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Abstract

Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is
important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed
extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is
accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene
distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of
bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess
the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably
dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the
ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny.
Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology
delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly
associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain
and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of
gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only
speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene
transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful
pathogens.
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Introduction

While some bacteria species display highly monomorphic

genomes [1–5], some others are highly diverse with genomes

bearing numerous imprints of horizontally transferred genes. For

the latter, genes histories can be so dramatically different from one

another that no linear scenario can properly retrace the history of

the whole organism [6,7].

Genomic analyses of species such as Neisseria meningitidis [8–9] or

Vibrio cholerae [10], revealed the existence of extremely large pan-

genomes (the set of all genes found in at least one of the genomes,

[11–14]). In some cases, strains only share half of their gene

content with one another, the remaining genes being ‘‘accessory’’

and putatively involved in their lifestyle specificities [15,16].

Focusing on pathogenic bacteria, analysis of their specialized

interactions with animals and plants has demonstrated the

involvement of a wide range of evolutionary unrelated enzymatic

and biological functions [17–21]. In addition to highlighting their

tremendous ability to evolve these specialized functions, these

analyses have also raised questions on how adaptation factors are

acquired and distributed between populations: While a large

amount of genes are available in the pan-genome, it remains

difficult to predict to what extent these are accessible within or

transferable between populations. As gene content bears imprints

of the history of the organism, gene distribution pattern analyses

should provide insights on the forces and factors at play in the

shaping and maintaining of genomes.

R. solanacearum [22], a highly destructive and widespread

bacterial plant pathogen, is one of the most successful plant

pathogens and an excellent model to help answering these

questions. This soil-borne xylem inhabitant causes bacterial wilt

disease on plants from more than 50 botanical families [23]. R.

solanacearum is a highly heterogeneous species, both phenotypically

and genetically, to which the concept of species complex applies

[24,25]. Previous studies on its genome structure, gene content

and distribution [26–32] have revealed the remarkable heteroge-

neity of this bacterial species and the large composition of its pan-

genome, to the extent that its classification into different genomic

species has been proposed [31]. The R. solanacearum species is

comprised of four phylotypes that also reflect the region of origin

of the isolates, with phylotype I, II, III originating from Asia,
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America and Africa respectively, while phylotype IV strains

originate from Indonesia, Japan and Australia [24,33].

Interestingly, the genome of R. solanacearum is divided in two

replicons, a multipartite structure that is associated with its ability

to adapt to many different ecological niches with various

environmental conditions [34]. Most strains from species belong-

ing to the b-proteobacteria family Burkholderiaceae, to which R.

solanacearum belongs, harbor this multiple replicon structure [35].

As the multipartite genome structure has been maintained

throughout the diversification of these organisms, it is likely

associated with some selective advantage. The ability to be

adapted to multiple lifestyles in various environments is the most

shared feature among Burkholderiaceae, in particular through

interactions (beneficial or parasitic) with eukaryotic organisms

[36–38]. However, the relationship between the adaptability of the

bacterium and the organisation of its genome may not be direct.

In this study, we revisited data collected from multiple

comparative genomic hybridization (CGH) microarrays in order

to assess the genomic plasticity of the R. solanacearum species

complex. Based on the reconstruction of the ancestral genome

compositions, we were able to infer the number of gene gain and

loss along the phylogeny. Analyses of gene movement patterns

helped uncover factors limiting gene flow; in particular those

associated with gene functions and genome structure.

Materials and Methods

Microarray data
The data analyzed here are described in Cellier et al. [39]

(available at http://www.ebi.ac.uk/arrayexpress/experiments/E-

MTAB-878). Briefly, 72 R. solanacearum strains were hybridized

onto CGH pan-genomic microarrays. The strains were represen-

tative of all the phylotypes of R. solanacearum currently described,

with most of them (n = 55, 76%) being from phylotype IIB.

Hybridization signals were filtered and analyzed to obtain a binary

matrix of positive/negative probe signals. Probes were defined so

as to be representative of all the CDSs of the six full genomic

sequences available at this time. Four of those are considered as

‘‘finished’’ genomes for which gene order is available (GMI1000,

CFBP2957, CMR15 and PSI07), while the two remaining

genomes are available as scaffolds (Molk2 and IPO1609). From

the initial set of 10,762 probes, based on the hybridization

properties (inferred using UNAFold; [40]), we decided to trim

down the dataset to 7,055 probes for which no ambiguous

hybridization results were obtained (no cross hybridization and

single target in a genome for each of the probe). We obtained the

gene physical location and functions (where available) from the

MaGe annotation platform [41]. The sensitivity and specificity of

the CGH microarrays were estimated using the recently

sequenced R229 and UW551 strains. For both strains we obtained

the homologous gene sets with the six fully sequenced strains used

to design the arrays from the MaGe annotation platform. While

we used different homology cutoffs (ranging from 30% to 99%,

Figure S1A), pairwise comparison of the target genes in the six

genomes suggested that common target for a probe shares 90%

homology or more (Figure S1B). We then compared the actual

hybridization profile to the expected profile. Using the 90%

homology cutoff, we obtained false positive and false negative rates

below 2.1% and 3.7% respectively.

Phylogenetic reconstruction
The presence/absence signal for each probe allowed recon-

struction of the R. solanacearum phylogeny using a binary model

similar to the F81 nucleotide substitution model, where frequen-

cies and rates of gene gain and loss are estimated independently. In

this model, the evolutionary measurable information is the

transition between the presence and absence of a probe signal,

the changes from one to the other being ‘‘probe signal gain’’ and

‘‘probe signal loss’’ that we considered as ‘‘gene gain’’ and ‘‘gene

loss’’. Because there is a chance that genes are not gained and lost

independently due notably to spatial proximity or other codepen-

dency factors, we analyzed two distinct datasets. The first was

comprised of the whole set of 7,055 probes, whereas the second

was composed of a set of 2,992 probes representative of the 2,992

blocks of probes that (1) display the same pattern of presence

absence in every strain, and (2) constitute a contiguous physical

block in each of the four fully sequence genomes for which gene

order is available (GMI1000, CFBP2957, CMR15 and PSI07,

[31]). From each of these datasets, a phylogeny was reconstructed

using MrBayes v3.2 [42] with the binary model implemented and

allowing for variation of substitution rates among sites (selected as

best model using the Akaike information criterion). Two runs with

four Markov chains were conducted simultaneously for 5,000,000

generations and variations in the likelihood scores were examined

graphically with Tracer v1.5 (available at http://tree.bio.ed.ac.

uk/software/tracer/). After discarding trees generated prior to

convergence of the parameters (burn-in of 10%), consensus

phylogeny and posterior probabilities of the nodes were deter-

mined. Trees were edited using FigTree v1.3 (available at http://

tree.bio.ed.ac.uk/software/figtree/).

Ancestral character reconstruction and inference of gene
gain and loss

To properly infer the gene gain and loss dynamics, we used

MrBayes v3.2 [42] to reconstruct the ancestral state of each probe

at every node of the phylogeny. In order to control for uncertainty

in the tree, including the potential uncertainty concerning the

presence of the nodes themselves, an individual analysis was

performed for each of the 71 nodes from the 7,055 probe tree. For

each node, two runs with four Markov chains were conducted

simultaneously for 1,000,000 generations and sampled every 500

generations. After summarizing the sampled trees (with a 10%

burn-in), we obtained the probabilities of presence and absence of

each gene at every node of the tree. A gene gain was defined as an

increase of the probability of presence between two successive

nodes of more than 0.5. Conversely, a loss was defined as a

decrease of 0.5 in the probability of presence. It was then possible

to (1) infer the gene content of the ancestors in the phylogeny; (2)

map the events of gene gain and loss on branches and (3) obtain

the number of times a single gene was gained and lost.

Class analysis
Each probe had a specific target in the R. solanacearum genome,

and some of them were classified by their functions. Of the 7,055

probes, 4,162 were clearly identified and classified in one of the 21

defined COGs [43], while the remaining CDSs code for putative

or unknown products. As our dataset contains several genes that

have undergone no movement as well as genes that have

undergone few movements, we were unable to properly model

these distributions, an unavoidable step prior to a statistical

parametric analysis. We therefore devised a simple non-parametric

permutation-based test. We permuted the COG classification 106

times, summed the gain or loss obtained for each COG and then

ranked the sum of each COG from the real dataset within the

simulated one. These ranks divided by the number of permuta-

tions give a two-tailed p-value for having more or less gain and loss

than what can be expected by chance. To compare the class

dynamics between the chromosome and the megaplasmid, we
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used a similar test where the probe location was permuted for each

COG with p-values calculated as described above.

Spatial analysis
From each of the four fully sequenced and assembled genomes

(GMI1000, CFBP2957, CMR15 and PSI07, [31]), probe sets were

ordered according to their position on the chromosome and the

megaplasmid. The probe order was then permuted 10,000 times

but constrained to maintain the integrity of the 2,992 blocks of

probes (i.e. blocks of contiguous probes that share the exact same

patterns of presence/absence). On each of the real and permuted

dataset, the gene gain and loss were summed inside a sliding

window (size ranging from 100 to 1,000 probes) moved along the

genome. The real values were then ranked among the simulated

one. These ranks divided by the number of permutation are the

two-tailed p-value of having a cold-spot or hot-spot of gene

movements. P-values of 1024 were considered significant. Two

tests were devised. In the first ‘‘global’’ test, permutations were

performed on both the chromosome and the megaplasmid

together, as if they formed a single genomic component, whereas

in the second ‘‘local test’’, permutations were performed on each

genomic component independently. The ‘‘global test’’ should

provide insights into the relative dynamics associated with the

chromosome and the megaplasmid, whereas ‘‘the local’’ test is

Figure 1. Phylogenetic tree based on the 7,055 probe set. Phylogenetic tree of the R. solanacearum species complex inferred using MrBayes
and based on the results of the hybridization of 7,055 probes targeting genes from the strains in bold. Phylotype classification is indicated using
colored rectangles. Black circles at nodes indicate posterior probability support superior to 95%.
doi:10.1371/journal.pone.0063155.g001

Genome Dynamics Revealed from Gene Distribution

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63155



intended to detect cold-spots and hot-spots of gene gain and loss

within each replicon.

The presence of insertion sequences (IS) was assessed using the

IS Finder database [44] with default parameters. Hits with e-value

superior to 0.05 were discarded. Spatial association of hot-spots

and cold-spots of gene movements with IS was tested using the

Moran’s autocorrelation index implemented in the R [45] package

APE [46].

Horizontal gene transfer
Based on phylogeny and gain/loss data, we were able to

reconstruct plausible circuits of gene exchange between individ-

uals. To do so, we focused our analysis on unexpected patterns of

gene inheritance. For every pair of strains and ancestral strains

(respectively tips and nodes of the tree), we counted the number of

genes present in both strains but absent in their most recent

common ancestor. A modeling of the linear relationship between

these numbers of genes and the genetic distance between strains

was first performed using the ‘‘lm’’ (linear model) function

available in R before estimating the confidence interval for future

outcomes of the model using the ‘‘predict.lm’’ function. Briefly, the

prediction provides estimates of the maximum number of newly

acquired genes in common between two strains for a given p-value

threshold. Strains and nodes displaying more genes shared than

the 99% confidence interval of the model were hypothesized to be

highways of horizontal gene transfer (HGT).

Results and Discussion

Phylogenetic reconstruction
From the CGH microarrays, we reconstructed R. solanacearum

phylogenies that were highly congruent with phylogenies obtained

from egl sequencing [47], MLSA [48] or previous CGH studies

[29]. Phylogenetic reconstructions based on the 7,055 probes

(Figure 1) or on the 2,992 blocks of contiguous probes (Figure S2)

presented different basal branching patterns, but the four already

described phylotypes were clearly distinct. The sole exception was

the position of the CFBP3059 strain that appeared as basal to the

closely related phylotypes I and III in the 7,055 probes tree.

Although highly congruent grouping of the strains were recovered

at the intra-phylotype level from both reconstructions, it is

however important to notice that within phylotype IIB, slight

differences in branching patterns were observed. These two trees

are different views of the evolutionary history of the R. solanacearum

complex, depending on the unit of evolution being considered:

whereas the individual genes themselves are the units of measure

in CGH microarray analyses, blocks represent a more parsimo-

nious unit of evolution. The actual R. solanacearum phylogeny is

probably intermediate between these tree reconstructions.

Inference of Gene Gain and Loss
We reconstructed the ancestral state of every gene at every node

of the phylogeny. Using the variation of presence probabilities

along the tree, we were able to statistically infer the evolution of

gene content through the phylogeny with either gene gain

(Figure 2A) or gene loss (Figure 2B). It is important to note that

the branch lengths are directly related to the sum of gain and loss

that occurred, since it represents our measure of evolution.

Distinct patterns of gain and loss were observed across the tree.

While some branches displayed high numbers of gene gain (see the

orange and red branch along the phylotype I clade for example),

others were characterized with many gene losses. This latter case

was most pronounced on the branch leading to R229, the banana

specific and insect transmitted blood disease bacterium (the red

branch on Figure 2B). On this branch, a total of 292 genes

distributed in 217 blocks were lost.

These patterns of gain and loss highlight one of the limitations

of our design. The microarrays represent a finite repertoire of

genes, defined from only six sequenced strains. Therefore, besides

uncertainties about using ‘‘pan-genomes’’ as a useful measure [49],

our study design is inappropriate when it comes to estimating pan-

genome size. However, the high number of genes acquired on the

Figure 2. Gene gain and gene loss history. Mapping of the gene gain (A) and gene loss (B) over the R. solanacearum phylogeny. Branches are
colored according to the number of gain and loss events as per the scale at the bottom.
doi:10.1371/journal.pone.0063155.g002
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branches connecting these six sequenced strains to their ancestors

suggests that the pan-genome of R. solanacearum is ‘‘open’’ [14]

with each strain presenting several almost strain-specific gained

genes. On the other hand, the estimation of the core gene set (at

least for those genes present on the microarrays) is probably

accurate. Given the number of strains we tested and their diversity,

one can expect that genes conserved in all or most of these strains

to be present in other yet untested strains.

A total of 2,155 genes (,30% of the 7,055 tested genes) were

present in every genome, while the remaining genes were usually

present at low frequency (36% of the genes are present in less than

10% of the strains). The evolution of the gene content for some of

the major nodes of the R. solanacearum phylogeny is depicted on

Figure 3. The upper rectangles at each node represent the degree

of conservation of genes present in the group of strains above the

node. For the most recent common ancestor of all R. solanacearum

(i.e. the deepest node in the phylogeny), gene frequency presented

the so-called ‘‘U-shape’’ distribution (for details, see [50]): genes

were either present at high (reddish color) or low frequencies

(bluish color) with few genes present at medium frequencies. The

Figure 3. Gene conservation and specificity. Schematic representation of gene conservation and specificity along the phylogeny of the R.
solanacearum species complex. Only gene content at nodes prior to major splits in the phylogeny are represented. Upper rectangles indicate the
degree of gene conservation in the strain to the right of the node with the degree of gene conservation varying from conserved (red) to rare (blue).
Lower rectangles indicate the degree of gene conservation in the strain on the right of the node. Red tracks correspond to the proportion of genes
from the core genome (conserved in every strain). Purple tracks correspond to specific genes conserved, while yellow tracks indicate specific genes
that are not conserved. Non-specific genes are indicated with green (conserved) and blue (not conserved) tracks. The relative length of the rectangles
is proportional to the number of genes present in the strains to which they refer.
doi:10.1371/journal.pone.0063155.g003
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gene set appeared more conserved between more recent nodes but

there is still a significant proportion of accessory genes. Distribu-

tion of genes among clades are represented by the lower

rectangles. While the core gene set (colored in red) was by

definition stable over the tree, around half of the genome was

composed of accessory genes with complex group associations (the

Table 1. Gene loss and gain depending on the COG classification and the genomic location.

Global Chromosome Megaplasmid

Loss Gain Loss Gain Loss Gain Ch. vs Mp.

Process
COG
ID Description Gene nb p

$
nb p

$
Gene nb p

$
nb p

$
Gene nb p

$
nb p

$
Gain p£ Loss p£

Information
storage
and processing

A RNA processing and
modification

2 2 0 2 2 0 0 0 0

J Translation, ribosomal
structure and
biogenesis

154 43 2 42 2 132 26 - 12 2 22 17 30 ch ,

mp
*** ch ,

mp
*

K Transcription 397 272 + 324 235 99 187 + 162 173 137 ch ,

mp
***

L Replication,
recombination
and repair

225 66 2 253 +++ 174 37 - 181 +++ 51 29 - 72 ++ ch ,

mp
*

Cellular
processes
and signaling

D Cell cycle control, cell
division, chromosome
partitioning

45 13 37 36 7 29 9 6 8

M Cell wall/membrane/
envelope
biogenesis

245 116 141 - 164 57 73 81 59 68 ch ,

mp
** ch ,

mp
*

N Cell motility 143 96 167 +++ 76 42 126 +++ 67 54 41 2 ch .

mp
***

O Posttranslational
modification, protein
turnover, chaperones

134 66 56 2 112 44 36 2 22 22 20 ch ,

mp
*

T Signal transduction
mechanisms

169 97 108 98 30 51 71 67 57 ch ,

mp
***

U Intracellular trafficking,
secretion, and
vesicular transport

72 38 67 41 11 30 31 27 37

V Defense mechanisms 83 49 66 47 19 43 36 30 23

Metabolism C Energy production
and conversion

291 119 - 180 194 37 2 92 97 82 88 ch ,

mp
*** ch ,

mp
***

E Amino acid transport
and metabolism

565 352 335 2 365 129 161 2 200 223 174 ch ,

mp
*** ch ,

mp
***

F Nucleotide transport
and metabolism

82 19 2 32 2 70 14 24 - 12 5 8

G Carbohydrate transport
and metabolism

139 70 97 97 38 66 42 32 31

H Coenzyme transport
and metabolism

105 47 35 2 77 17 11 2 28 30 24 ch ,

mp
*** ch ,

mp
***

I Lipid transport and
metabolism

203 152 + 122 130 57 57 73 95 + 65 ch ,

mp
** ch ,

mp
***

P Inorganic ion transport
and metabolism

164 96 88 - 108 40 50 56 56 38 ch ,

mp
*

Q Secondary metabolites
biosynthesis,
trans-
port and catabolism

134 128 +++ 145 ++ 71 45 + 60 63 83 85 ++ ch ,

mp
* ch ,

mp
*

Poorly
characterized

R General function
prediction only

450 255 393 ++ 292 131 236 ++ 158 124 157 ch ,

mp
*

S Function unknown 360 205 348 +++ 235 77 167 125 128 181 +++ ch ,

mp
*** ch ,

mp
***

$
- p-value,0.025; – p-value ,0.01; – p-value ,0.001; * p-value.0.975; ** p-value .0.99; *** p-value .0.999

£* p-value,0.025; ** p-value ,0.01; *** p-value ,0.001
doi:10.1371/journal.pone.0063155.t001
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other colors). Importantly, there were extremely few genes

conserved and specific to a group (purple tracks) that can be

mapped to any node. The maximum number of specific and

conserved genes was found in the ancestor of the phylotype IV

(n = 139) followed closely by the ancestor of phylotype I (n = 132).

In contrast, only 99 genes were specific to the phylotype II strains.

As the number of tested strains was very different between

phylotypes, these numbers are difficult to interpret but they do

demonstrate the low specificity of genes at the phylotype level. A

larger proportion of specific and non-conserved genes were

detected (yellow tracks). This proportion decreases rapidly to a

small fraction at the intra-phylotype level. Interestingly, the vast

majority of the non-core genes were non-specific to any of the

clades (green and blue tracks, for respectively non-core conserved

and non-core not conserved genes). This particularity highlights

the extreme dispersal of the pan-genome of R. solanacearum

explained either by frequent HGT between strains or by low

frequencies of some of the genes within the populations. In this

second hypothesis, gene frequencies may rise and fall within

populations depending on a combination of selection and drift.

Because of the clearly distinct phenotypes between strains from

phylotype IV (i.e. broad host range for R. solanacearum vs banana

specific strains of the phylotype IV blood disease bacterium [51]),

it was anticipated that these ecotypes evolved in isolation and may

have developed or acquired a large proportion of specific genes.

Conversely, the gene content analysis revealed that this group

possessed at least 866 non-specific genes also dispersed among the

other phylotypes.

Differential gene class dynamics
While the CGH experimental design used here doesn’t allow us

to obtain complete gene contents for the tested strains, we are

nevertheless confident in our ability to properly track gene

movements. We therefore tested for specific patterns of gene

inheritance and transfer. We attempted to determine if there were

differences in the dynamics of acquisition/loss of the different

clusters of orthologous groups (COG, [43]) by regrouping genes

depending on their functions in 21 classes such as ‘‘Transcription’’

and ‘‘Cell motility’’. For the 4,162 probes for which COG

classifications were available, we obtained a sum of gene gain and

loss for each of the 21 classes. Then, using a permutation test, the

number of genes gained and lost were compared between the

different COG classes. The test provided a p-value for having

more or less gain and loss in a given category than what would be

expected by chance.

After a million permutations, it was clearly apparent that COGs

were an important factor in determining the mobility of genes

(Table 1). Clear signals of non-random gene gains or losses

dependent on the COG class were detected. In the ‘‘complexity

hypothesis’’ [52], it is suggested that the transferability of genes

between genomes is dependent on the biological process and the

connectivity of the network a gene is involved in. Whereas, the

distinct contributions of connectivity and function in gene

transferability were recently revisited [53], summarizing gene

dynamics at the COG class level was proved to reveal differential

dynamics [54–57]. In agreement with these previous studies, and

as demonstrated in Bacillus subtilis and Escherichia coli [54,55], we

detected the ‘‘Translation, ribosomal structure and biogenesis’’

category as the most stable in R. solanacearum. It was also interesting

that genes involved in ‘‘Nucleotide transport and metabolism’’

appeared to be highly stable with both loss and gain occurring less

than what would be expected by chance. Other categories such as

‘‘Energy production and conversion’’ and ‘‘Post-translational

modification, protein turnover, chaperones’’ were also stable with

less loss or gain than expected by chance. Conversely, genes

involved in ‘‘Cell motility’’, ‘‘Transcription’’, ‘‘Lipid transport and

metabolism’’ and ‘‘Secondary metabolite biosynthesis, transport

and catabolism’’ presented high mobilities. These results were

Figure 4. Cold-spots and hot-spots of gene movement. Schematic representation of the cold-spots and hot-spots of gene movement along
the genomes of the GMI1000, CFBP2957, CMR15 and PSI07 strains. Cold-spots are indicated in blue while hot-spots are indicated in red. Putative IS
elements are represented with purple lines. For every genome, two tests (p-value ,1024) are represented. For each test, gene movement patterns
were compared to those obtained after 10,000 permutations of gene order using a sliding window of 400 genes. In the first ‘‘global’’ test,
permutations were performed on the concatenated chromosome and megaplasmid. This test was designed to detect differential patterns between
both components. In the second ‘‘local’’ test, permutations were performed on each genomic component separately. The second test was designed
to detect intra-component patterns of differential gene movements.
doi:10.1371/journal.pone.0063155.g004
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particularly interesting as the ‘‘Cell motility’’ COG hosts several

type III and type IV effectors genes, which may be involved in host

adaptation and differential pathogenesis. Both categories of COG

from the ‘‘poorly characterized’’ section were highly gained as was

previously demonstrated [56] and expected since those genes are

less likely to be involved in housekeeping functions. Interesting

patterns were obtained for genes involved in the ‘‘Replication,

recombination and repair’’ category where genes were lost less and

gained more than expected by chance.

Gene class dynamics were also different depending on whether

genes were located on the chromosome or on the megaplasmid.

These differential patterns may in fact be caused by the

imbalanced distribution of genes depending on the component

localization (Chi-square p-value ,2.10216): some COGs (such as

‘‘Transcription’’, ‘‘Cell motility’’ and ‘‘Secondary metabolites

biosynthesis, transport and catabolism’’) were over-presented on

the megaplasmid in comparison to the chromosome. It was

nevertheless clearly apparent that overall the megaplasmid tends

to lose (p-value ,1026) and to gain (p-value ,1026) more genes

than expected, compared to the chromosome. Regarding the

COGs themselves, the megaplasmid tended to present more gain

and more loss for almost every COG (Table 1). Interestingly, only

the ‘‘Cell Motility’’ class presented more gain on the chromosome

than on the megaplasmid. However, this provides additional

evidences that each replicon does not contribute equally to the

genomic plasticity, adaptability and diversification of R. solana-

cearum.

Spatial structure of gene dynamics
In order to more precisely characterize the differences in gene

dynamics between the two genomic components, we tested for the

presence of hot-spots and cold-spots of gene movement (i.e. the

sum of the gene gain and gene loss) in the genome. Using a

permutation test, but importantly while taking into account blocks

of probe putatively transferred together (i.e. the 2,992 blocks), our

analysis (Figure 4) confirmed the imbalanced nature of gene

movements along the genome with the detection of several cold-

and hot-spots. The analysis confirmed the tendency of the

megaplasmid to display more gene flow than the chromosome.

Most of the cold-spots detected using the global test were on the

chromosome, whereas the hot-spots mapped preferentially on the

megaplasmid. This was clearly apparent in the CMR15 and PSI07

Figure 5. Putative highways of HGT. Circular representation of the phylogenetic tree based on the hybridization of 7,055 probes from the six
fully sequenced strains. Putative horizontal gene transfer are represented using lines between tips of the tree. The lines are colored according to the
significance level of having more gene sharing than expected by chance with green, blue and red for p-values superior to 0.99, 0.999 and 0.9999
respectively. Branches are colored according to the phylotype classification.
doi:10.1371/journal.pone.0063155.g005
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genomes, using a window size of 1,000 probes (Figure S3 D) to

detect global differences in gene movement. Multiple replicon

genome organization may be a convenient way to acquire and lose

genes without disrupting the whole genome architecture. Although

it bears essential genes (since R. solanacearum cells cannot survive if

they lose their megaplasmid [58]), the megaplasmid may have

evolved as a preferential zone for insertion or deletion of genes. Also,

because of the high frequency of such events, it is possible that some

region of the megaplasmid may be transiently non-functional.

Between two and five local hot-spots of gene movement and

between one and five local cold-spots of gene movement (p-value

,1024) were detected on the chromosome and megaplasmid

respectively. These regions varied greatly in length with hot-spots

ranging from 1 to 251 genes (mean size of 93 genes) and cold-spots

ranging from 2 to 247 genes (mean size of 71 genes).

When analyzing the hot-spots, we didn’t detect conservation of

the their genomic location or their genomic content between

phylotypes. This is in apparent contradiction to previous

observations on E. coli [59], where regions of integration tended

to be conserved. It is thought that after a first successful

integration, later integrations would tend to occur at the same

place as they may have a lesser impact on the genomic

organization. R. solanacearum genomes nevertheless bore some

imprints of this phenomenon as several combinations of genes

were detected in hot-spots from strains of the same phylotype,

suggesting repeated and independent integrations and deletions of

genes at a similar location. For example, among the 60 strains

from phylotype II, up to 49 combinations of genes were associated

with a hot-spot (247 genes) detected on the megaplasmid.

We later tested for the association between hot-spots and IS

elements using a spatial autocorrelation test. More than 3,400 IS

elements from 18 families were detected in the four fully assembled

genomes. We used Moran’s autocorrelation index with the

distance between hot-spot or cold-spot genes to the nearest IS

element as a weight matrix. No significant association was

obtained, demonstrating that in R. solanacearum, IS elements may

not drive the cold- and hot-spots clusterings. The same results

were obtained when we considered each IS family separately.

Horizontal gene transfers (HGT) delineate exchange
groups

As the high mobility of genes tends to support high HGT

frequency between strains, we devised a simple procedure to detect

putative HGT. Using the gain data, we flagged pairs of strains

displaying more genes in common but absent in their last common

ancestor than expected by chance (Figure 5). Most of the putative

HGT events were detected between strains grouping with the

Molk2 strain (sequevar 3 strains [47] from the phylotype IIB) and

both phylotype I, and phylotype IIA. A restricted number of HGT

events were apparent between phylotypes I, III and IV. In previous

work, recombination between strains was inferred from MLSA

data, and different patterns of exchanged were obtained particularly

with the IIB strains appearing isolated [48]. While homologous

recombination and HGT are two distinct processes, one can expect

the same limitations and patterns of exchange to have come out of

these two analyses. While in the former study, only nine genes were

compared, it is important to notice here that due to the data we

analysed (gene presence/absence), only the most obvious fraction of

the HGTs were probably detected in this current study. Also, the

network of gene exchange clearly bore marks of the CGH

microarray design since the sequenced strains (exception of

IPO1609) were involved in most of the detected HGTs.

Some of the strains, namely CFBP4808 and CFBP3858,

displayed a high number of HGT events and a large number of

genes present in only one of the six fully sequenced strains

(Figure S4). These features explain their positions on the phyloge-

netic tree as outliers (CFBP3858) or with a long terminal branch

(CFBP4808). As recombination is known to confound phylogeny

(HGT will impact the binary matrix of presence/absence exactly as

recombination would do on a DNA sequence alignment), their

positioning highlights the difficulty to reconstruct the phylogenies of

strains with reticulate evolutionary past. Interestingly, strain-specific

genes from all the six sequenced strains were present in high

proportions in their genomes (see Figure S4). Although consistent

with the propensity of R. solanacearum to take up and recombine

exogenous DNA (up to 30 Kb of contiguous DNA in planta [60–62]),

whether these gene transfers occurred in planta or not and directly

between R. solanacearum strains or from free DNA fragments remains

difficult to identify.

Interestingly, these two strains belong to the phylotype IIB, a

phylotype that probably emerged in South America [48,63] but was

isolated in Israel (CFBP4808) and the Netherlands (CFBP3858).

They may have had the opportunity to acquire genes from other

distinct groups in those locations. In fact the region of origin and the

region of diversification may not overlap. Identifying key reservoir

species or geographic areas from which gene transfers originated

would likely help to predict the impact of human activity such as

agriculture and trade, on the emergence of new pathogens.

Concluding remarks
The pan-genomic microarray approach, with its high through-

put capability, provided us with the opportunity to assess the gene

content of a large number of strains and to reconstruct the history

of gene loss and acquisitions. The pan-genome of R. solanacearum is

extremely large with almost 70% of genes considered as accessory,

and it is interesting to note that it is also highly variable between

strains. While gene presence/absence represents only a subset of

the sequence variation between strains, we believe it is informative

to analyze the dynamics of gene presence/absence, loss and gain

in order to understand one of the major layers of bacterial genome

evolution. It was clearly apparent that factors such as gene

function and gene localization are important in determining gene

transferability. While it has been hypothesized that the distinct

phylotypes may have evolved in different species [31], gene flow

between phylotypes may indicate that speciation is not achieved

[64]. Further studies, intending to examine the genome fluidity

and precise conditions that favor possible gene transfer would

provide invaluable insights into species delineation and the

emergence of successful pathogens.

Supporting Information

Figure S1 CGH microarrays validation on R229 and
UW551. Plot of the false-positive (blue), and false-negative (blue)

calls from the CGH-microarrays on the UW551 (solid lines) and

R229 (dashed lines) genomes depending on the cutoff used to

define homology. (B) Pairwise homology of the CDS from the six

sequenced genomes targeted by the same probe.

(TIFF)

Figure S2 Phylogenetic tree based on the 2,992 blocks of
probes. Phylogenetic tree of the R. solanacearum species complex

inferred using MrBayes and based on the hybridization results of

2,992 blocks of contiguous probes in the genomes and display the

same evolutionary patterns. Strains used for the construction of the

microarrays are in bold. Phylotype classification is indicated using

colored rectangles. Black circles on nodes indicate posterior

probability branching support superior to 95%.

(TIFF)
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Figure S3 Cold-spots and hot-spots of gene movement.
Schematic representation of the cold-spots and hot-spots of gene

movement along the genomes of the GMI1000, CFBP2957,

CMR15 and PSI07 strains. Cold-spots are indicated in blue while

hot-spots are indicated in red. Putative IS elements are represented

with purple lines. On every genome, two tests (p-value ,1024) are

represented. For each test, gene movement patterns were compared

to those obtained after 10,000 permutations of gene order using a

sliding window of 100 (A), 200 (B), 400 (C) and 1,000 (D) genes. In

the first ‘‘global’’ test, permutations were performed over the

concatenated chromosome and megaplasmid. This test was

designed to detect differential patterns between both components.

In the second ‘‘local’’ test, permutations were performed on each

genomic component separately. This second test was designed to

detect intra-component patterns of differential gene movement.

(TIFF)

Figure S4 Distribution of the genes specific to the six
sequences strains. Phylogenetic tree of the R. solanacearum

species complex along with the per-strain proportion of genes

targeted by probes designed as specific to the GMI1000,

CFBP2957, Molk2, IPO1609, CMR15 and PSI07 strains.

(TIFF)
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