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Abstract
To choose between manifestly distinct options, it is suggested that the brain assigns values to
goals using a common currency. Although previous studies have reported activity in ventromedial
prefrontal cortex (vmPFC) correlating with the value of different goal stimuli, it remains unclear
whether such goal-value representations are independent of the associated stimulus categorization,
as required by a common currency. Using multivoxel pattern analyses on functional magnetic
resonance imaging (fMRI) data, we found a region of medial prefrontal cortex to contain a
distributed goal-value code that is independent of stimulus category. More ventrally in the
vmPFC, we found spatially distinct areas of the medial orbitofrontal cortex to contain unique
category-dependent distributed value codes for food and consumer items. These results implicate
the medial prefrontal cortex in the implementation of a common currency and suggest a ventral
versus dorsal topographical organization of value signals in the vmPFC.

There is a considerable body of research demonstrating value signals in the brain while
participants engage in a variety of decision-making tasks, particularly in the medial
orbitofrontal and adjacent medial prefrontal cortices, collectively known as the vmPFC1–7.
To enable decisions to be made between stimuli with fundamentally different qualities, it
has been suggested that the brain uses a ‘common currency’ in which values are assigned to
different stimuli on a common neural scale8–10. Consistent with this hypothesis, several
fMRI studies have reported overlapping univariate value signals in the vmPFC that occur
while human subjects evaluate different types of goods such as food, money, books, DVDs,
clothes and social rewards11–14.

However, the finding of overlapping neural activations representing goal value for distinct
stimuli in a univariate manner does not provide sufficient evidence for the existence of a
stimulus-independent goal-value code, as required by the common currency hypothesis.
There remains the possibility that an area in which average neural activity scales with goal
values in a similar manner for different stimuli could in fact contain distributed and distinct
yet spatially overlapping goal-value codes that are unique to each stimulus. The first aim of
this study was to determine whether distributed value signals in the vmPFC are unique for
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different categories of stimuli, even if such value signals overlap spatially, or, by contrast,
there exists a truly generic common value signal in which the values of categorically distinct
stimuli are encoded using the same distributed code.

Even if there is a common currency to facilitate comparisons across goals of different types
when making a choice, it is also necessary to represent unique goal-specific value codes.
This is because to compute the current incentive value of particular goals, the characteristic
sensory properties of a goal’s outcome must be integrated together with the organism’s
current motivational state. For instance, the goal value of salted peanuts and a soda will
differ markedly depending on whether an individual is salt-deprived or thirsty. Moreover,
according to attribute integration theories of value computation, the summary value of a
complex good is computed online by summing the value of component attributes of the
good at the time of decision-making15,16. This type of mechanism would also involve the
encoding of a goal-value signal that depends on the sensory features of the goal stimulus
being valued as an intermediate step toward the computation of a generic value code. This
motivates the second aim of this study: to test for distributed patterns of activity in which
goal values are encoded in a manner that is specific to particular categories of stimuli.

RESULTS
Decoding strategies

To address these aims, we modified a previously used paradigm11, in which we optimized
the design for multivoxel pattern analysis (MVPA) techniques. MPVA has been applied in
many decision-making paradigms; economic value17, associative value18, reward
modality19, value-based decisions20 and consumer choices21,22 have all been decoded from
fMRI data. In this study, participants were scanned with fMRI while they reported their
‘willingness to pay’ (a proxy measure of their stimulus valuation obtained via a Becker-
DeGroot-Marschack auction process23) for three different classes of goods: food, money and
noncomestible consumer items or ‘trinkets’ (Fig. 1a). We trained a pattern classifier on
distributed voxel activity to categorize stimuli at the time of decision-making as being either
high or low in subjective value based on each participant’s ratings. Although each category
was composed of different stimuli, many value-relevant features are common to all stimuli
in each category and there is little to no overlap across categories. Thus we hypothesized
that a classifier would be able to decode stimulus-independent value patterns across
categories, whereas stimulus-dependent value representations should only be decodable
within categories.

This motivated the following classifier training procedures: first, to test for the presence of
category-independent value signals, we trained a classifier to decode value from samples
drawn from one of the categories and tested its performance in recognizing the value of
exemplars drawn from a different category. Second, to test for category-dependent value
codes, we trained the classifier on one stimulus category only and determined whether this
classifier could decode the value of independent exemplars drawn from that same category
but not exemplars from other categories. Third, we tested for regions representing stimulus
identity (particularly the category from which the items were drawn) independent of
stimulus value.

We performed all multivariate analyses on data in which the regularly observed univariate
value signals had been removed (Methods), thus ensuring that the MVPA could not classify
based on this smoothed ‘global’ activity. On account of prior findings in which stimulus
value signals and other decision-making variables had been localized to the vmPFC1,3,24–27,
we focused our analysis on this area (Supplementary Fig. 1). To study the spatial
organization of various value-coding strategies in the vmPFC, we correlated voxel t-scores
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from the group-level multivariate value analyses with those from the univariate value
analyses to determine how these qualitatively different value signals relate to each other.
Moreover, we correlated the multivariate value voxel t-scores with voxel location to assess
spatial variation in value signals across the vmPFC. These correlation analyses suggest a
topographic map of value signals in the vmPFC with respect to stimulus dependency and
coding complexity (the distributed or univariate nature of the neural activity).

All reported value-related effects were significant at a voxel-wise false discovery rate
(FDR)-adjusted threshold of P < 0.05 corrected for multiple comparisons in the vmPFC
(referred to as a small volume FDR (SVFDR) correction). Effects that are unrelated to value
representation were corrected across the whole brain (denoted FDR) at the same threshold
(Methods). We applied a cluster extent threshold of ten voxels in all analyses. All
conjunctions were performed using the ‘conjunction null’ hypothesis28. A complete list of
fMRI results is available in Supplementary Table 1.

Univariate stimulus value signals
To replicate previously reported univariate results11 in which an overlapping area of the
vmPFC had been found to correlate with the stimulus value of goods from all three
categories, we performed the same univariate analysis11, testing for overlapping correlations
with willingness to pay (WTP) for the goods from each category. Consistent with our
previous findings, an area of the vmPFC showed a significant effect (P < 0.05 SVFDR) in a
conjunction contrast (peak (x, y, z = 0, 35, −7), t = 3.14; Fig. 1b). We present distributions
of WTP per category in Figure 1c. We then searched for a brain region expressing univariate
value uniquely for a particular class of items by examining linear contrasts between the
WTP regressor parameter estimates for each category. No part of the vmPFC showed a
significant correlation between smoothed blood oxygen level–dependent (BOLD) activity
and WTP for only one of the categories (even at P < 0.005, uncorrected). In a whole-brain
analysis, we observed some activation in parts of the visual and premotor cortices for the
trinkets category only (only at P < 0.005, uncorrected), but these clusters did not survive a
corrected threshold. This lack of category-dependent univariate value coding is in agreement
with previous results11.

Distributed category-dependent stimulus value signals
Our multivariate analyses showed that regions of the medial orbitofrontal cortex (mOFC)
encode the value for food and trinkets in a category-dependent manner (Fig. 2a). A posterior
region of the mOFC exhibited food-dependent value coding (peak (x, y, z = −9, 17, −22), t =
3.05), whereas a more anterior region of the mOFC exhibited trinket-dependent value
coding (peak (x, y, z = −3, 41, −11), t = 3.86). We did not find evidence for a unique
category-dependent value-coding region for monetary gambles in prefrontal cortex.

To replicate these results independently, we repeated our procedures on a previously
acquired data set11, which used a similar task but was not optimized for MVPA. This
additional analysis revealed the same pattern of category-dependent stimulus value signals
in the mOFC, with an anterior locus encoding the value of trinkets and a posterior locus
encoding the value of food goals (Supplementary Fig. 2).

Spatial organization of category-dependent value codes
Taking MVPA second-level t-scores as an indication of the strength of the distributed value
representation, we found (Fig. 2b) that the strength of food-value representation declined (r
= −0.52) along the posterior-anterior axis, whereas the value representation strength of
trinket items increased (r = 0.54). Linear regressions of these voxel accuracy t-scores against
their Montreal Neurological Institute (MNI) y coordinates, performed separately for each
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category, were highly significant according to parametric tests (P < 10−21). To control for
correlation inflation caused by the spatial smoothing of the classification results, we ran a
simulation analysis (Methods). In this nonparametric test, no correlation drawn from the
simulated null distribution exceeded the empirically observed correlations for either food or
trinkets, thereby ruling out a spatial smoothing confound. These results therefore show an
interaction between item category and the directionality of the encoding gradient.

We also performed an analogous test using a leave-one-participant-out procedure to alleviate
concerns about the possibility of a non-independence bias contributing to this result. This
supplementary approach also yielded a significant interaction (P = 0.039) between decoding
accuracies for food and trinket values as a function of posterior versus anterior location in
the mOFC (Supplementary Fig. 3). A similar analysis in the mPFC showed that this
category-dependent encoding gradient was not present in the mPFC and thus was specific to
the mOFC.

Another potential concern is that our anterior-posterior gradient results are due to
differences in generic properties (that is, independent of the category definitions) of the goal
stimuli across categories such as, for instance, the familiarity of the stimuli or their
availability to the participant. To address this, we obtained behavioral ratings for the stimuli
from a subset of the original participants (8 of 13) on five attribute scales (valence, intensity,
liking, access and familiarity), and tested for a difference in average ratings between the
food and trinket stimulus categories. At the group level, there was no significant difference
with respect to any attribute (P > 0.05, repeated measures t-tests). There were few significant
differences (P < 0.05, point-biserial correlations) in some of these attributes at the level
individual subjects, and none of those differences were consistent across individuals
(Supplementary Fig. 4 and Supplementary Tables 2–4). This analysis therefore suggests that
potential generic stimulus-attribute differences do not explain the anterior-posterior gradient
results.

Category-independent value signals
In contrast to the category-dependent value representation results in the mOFC, we found
that a more dorsal region of the vmPFC (overlapping with that from the univariate analysis;
Fig. 3) contained category-independent value signals. A classifier trained in this area using
data from one item category could predict the value class (high versus low) in either of the
other stimulus categories as well as in its own category. At P < 0.05 (SVFDR), all six cross-
category training and testing combinations were significant in a conjunction test (peak (x, y,
z = −3, 41, 3), t = 2.40).

A potential confound is the fact that for zero bids (which account for a large proportion of
the low-value items), no motor response had be performed, whereas high-value items always
required a button press. Thus, the neural processes involved in generating the motor
response may be contributing to the significant category-independent value classification
signals in the vmPFC. To account for this possibility, we performed a category-independent
value searchlight analysis with zero bid trials omitted and tested whether there was a
significant classification signal within a 20 mm radius sphere surrounding the peak
coordinates of the category-independent value signal identified previously. We again found
evidence for a category-independent value signal, albeit at an uncorrected threshold because
of the smaller number of trials and smaller value variance (peak (x, y, z = 9, 53, 7), t = 1.94).
In addition, we found category-independent effects in the mPFC in the previously acquired
data11 (Supplementary Fig. 2a) yet in that paradigm a motor response was performed in all
trials. Thus, the dorsal portion of vmPFC represented value in a category-independent
manner regardless of the motor response requirements.
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Another issue is that the information on the bid-feedback screen (Fig. 1a) is correlated with
our measurement of goal value, and thus, activity could be driven by a signal elicited by the
bid feedback as opposed to the goal value itself. However, in the previously acquired data
set11, no feedback was given to the subjects at the end of each trial, yet a category-
independent value code was still present.

Univariate and multivariate value-code comparison
Our finding of both univariate and multivariate value signals in the vmPFC raises the
question of how these different value-encoding mechanisms relate to each other. It is
possible that a set of voxels might encode both a univariate code and a multivariate code
simultaneously. Alternatively, a set of voxels might exclusively encode a univariate value
signal but no multivariate value signal or vice versa. To establish whether value signals in
the vmPFC are either uniquely multivariate or univariate, or exhibit multiplexed univariate
and multivariate value coding, we computed correlations between multivariate decoding
accuracy and univariate signal strengths separately for our two main areas of interest: the
mOFC and the mPFC. A multiplexed signaling strategy would manifest as a relatively high
correlation between multivariate decoding accuracy and univariate signal strength.
Alternatively, a low correlation would imply that either a univariate or multivariate signal is
present but not both. These distinct possibilities have implications for the computational
nature of value-encoding processes occurring in a given region.

On the basis of the findings for category-dependent multivariate value codes in the mOFC
and univariate value signals more dorsally in the mPFC, we hypothesized that the
complexity of value coding in vmPFC might follow a ventral-dorsal gradient such that value
codes distributed along the orbital surface tend to not contain any univariate encoding, but
that as one moves superiorly up the medial wall, value codes could come to increasingly
reflect a univariate code in conjunction with multivariate signals, while at the same time
shedding category dependency in the value code.

This hypothesis makes several predictions: (i) the strength of univariate value coding should
increase along the z axis, whereas multivoxel encoding should be more evenly balanced
between the mOFC and the mPFC, (ii) the univariate signal should be relatively stronger
than the multivariate signal in the mPFC on average across voxels, and (iii) univariate and
multivariate coding should be more highly correlated dorsally in the mPFC (such that both
of these encoding strategies are present in the same voxels). We investigated this coding-
gradient hypothesis by testing each of these predictions in analyses that compare the
univariate and within-category multivariate value-coding results in the mOFC and the
mPFC: (i) we correlated second-level voxel t-scores against voxel MNI z coordinates across
the vmPFC (that is, mOFC and mPFC together) for the univariate and multivariate signals
separately and examined whether these correlations were significantly different, (ii) we used
repeated measures t-tests on a per-voxel basis to study how the relative strengths of these
encoding strategies change across the vmPFC, and (iii) we implemented a correlation study
to investigate whether the predictive relationship between univariate and multivariate
signaling is different in these two subregions.

To implement the first test, we correlated the multivariate and univariate value t-scores from
the second-level analyses with the z-axis coordinate of the associated voxel (Fig. 4a). We
did this for the food stimulus category (univariate r = 0.89, distributed r = 0.4) and trinket
stimulus category (univariate r = 0.72, distributed r = 0.68). For each combination of item
class and coding strategy, the strength of the value signal increased along a ventral-dorsal
gradient (P < 0.05, in both parametric and nonparametric tests). By bootstrapping the
empirically observed results, we estimated sampling distributions for these correlation
strengths. Nonparametric confidence bounds on the correlation strengths were established,
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and they indicated that although the strength of both signals increased along a ventral-dorsal
gradient, univariate coding increased significantly more steeply (P < 0.05). In addition, we
implemented a similar analysis investigating differences between value representation peaks
in ventral and dorsal regions of the vmPFC for multivariate and univariate encoding
strategies, using data on a leave-one-participant-out basis. This analysis confirmed these
results (Supplementary Fig. 5).

Our second test examined the relative prevalence of univariate and multivariate coding in
these regions. We found a significant difference (P < 0.05, repeated measures t-tests) in the
relative strengths of the multivariate and univariate value signals between the mOFC and the
mPFC for both the food and trinket stimulus categories by comparing t-scores on a per-
voxel basis. This result shows that the multivariate signals were stronger than the univariate
signals in the mOFC, and the opposite in the mPFC (Fig. 4b). An important caveat here is
that univariate and multivariate analyses have different intrinsic sensitivities29, thereby
complicating the interpretation of absolute differences.

The third test aimed to determine how the univariate and distributed codes interact in the
mOFC and the mPFC. The second-level t-scores from the univariate and multivariate
analyses were correlated on a per-voxel basis in each of these two subregions separately.
This revealed a strong difference between the subregions, whereby the univariate and
multivariate t-scores were significantly (P = 0.0, nonparametric tests) more correlated in the
mPFC for both food (r = 0.24) and trinkets (r = 0.61) stimulus categories than in the mOFC
(food r = −0.28, trinkets r = 0.34; Fig. 3b). This indicates that the distributed goal-value
signals found in the mOFC are largely independent from univariate goal-value codes,
whereas this is not the case in the mPFC.

Distributed coding of stimulus category
Finally we looked for regions showing distributed coding of stimulus category, independent
of its value. We found category-discriminating activity in several areas of the brain (Fig. 5).
Areas in the frontal lobe included (coordinates are given in the form (x, y, z)) the mPFC
(peak (−3, 20, −22), t = 6.12), the central OFC (peak (−21, 38, −11), t = 11.14), the
dorsolateral PFC (right hemisphere peak (45, 32, 21), t = 5.84; left hemisphere peak (−60,
17, 14), t = 11.34) and the frontopolar cortex (peak (6, 65, −11), t = 6.89). In the temporal
lobes, areas included the fusiform gyrus (peak (24, −43, −29), t = 6.90), the
parahippocampal gyrus (peak (36, −10, −33), t = 6.56) and the inferior temporal gyrus (right
hemisphere peak (30, −73, −15), t = 7.36; left hemisphere peak (−45, −64, −22), t = 7.64).
Toward the posterior, the intraparietal sulcus (right hemisphere peak (33, −70, 42), t = 7.94;
left hemisphere peak (−48, −31, 42), t = 11.65), the precuneus (peak (−6, −64, 14), t = 5.54),
the posterior cingulate cortex (peak (3, −43, 42), t = 7.43) and the visual cortex (peak (9,
−79, 32), t = 11.34) were implicated.

DISCUSSION
It has been argued that to make decisions involving different types of goods the brain needs
to encode item values on a comparable scale, often called a ‘common currency’8–10.
Although studies have found that BOLD responses in an overlapping area of the vmPFC
correlate with the value of stimuli at the time of decision-making11,12,14,30,31, there are
many open questions regarding the nature of the code used in these computations. In
particular, previous tests cannot rule out the possibility that the results were generated by
category-dependent value codes (for example, foods versus ‘social’ versus objects) that are
implemented in distinct yet spatially intermingled networks and which are inconsistent with
the common-currency hypothesis. In addition, previous studies have not found a spatial
topography in the organization of goal-value signals in the vmPFC.
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Stimulus dependency of mPFC value coding
Here, by using a paradigm optimized for multivariate analyses, we found evidence for the
existence of both category-dependent value signals (which only reflect the value of
particular types of stimuli), and category-independent value signals (which reflect the value
of all stimuli, regardless of their category). The category-independent value signals were
located in a region of the vmPFC along the medial wall but above the orbital surface and
coincided substantially with the areas found in previous univariate analyses11 as well as with
the areas found in a univariate analysis of the present data set. Our results provide evidence,
up to the fidelity provided by multivoxel fMRI32,33, for the existence of a truly generic value
code in the mPFC in which goal values are represented independently of the category from
which the stimuli are drawn. They also point to a ventral-dorsal gradient in the vmPFC, as
one transitions from the category-dependent value regions of the orbital surface to the more
dorsal category-independent regions of the mPFC. This suggestion is consistent with the fact
that in many fMRI studies that have identified value representations in the vmPFC for
different classes of reinforcers using standard univariate techniques, decision-value and
goal-value signals tend to appear superior to the orbital surface2,4,11. In contrast, we found
that two distinct voxel clusters in the mOFC encoded category-dependent goal values for
food and trinkets; a more posterior region contained food-dependent value signals, whereas
a more anterior region of the mOFC encoded a trinket stimulus–dependent value signal.

A correlation analysis of the classifier’s local sensitivity versus spatial location revealed an
anterior-posterior gradient in the mOFC, with category-dependent values of increased
abstractness (trinkets) encoded more strongly toward the anterior. Although a similar effect
could be caused by two separate food-stimulus and trinket-stimulus peaks with Gaussian
noise, visual inspection of the t-score plots and the strength of the linear dependence suggest
an actual gradient effect in the nature of the value code. These findings resonate with the
results of a meta-analysis34 in which an anterior versus posterior gradient was reported in
the mOFC in response to reward outcomes according to the ‘complexity’ or degree of
abstractness of the reinforcer. A previous univariate fMRI study had reported dissociated
posterior and anterior clusters of activation in the OFC for reward-expectation
representations for sexual versus money reinforcers35, though this effect was located more
laterally where we observed stronger distributed encoding of stimulus category rather than
stimulus value. However, unlike these studies, the results of the present study correspond
specifically to goal-value representations where values are used as an input to the choice
process as opposed to pure expectancy signals or the value computed at the time of the
consumption experience (often called outcome value). These results support the proposal
that there is indeed a gradient in the mOFC whereby value signals corresponding to the
processing of more biologically basic stimulus attributes, such as food or sexual stimuli, are
encoded more toward the posterior, whereas value signals of more abstract stimulus
attributes are encoded in regions that are located toward the anterior.

The findings obtained here implicating the vmPFC in the encoding of a common currency
for goal values are consistent with evidence from lesion studies in both human and
nonhuman primates implicating this region in value-based decision-making36–38. The
present results suggest that a lesion to the vmPFC would alter or disrupt the encoding of
goal values that are in turn used to guide behavior, thereby resulting in a decision-making
impairment. In particular, an implication of the present findings is that a selective lesion to
either anterior or posterior mOFC might result in a very specific impairment at decision-
making over only certain classes of goods. Although it is unlikely that lesions studied in
human patients would ever have the anatomical specificity to enable such a possibility to be
tested, this is something that could be potentially tested in an animal model.
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It is notable that we did not find evidence for a category-dependent value code for monetary
gambles although both a univariate value signal for these gambles and category-independent
value signals (training or testing on neural samples from the money category) were robustly
encoded more dorsally in the mPFC areas involved in implementing category-independent
value codes. One possible interpretation of this result is that because money is by definition
a generalized reinforcer that has acquired value by virtue of its exchangeability for other
reinforcers, money might only be represented according to a generic (category-independent)
as opposed to a category-dependent value code. Furthermore, money is not tied to a specific
sensory modality and is therefore not dependent on specific sensory coding mechanisms
(such as taste, olfaction or vision). Moreover, within the attribute integration account of
valuation, given that money does not have any component attributes, it could be argued that
money cannot be encoded in a category-dependent manner. Another more mundane
possibility is that, unlike items drawn from the food-stimulus and trinket-stimulus
categories, the actual values of the monetary sums are presented explicitly and do not
require a complex stimulus-to-value transformation as would be the case if, for example,
piles of coins had been displayed whose composition and size were indicative of monetary
value.

Multiple brain regions encode stimulus category
Beyond goal-value signals, we also found evidence for value-independent category-identity
codes in a region of the central OFC but also extending more medially to overlap with some
of the value-coding areas. These findings suggest the existence in parts of the OFC of
stimulus-identity codes. Such stimulus-identity information was also encoded in many other
parts of the brain outside of the OFC, including in the dorsal frontal cortex, parietal cortex
and visual cortical areas. Many of these areas were previously implicated in an
electroencephalography study of the time course of value computation39. Nevertheless, the
presence of such signals in the OFC provides insight into the possible mechanisms by which
value codes might get computed in the vmPFC during the choice process. To compute a
category-dependent value code, it is clearly necessary to first have access to information
about the identity of the stimulus so that the incentive value of the goal state can be retrieved
with respect to prior associations between the identity of the goal state and motivational
states acquired through incentive learning40. Such goal-value codes are also likely necessary
to facilitate choices over goods to be computed because when comparing between the values
of different goods, it is necessary to be able to bind the results of the comparison process
with the identity of the specific goods in question. Furthermore, according to the attribute
integration view of value computations, it is necessary to encode information about various
attributes associated with each stimulus to pass such information to the areas involved in
category-dependent valuation. Additional work will need to be performed to determine how
these distinct value and identity representations in the vmPFC get integrated and used during
the decision-making process.

Neuroanatomy of stimulus information brain map
The loci of the value-coding and category-coding results in the vmPFC can be interpreted in
terms of the neuroanatomical structure of the brain. Based on cytoarchitectonic
heterogeneities in the OFC and comparative neuroanatomy studies41,42, a broad distinction
has been made between a lateral prefrontal network (areas 11, 13 and 47/12) covering
central and lateral OFC and a medial prefrontal network (areas 11m, 13 medially, along with
14 and extending up the medial wall to areas 10m, 24, 25 and 32) corresponding to
ventromedial prefrontal cortex. Recently, a resting-state connectivity study43 has provided
functional evidence in support of this parcellation scheme in the human OFC. The sensory
information received by central OFC and the visceromotor connections of the medial
network41,44 suggest that the sensory-visceromotor pathway from the central OFC to the
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mOFC to the mPFC could support a high-level stimulus-to-value transformation during
decision-making. In this study, we found that the central OFC coded stimulus category
bilaterally, with these areas partially overlapping value-coding regions in the vmPFC. This
part of the OFC has been shown to receive sensory input in all sensory modalities (both
unimodal and multimodal), association cortices and memory-related regions, and, in
particular, is connected to several of the posterior regions that we found to encode stimulus
category in a distributed manner. Moreover, adjacent to this central OFC result, category-
dependent value signals were located in the medial OFC, which has strong reciprocal
connections to limbic areas involved in the emotional and hedonic processing of stimuli,
along with other parts of prefrontal cortex, which may contribute to an evaluation of the
stimulus in the context of the current internal state of the subject and external state of the
world45. These effects could include inhibiting desires to consume food46 or retrieving goal-
related episodic memories47 such as remembering whether or not a book has been read or
not. Finally, these attribute-dependent value signals would be passed to the more dorsal
areas of the mPFC involved in category-independent value representations where a summary
goal value is transmitted to action-control circuits via the mPFC15,48–50.

Generality of results and analysis methodology
We cannot rule out the possibility that if we had used an entirely different class of goods
(such as luxury goods or social stimuli), the results may have been different. Future studies
will need to establish the generality of the common coding area in the more dorsal part of
the vmPFC identified here as well as whether other classes of items are coded uniquely in
the medial orbital surface.

Finally, the importance of the multivariate methodology used in this work is worth
highlighting. As described above, previous studies had found that neural activity in an
overlapping area of the vmPFC, which encompasses the area where we found category-
independent goal-value signals, correlates with the value of a wide class of stimuli at the
time of choice. However, none of these previous univariate studies found the category-
dependent value codes identified here. The reason for this might be due to the nature of the
category-dependent signals. If, as conjectured above, they reflect the computation of value
for stimulus-specific attributes, then the category-dependent value signals are likely to be
distributed across multiple voxels, which makes them difficult to localize using univariate
approaches.

METHODS
Task

Subjects were presented with high-resolution images of three classes of goods: snacks,
consumer goods (for example, DVDs and books) and monetary prizes (see Supplementary
Table 5 for a complete list). In each trial, participants bid for the right to the prospect of
obtaining a displayed item with 80% probability and nothing otherwise. We introduced the
probabilistic element to ensure that valuations for monetary sums would be nontrivial. Bids
were elicited using a Becker-DeGroot-Marschack (BDM) auction process. In a given trial,
the participant bid €0, €1, €2, €3 or €4 for an item. At the end of the experiment one trial
was selected at random for each of the categories. For each trial selected, a random counter-
bid of €0, €1, €2, €3 or €4 was drawn with equal probability. If the bid equaled or exceeded
the random counter-bid, then participants paid the counter-bid amount and received the
corresponding item prospect. Otherwise, they paid nothing. These rules favor an optimal
strategy of bidding the amount closest to one’s subjective valuation. The BDM rules were
fully explained to participants.
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Subjects were asked to refrain from eating for 4 h before arrival for testing. Compliance was
confirmed through self-reports. Participants were requested to remain in the laboratory for 1
h after the scan to consume items obtained during the experiment. This helped maximize
participants’ valuation for food items during testing. In each trial, subjects were endowed
with €4 for bidding (since one trial from each category is ultimately played out, this
corresponded to a €12 endowment across all three categories). Any remaining money from
the initial endowment was retained by the subject.

Each trial began with a stimulus presentation (Fig. 1a). Subjects generated a bid within 5 s
by pressing one of four buttons or did not respond for a zero bid. A presentation of the bid
amount followed (500 ms). The intertrial interval was uniformly drawn from 1–23 s. Four
sessions of length 16 min each were completed. The hand used for responding was switched
after two sessions and the correspondence between the buttons and bids was alternated for
the second and fourth sessions. The button configurations were practiced at the beginning of
each session.

fMRI data acquisition
Fifteen healthy right-handed subjects participated in this study. The data from two subjects
were excluded because of technical problems with the MRI scanner leaving 13 subjects
(eight male; mean age, 22.1; s.d., 3.6 years). All subjects gave informed consent and the
experiment was approved by the School of Psychology Research Ethics Committee, Trinity
College Dublin. Functional imaging was performed on a 3T Philips scanner with an 8-
channel SENSE head coil at Trinity College Institute of Neuroscience, Dublin, Ireland.
Thirty-five contiguous sequential ascending echo-planar T2*-weighted slices were acquired
for each volume giving whole brain coverage with a slice thickness of 3.55 mm and no slice
gap (in-plane resolution, 3.00 mm × 3.00 mm; repetition time (TR), 2,000 ms; echo time
(TE), 30 ms; field of view, 240 mm × 240 mm; matrix, 80 × 80). A whole-brain high-
resolution T1-weighted structural scan (voxel size, 0.9 mm × 0.9 mm × 0.9 mm) was also
acquired for each subject. Slice orientation was tilted −30° from a line connecting the
anterior and posterior commissure to alleviate signal loss in the OFC11.

Data preprocessing and filtering
Slice timing correction, motion correction and spatial normalization was applied to the data.
For the general linear model (GLM), the data were high-pass–filtered (120 s cut-off), and
serial autocorrelations were estimated using a first-order autoregressive model.

To minimize differences in data preprocessing between the univariate and multivariate
approaches, we carried out the following: prior to multivoxel sample extraction, low-
frequency components (below 1/120 Hz), serial autocorrelations and head motion were
subtracted from the data. In addition, smoothed univariate value signals for all three
categories identified in the GLM analysis were removed from the data to ensure that the
multivoxel patterns identified in the MVPA did not reflect overlying univariate signals. This
was accomplished by multiplying the convolved parametric value regressor by the beta
estimated in the GLM and subtracting the resulting time series from the data on a per-voxel
basis. To correct for session-related mean and scaling effects, we applied second-order
detrending and z scoring on a per-voxel per-session basis18,20,51.

Here we use the terms ‘univariate’ and ‘multivariate’ to refer to signals identified using
mass-univariate general linear modeling and MVPA (after orthogonalization with respect to
the univariate signals), respectively. An alternate interpretation of ‘univariate’ and
‘multivariate’ is the signal identified using the mean and ‘mean-subtracted’ activity,
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respectively, within the searchlight. We repeated the value-decoding analyses using this
alternative approach, which yielded similar results (Supplementary Fig. 6).

We applied spatial smoothing (8 mm full-width-half-maximum) to the data used for the
univariate GLM but not in the multi-voxel pattern analysis to preserve local variance18,51.
Preprocessing and filtering was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/),
except detrending and z-scoring for which the PyMVPA package was used52.

General linear model
We used a GLM to identify activity at decision time correlating with goal values (as
measured by WTP). The GLM included regressors for image presentation and bid defined
for each item category (0 s duration). Subject-specific WTPs were used as a parametric
modulator for each regressor. To minimize head-motion confounds, motion parameters were
included as nuisance regressors. For the second-level analysis, beta maps corresponding to
the WTP regressors for each subject for each item category were included in a 3 × 1 factorial
design (each category being a factor). To test for regions representing stimulus value for all
item categories in a univariate manner, we performed a conjunction analysis across all three
categories using the ‘conjunction null’ hypothesis28.

Classification algorithm
We used a Gaussian naive Bayes (GNB) classification algorithm53 with an assumption of
zero covariance across voxels. To perform binary classification the algorithm first estimates
mean activity and variance vectors from training data for the Gaussian distributions p(x|A)
and p(x|B). Then, the algorithm assigns a test sample xtest to the condition with the
maximum posterior probability at xtest based on the estimated distributions: if p(xtest|A) >
p(xtest|B) the algorithm infers that xtest was sampled under condition A. Generalization
accuracy was estimated using cross-validation52. This involves training and testing on
mutually exclusive subsets of samples and repeating with a different partitioning on each
‘fold’. Cross-validation was done on a leave-one-session-out basis. On every fold, the
classifier was trained on three sessions and tested on the remaining session, thereby avoiding
session-related dependencies between training and testing samples51,53,54. Accuracy scores
were averaged to give the generalization accuracy. All preprocessing and filtering was
performed on a per-session basis.

Multivoxel pattern analysis
A searchlight procedure18,52,55 provided a spatially unbiased estimator of distributed activity
across the brain. Each fMRI data sample had two task-related characteristics, stimulus
category and value. A potential concern is that significant correlation between stimulus
category and stimulus values could bias the classification results, as the classifier might
leverage variance, which distinguishes between categories when attempting to decode value
and vice versa. WTP for food was lower on average compared to the money or trinket
categories (Fig. 1c). To address this concern, the set of samples for each category was
median split into ‘high’ and ‘low’ value classes on a cross-session basis for each subject.
This relabeling eliminates correlations between value and category labels for every subject
(Spearman correlation, P > 0.2 for all subjects), resulting in six classes of samples, one for
each value/category combination. To avoid class imbalance bias, all analyses were balanced
on a per-session basis (that is, the number of samples in each class was equalized for each
session and therefore cross-validation folded) by randomly removing some samples.
Analyses were run multiple times to confirm that the outcome of the analysis was not
dependent on the balancing procedure.

McNamee et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fil.ion.ucl.ac.uk/spm/


Category-independent value—We identified category-independent value signals as
those whose representations enabled decoding of value level across stimulus categories. We
ran all six binary cross-category value-classification analyses by training to decode high
versus low value on samples drawn from one category (for example, food) and testing on
samples drawn from another (for example, money).

Within-category value—We searched for areas that could predict value in the same
category. Note that the value representations pinpointed in this analysis may or may not be
category-dependent, but the results of this exercise are necessary to carry out the category-
dependent analysis described next.

Category-dependent value—We identified regions involved in category-dependent
valuation as those that allowed us to decode values only in particular categories. These value
representations would be coded in voxel response distributions, which differ across
categories. For this, we compared results of the cross-category and within-category value-
decoding analyses. We first identified voxels that could significantly decode (P < 0.005
SVFDR) between high and low values in each category. Next we tested whether these areas
could predict value across categories. Any voxel that survived the cross-category analysis,
even at P < 0.05 (corrected for two comparisons at each voxel), was deemed to exhibit
properties of category-independent value encoding. Clusters that survived the within-
category analysis but that did not survive the cross-category analysis were deemed to
involve category-dependent valuation.

Stimulus category identity—Finally, we looked for regions exhibiting multivariate
encoding of stimulus category. We implemented three binary classification analyses: food
versus money, money versus trinkets and food versus trinkets. The searchlight accuracy
maps were entered into a conjunction analysis28 to identify regions whose activity
discriminated between all category pairs. This ensured that areas of the brain identified by
this analysis contained distributed codes pertaining to the identity of each stimulus category
individually.

Significance testing
For the searchlight analyses, the percentage of correctly identified samples, averaged across
folds in the cross-validation, was used as the classification score in each searchlight, and this
score was assigned to the voxel at the center. This defined a classification accuracy map for
each subject, which was then smoothed with an 8-mm full-width-half-maximum kernel. A
second-level analysis was implemented by performing voxel-wise t-tests comparing the
distribution of accuracies across subjects against 50%, which is the expected performance of
an algorithm randomly labeling samples. As multivariate classification is susceptible to
optimistic classification biases, we carried out permutation tests to validate our decoding
procedure56 (see below).

All univariate and multivariate results were significant at voxel-wise FDR-adjusted P < 0.05
with a 10-voxel extent threshold. We had a strong prior hypothesis regarding value signals
in medial prefrontal regions1,3,24–27; thus, for value-based analyses, correction was
performed within a vmPFC mask defined a priori from related functional11 and anatomical57

studies (Supplementary Fig. 1). This correction threshold is denoted P < 0.05 SVFDR. For
other analyses, unrelated to value, whole-brain correction was used (denoted P < 0.05 FDR).
For display purposes, we presented all results at P < 0.005. Results corrected within a small
volume were displayed uncorrected. All results were overlaid on a normalized T1-weighted
image averaged across subjects. Our main results are based on the P < 0.05 SVFDR
threshold (and displayed at P < 0.005 uncorrected) because (i) it was used previously in a
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similar paradigm11, thus allowing a direct signal power comparison, and (ii) controlling the
FDR rather than the family-wise error rate has been shown to have greater sensitivity with
minimal risk of false positives58.

Permutation testing for multivariate analyses
For each multivariate analysis, the searchlight procedure was repeated 200 times with
permuted labeling17,51,55. To satisfy exchangeability criteria59 and to prevent label
imbalances in the cross-validation, labels were permuted along with their positions in the
data set partitions. The resulting accuracy maps were entered into mass univariate t-tests to
determine whether the accuracy distributions over the permuted data sets were significantly
different from chance. At P < 0.1, for all analyses, no voxel’s accuracy distribution
significantly deviated from random chance in any subject. This indicates that the
classification algorithm used for the data analysis across all conditions was fair and
unbiased, that is, the significant results reported for the nonpermuted labels were not due to
an optimistic classification bias.

Region-of-interest gradient analyses
The t-score maps computed at the second level in our univariate and within-category
multivariate value analyses are indicative of the relative strengths of distinct types of value
coding in the vmPFC. We used these maps to investigate how the structure of stimulus-value
representation varies along an anterior-posterior gradient in the mOFC in relation to the
abstractness of the stimulus being valued and a ventral-dorsal gradient in the vmPFC as a
whole with respect to the relationship between the univariate and multivariate representation
of value.

Anterior-posterior gradient of stimulus abstractness—For voxels in the mOFC,
the t-scores obtained from the within-category value-decoding analyses were tested for a
correlation with the position of the voxels along the y axis (Fig. 2b). This was done for the
food and trinkets categories separately. As the smoothing applied to classification accuracy
maps before the second-level analyses artificially inflates the strength of any spatial
correlation, we generated a more reasonable correlation distribution under the null
hypothesis by randomly generating noise in the mOFC using the same mean and variance as
in the empirically observed unsmoothed t-scores. We then smoothed this noise and
computed the t-score/y-axis correlation, repeating this process 10,000 times. A
nonparametric P value was derived by determining the fraction of randomly generated
correlations that exceeded the actual correlation.

Ventral-dorsal gradient of value-processing complexity—Three analyses were
performed to compare univariate and multivariate value signals in the mOFC and the mPFC:
first, we correlated each voxel’s univariate and within-category MVPA t-scores with its
position along the z axis (Fig. 4a). This was done for all voxels in the mOFC and the mPFC
masks together. We generated a null correlation distribution for each combination of
category and value-coding strategy by randomly generating correlations from simulated data
generated using the process described above. The null correlation distribution defines a
nonparametric P value as the proportion of randomly generated correlations that exceed the
empirically observed correlation scores. As we sought to determine whether or not the
univariate and distributed coding strengths were differentially correlated with the z axis, we
also derived confidence intervals around the respective correlation estimations via
bootstrapping60. That is, 10,000 samples were randomly generated with replacement and a
sampling distribution estimated for each category and value-coding strategy. From this
sampling distribution, we can establish the range of values that the actual correlations might
take (within an error probability thresholded at P < 0.05).
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Second, we examined how voxel preference for multivariate or univariate coding of value
changes along an inferior-superior axis. To do this, we extracted the t-scores obtained in the
second-level analyses for the univariate and within-category MVPA value analyses for all
voxels in each mask; then, for each voxel, we subtracted the univariate t-score from the
MVPA t-score, which resulted in a single parameter indicative of that voxel’s relative
preference for the multivariate or univariate encoding of value. This was done for all voxels
in the mPFC and the mOFC separately (Fig. 4b). These samples were tested using two-sided
repeated measures t-tests.

In our third test, we correlated the second-level t-scores from the univariate and within-
category MVPA value analyses on a voxel-by-voxel basis in each region. Again, this
procedure was implemented for the food and trinkets categories separately. As the number
of voxels in each vmPFC subdivision was different, we tested differences in correlations
using a bootstrap procedure60. For each combination of stimulus category and vmPFC
subdivision, we resampled 348 data points of interest with replacement (corresponding to
the number of voxels in the larger mOFC mask) and computed the correlation. In this way,
10,000 correlation coefficients were generated (Fig. 3b) giving an estimate of the empirical
distribution.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Task, univariate value signals and behavioral results. (a) Illustration of experiment time
course and data extraction. Subjects were presented with an 80% chance of obtaining a
stimulus drawn from a pool of 120 stimuli evenly divided into three categories (food, money
and ‘trinkets’) and they responded with an integer WTP value between 0 and 4 euros
(approximately $5.45) inclusive (Methods). In preparation for the multivariate analyses, we
extracted a sample of neural data at the bid time point in each trial (with a shift of 5 s to
account for hemodynamic delay). For a given bid, the two volumes closest in time (one
before and one after) to the shifted time point were averaged to create a single sample19. (b)
A region of the vmPFC, overlapping with a previous similar result11, was parametrically
modulated by the chosen bid value at the time of decision, peak coordinates (x, y, z = 0, 35,
−7), t = 3.14, P < 0.05 SVFDR (results presented at P < 0.005, uncorrected). (c) Distribution
of WTP bids per category (similar to those obtained previously11). The average bid was
€1.47 (s.d., €1.28) for food items, €1.91 (s.d., €1.3) for monetary sums, €1.97 (s.d., €1.56)
for trinkets. There was a difference between the mean bids of the three categories (ANOVA,
P < 0.001). The average bids were significantly greater than zero for all three classes (P <
0.001). The majority of bids were nonzero (71% for food, 82% for money and 74% for
trinkets).
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Figure 2.
Distributed category-dependent value codes in the mOFC for food and trinkets. (a) Stimulus
value represented in distributed codes in the mOFC for food and trinket categories. The peak
classification accuracy t-scores were at the following coordinates: food, (x, y, z = −9, 17,
−22), t = 3.05; trinkets, (x, y, z = −3, 41, −11), t = 3.86; P < 0.005 SVFDR (results presented
at P < 0.005, uncorrected). (b) Plot of MVPA second-level voxel t-scores versus y-axis
location. Food and trinket MVPA value t-scores are plotted in blue and red, respectively.
Gray dashed line indicates P < 0.005 uncorrected significance threshold. Large dots indicate
peak t-scores.
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Figure 3.
Organization of univariate and distributed value signals in the vmPFC distinguished by
coding mechanism and stimulus information content. (a) A sagittal view of the vmPFC,
showing that univariate and multivariate category-independent value representations are
concentrated in the mPFC whereas category-dependent value signals (for the food and
trinket categories) are located more ventrally in the OFC. Peak of the category-independent
value decoding conjunction was at (x, y, z = −3, 41, 3), t = 2.40, P < 0.05 SVFDR (results
presented at P < 0.005, uncorrected). (b) Bootstrap results for univariate/multivariate value
correlations performed for each combination of category and vmPFC subregion.
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Figure 4.
Comparisons of univariate and multivariate value signal strengths across vmPFC subregions.
(a) For the food and trinket categories, univariate and within-category MVPA second-level
voxel t-scores are plotted as a function of the voxel’s z coordinate. The t-scores in the
univariate brain maps exhibited a significantly greater tendency to increase along the z axis
(P < 0.05). (b) Difference between the within-category MVPA and univariate value t-scores
across voxels for the food and trinkets item categories in the mPFC and the mOFC. Error
bars, s.e.m.
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Figure 5.
Stimulus category coding. In the frontal lobe, the central OFC (peak (x, y, z =−21, 38, −11),
t = 11.14), the mFPC (peak (x, y, z = 6, 65, −11), t = 6.89) and the dorsolateral PFC (peak
(x, y, z = −60, 17, 14), t = 11.34) contained distributed neural patterns pertaining to the
identity of the stimulus under consideration. Toward the posterior, regions of the temporal
lobes including the fusiform, inferior temporal and parahippocampal gyri, and areas around
the intraparietal sulci also reflected category-discriminating activity (Supplementary Table
1). Results are presented at P < 0.005 FDR.
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