent of residence, the
relationship between  and the travel rates of exposed, infectious and recovered humans
becomes even more complicated and non-monotone dependence can occur. We will
investigate these situations by presenting some examples in next section.

5. Numerical simulations
In the case when two patches are concerned, we study the effects of population dispersal on
disease dynamics by performing numerical simulations. Some of the parameter values are
chosen from the data in Chitnis et al. [8] and the references therein.

EXAMPLE 5.1. To compare the importance of human movement of different exposed, infectious
and recovered classes in the geographical spread of the disease, we need to do sensitivity

analysis of the basic reproduction number  on the dispersal rates ,  and ,
respectively.

Assume parameters in system (2.1) are as follows: , ,

, , , , , , ,

, , , , for i = 1,2, and , ,

, , , . These parameters yields the respective basic

reproduction numbers in isolation of  and  Thus, malaria is
endemic in patch 1 and dies out in patch 2.

With migration between patches, we take the same travel rate for mosquitoes from one patch

to the other, namely, . For human movement, we assume

that the travel rates are independent of residences and choose  for the
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susceptible. Now we keep two of the three travel rates, i.e., ,  and

, fixed with k = 0.1 and let the remaining one decrease with k from 0.1 to 0.
For example, if the first two travel rates are fixed with k = 0.1 and the remaining one

decreases with k from 0.1 to 0, then  and , and , k ∈
[0, 0.1]. The curves of  against k are illustrated in Fig 5.1(a). The monotonicity of the
curves is predicted by Proposition 4.6. Since  as k = 0.1, the disease is
endemic in both patches by Theorem 3.7. To eradicate the disease, it is more effcient to
restrict the travel of infectious humans in case we can only control the travel of one of the
exposed, infectious and recovered human classes.

However, the optimal control strategy is changed if the parameter values are varied. For

example, taking the same parameters as above except that  and , then

, , and  as k = 0.1. From Fig 5.1(b), the only
choice is to strictly control the travel of the recovered humans while travel restriction on the
exposed and infectious humans has an adverse influence on disease control.

EXAMPLE 5.2. For model (2.1, we present an example where the disease dies out or persists in
each isolated patch but becomes endemic or extinct, respectively, when there is suitable
migration between them. In fact, such a scenario may happen even for two identical patches
from the aspect of ecology and epidemiology.

Case 1:  and , but . For i = 1, 2, suppose , ,

, , , , , , ,

, , , , , , . We

choose the travel rates as follows: , , , 

and , where k increases from 0 to 0.10. Note that the travel
rates of exposed, infectious and recovered humans are independent of disease states but
depend on their residences and there is no mosquito migration between patches.

For the above parameter values, the dependence of  on k is shown in Fig 5.2. In

particular, we have  and the disease can die out in each isolated patches
(see Fig 5.3(a)). When humans move between these two patches, even for very small travel
rate (k > 10−5),  exceeds 1 and the disease becomes endemic in both patches (see Fig
5.3(b)) which is coincident with Theorem 3.7.

Case 2:  and , but . Use the same parameter values as in Case 1 except

that  and the travel rates. We choose , , ,

, and , where k varies from 0 to 0.10.

Thus,  and the dependence of  in k is shown in Fig 5.4. Suitable human
movement may result in the extinction of the disease in both patches, even though the
disease persists in each isolated patch (see Fig 5.5).

In studying how travel affects the spatial spread of certain disease, Hsieh et al. [20]
considered two patches, a low prevalence patch with a minor disease outbreak (basic
reproduction number in isolation is less than 1) and a high prevalence patch with endemic
disease (basic reproduction number in isolation is greater than 1). They numerically
demonstrated the possibility that for the low prevalence patch open travel with a high
prevalence patch could lead to the disease becoming endemic. However, for a high
prevalence patch open travel with a low prevalence patch could eradicate the disease. Our
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simulations in Example 5.2 present more interesting scenarios. Case 1 indicates that if both
patches have low prevalence of the disease, travel of the exposed and infectious individuals
from one patch to another would increase the chances of infecting the susceptible
individuals in the second patch, travel of susceptible individuals from one patch to another
patch would give them more opportunities to be infected in the second patch, and vice versa.
These travels would make the disease more likely to be endemic in both patches. Such a
situation has also been observed in Cosner et al. [9] for a two-patch Ross-Macdonald
malaria model. Case 2 is an ad hoc and probably less likely scenario which could occur
when all exposed and infectious individuals from one patch moved to another patch while
all the susceptible individuals in the second patch move to the first patch. This dilution of
the overall prevalence could lessen the severity of the disease so that it becomes minor in
both patches.

EXAMPLE 5.3. Assume all parameters are as in Case 1 of Example 5.2 except that ,

, , , , , and the travel rates. This means that the
two patches differ only in infectivity, namely, one with higher mosquito infectivity but
lower human infectivity and the other with lower mosquito infectivity but higher human
infectivity. Using formula (3.3), we obtain the respective basic reproduction numbers

 and  for both patches in isolation. So the disease dies out in
each isolated patch.

Next, when the patches are connected, we fix the travel rates of mosquitoes and susceptible

humans by letting ,  and want to see the
effects of exposed, infectious and recovered human movement on the disease dynamics. If
the travel rates of exposed, infectious and recovered humans are independent of residences

and disease states, i.e., , then Fig 5.6 shows how  varies
with k from 0 to 0.10.

The disease may die out if the exposed, infectious and recovered human movement is weak.
Stronger travel of exposed, infectious and recovered humans between patches can lead to the
disease becoming endemic in both patches. However, if the travel rate keeps increasing, the
disease may again die out in both patches. This implies that inappropriate border control on
exposed, infectious and recovered humans could have negative feedback. Observe that it is
also an example where  is not monotone in the exposed, infectious and recovered human
travel rate which is independent of residence and disease state.

6. Discussion
Malaria is one of the world's most common infectious diseases and it is a major cause of
child death and poverty in Africa. This issue may become even more serious due to many
factors such as the rapid expansion of modern transportation, urbanization in developing
countries, deforestation and so on. In this paper, taking the transmission heterogeneity into
account, we proposed a multi-patch model to study the impact of mobility of vector and host
populations on malaria transmission. We have discussed the existence and stability of the
disease-free equilibrium of the model and obtained a formula for the basic reproduction
number . By applying some matrix inequalities, bounds on  were given. A sufficient
condition was obtained to guarantee the existence of an endemic equilibrium. Then the
dependence of  on the model parameters was analyzed. In particular, for a two-patch
model, we studied the monotonicity of  in terms of the travel rates of exposed, infectious
and recovered humans. Our analysis indicates that  varies monotonously with the
movement of exposed, infectious and recovered humans which depends on the disease state.
We should mention that the monotonicity also holds for mosquito movement. Finally, three
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numerical examples were given to illustrate the impact of population dispersal for the
disease spread. The first example explores the role of different exposed, infectious and
recovered classes in the disease propagation. The second one shows that suitable human
movement can both intensify and mitigate the disease spread even for two identical patches.
In the last example, two patches which only differ in infectivity of humans and mosquitoes
are concerned. Non-monotonicity of  in the exposed, infectious and recovered human
travel rate which is independent of the residence and disease state is observed. These results
suggest that human movement is a critical factor in the spatial spread of malaria around the
world. Since the travel of exposed (latently infected) human individuals can also spread the
disease geographically and screening at borders usually can only help to identify those
infected with symptom, inappropriate border control may make the disease transmission
even worse and to control or eliminate malaria we need global and regional strategies
(Tatem and Smith [42]). Accordingly, a full understanding of movement is important in
designing effective anti-malaria measures.

There is still much work to do with our model. First of all, we are interested in the global
stability of the disease-free equilibrium when . Unfortunately, it is difficult to give an
explicit formula for the disease-free equilibrium (even for n = 2), so is . Even if we
obtained such a formula, it is too complicated to use it directly. Unlike models in Salmani
and van den Driessche [37] and Hsieh et al. [20], here we cannot use a comparison theorem
for the vector-host model using their methods. Secondly, the existence, uniqueness and
stability of the endemic equilibrium is in general unclear. Thirdly, the dependence of  on
travel rates for three or more patches submodels would be extremely complicated since the
interaction networks are more complex. However, at least we can do some numerical
simulations. Furthermore, it is interesting to test our model with field data and carry out
sensitivity analysis to develop efficient intervention strategies.

We remark that there are many possibilities to generalize the ODEs model studied here to
increase realism. For example, in the model it is assumed that all parameters are constant. In
fact, the biological activity and geographic distribution of malaria parasite and its vector are
greatly influenced by climatic factors such as rainfall, temperature and humidity (Martens et
al. [28], Smith et al. [38]). The impact of climate change can be investigated by assuming
that some parameters to be time or temperature dependent. It is also important to consider
stochastic versions of these models. The basic modeling approach of dividing the population
into subclasses according to their locations and then observing their moving behavior can be
viewed as a Markov process with random coefficients (Langevin formulation) or with
known transition probabilities between regions. We leave all these for future consideration.
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Fig. 2.1.
Flow diagram of the mosquito-borne model in patch i.
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Fig. 5.1.
The basic reproduction number  in terms of k. (a)  as k = 0.1, the optimal
strategy for reducing  to be less than 1 is to restrict the travel of infectious humans. (b)

 as k = 0.1, the optimal strategy for reducing  to be less than 1 is to restrict the
travel of recovered humans.
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Fig. 5.2.

 as a function of  with . The disease dies out in each isolated
patch, but it becomes endemic in both patches even when there is small human movement.
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Fig. 5.3.
Numerical solutions of system (2.1) with (a) k = 0 (no human movement) and (b) k = 0.06
(the corresponding ), respectively. In both situations, the initial conditions are

, , , , , ,  for i = 1, 2. The
solution in (a) approaches the disease-free equilibrium, while the solution in (b) approaches
the endemic equilibrium. Note that the two trajectories in (a) coincide completely because
they have the same initial values and the two patches have the same parameter values.
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Fig. 5.4.

 in terms of  with . The disease persists in each isolated patch, but
it becomes extinct in both patches when there is suitable human movement.
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Fig. 5.5.
Numerical solutions of system (2.1) with (a) k = 0 (no human movement) and (b) k = 0.06
(the corresponding ), respectively. In both situations, the initial conditions are

, , , , , ,  for i = 1, 2. The
solution in (a) approaches the endemic equilibrium, while the solution in (b) approaches the
disease-free equilibrium. Note that the two trajectories in (a) coincide completely because
the two patches have the same parameter values and the initial data are same.
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Fig. 5.6.

Relationship between  and . The disease dies out when the
exposed, infectious and recovered human travel rate is small or large, it persists otherwise.
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