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Abstract
The complex biological relationships underlying malaria transmission make it difficult to predict
the impact of interventions. Mathematical models simplify these relationships and capture
essential components of malaria transmission and epidemiology. Models designed to predict the
impact of control programs generally infer a relationship between transmission intensity and
human infectiousness to the mosquito, requiring assumptions about how infectiousness varies
between individuals. A lack of understanding of human infectiousness precludes a standard
approach to this inference, however, and field data reveal no obvious correlation between
transmission intensity and human population infectiousness. We argue that model assumptions
will have important consequences for predicting the impact of control programs.
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Mathematical models and malaria control
Renewed interest in the global eradication of malaria has led to an increase in the number of
mathematical modeling frameworks developed to guide national malaria elimination
strategies [1, 2]. These models attempt to distill the complex interactions between the
Plasmodium parasite and its human and mosquito hosts into a single conceptual framework
in order to predict the efficacy of particular interventions, as well as to provide general
insights into how elimination strategies may be applied across a range of transmission
settings. The technical difficulties associated with measuring malaria transmission intensity,
however, create challenges for mathematical modelers. The lack of unambiguous, consistent
data with which to parameterize key components of the transmission cycle generates
variable model outcomes and limits the predictive capacity of these frameworks.
Furthermore, field data provide only point estimates of transmission intensity or infection
prevalence for a particular time and place. In order to generate a dynamic framework,
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mathematical models must make assumptions about the mechanisms linking the human and
mosquito components of transmission based on this limited data (Box 1).

Malaria transmission results from heterogeneous processes occurring on multiple biological
levels. Studies examining heterogeneity of mosquito biting rates, parasite virulence and
spatial patterns of infection have shown that substantial variation exists, and this can have
important impacts on model behavior [3-14]. Heterogeneities associated with human
infectiousness to mosquitoes have received less attention, although there is considerable
evidence that variation in human infectiousness occurs between individuals and over the
course of a single infection [15-25]. The sources of heterogeneity in individual
infectiousness remain unclear (reviewed in [26]). Gametocytes, the sexual parasite stage
responsible for human-to-mosquito transmission, occur at low densities and are notoriously
difficult to detect by microscopy. Even with sensitive measurement of gametocytes by
polymerase chain reaction (PCR), the relationship between gametocyte density in the blood
and the successful infection of mosquitoes and subsequent parasite development is complex
and nonlinear [27, 28]. Some of the most detailed information about individual
infectiousness comes from malaria therapy data from the 1940s and 1950s [20, 21, 23, 24].
Although this data provides extensive information about the relationships between asexual
parasitemia, gametocytemia, and infectiousness to mosquitoes in naive adults with
neurosyphilis, it remains unclear how applicable these results are in a natural setting with
heterogeneous human, mosquito, and parasite populations. These issues make it difficult to
measure population-level patterns of infectiousness in endemic regions, and complicate the
quantitative description of the human infectious reservoir within mathematical frameworks.

Here we discuss the methods used to incorporate human infectiousness in malaria
transmission models, highlighting the implications of model assumptions for the dynamics
of transmission and the efficacy of control programs. We have chosen a common model
framework to illustrate our points, but these issues apply more generally to any transmission
model. We argue that our lack of understanding of human infectiousness may lead to
inaccurate model predictions and misdirected policy recommendations. More data are
needed on the determinants of human infectiousness, as well as longitudinal studies in areas
with changing transmission intensity.

Modeling individual infectiousness
Mathematical models that describe malaria infection dynamics must explicitly define
relationships between different components of the transmission cycle. Here we focus on how
assumptions about individual infectiousness are scaled up to define an average population
infectiousness, which determines the probability that a mosquito bite on a random individual
will infect the mosquito. Two frequently used methods to define individual infectiousness
are (i) linking individual infectiousness to parasite density (either sexual or asexual stage
parasites) [29-34] and (ii) linking individual infectiousness to disease class [12, 13, 35-48].
Both methods are motivated by the notion that asexual parasite density is linked to
gametocyte density, which in turn determines an individual's infectiousness. This
assumption is primarily based on studies in neurosyphilis patients, which show that a peak in
asexual parasite density is followed after some delay by a peak in gametocyte density, and
that this peak is associated with increased infectiousness to mosquitoes [21, 24]. Several
field studies, however, suggest that this relationship may be more complex in natural
settings. Boudin et al. [18] uncovered no correlation between asexual density and
infectiousness and multiple studies have found that subpatent infections efficiently transmit
gametocytes to mosquitoes [15, 19, 25]. Even the density of gametocytes in the blood is
only a mildly good indicator of infectiousness in natural settings [17, 18], in part because
transmission-blocking immunity impacts parasite development in the mosquito rather than
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affecting gametocyte numbers [26]. Thus, the molecular determinants of human
infectiousness are poorly understood, making it difficult to delineate meaningful categories
of infectiousness for modeling purposes.

The second method - linking individual infectiousness to disease class - avoids explicit
assumptions about the link between asexual parasite density, gametocytemia and
infectiousness. It assumes instead that disease severity is linked to parasite density and
makes a direct association between disease class and infectiousness. The simplest version of
this framework involves a single class of infectious individuals [12, 41, 44, 45, 47]. More
intricate versions further subdivide infected individuals into groups that are expected to have
different average levels of infectiousness. For example, Griffin et al. [40] group infectious
individuals into three different classes: (i) highly infectious individuals with clinical
symptoms (symptomatic), (ii) mildly infectious asymptomatic individuals with patent
parasitemia (asymptomatic) and (iii) slightly infectious asymptomatic individuals with
subpatent parasitemia (subpatent). Although this hierarchy of infectiousness is most
common, asymptomatic infections are sometimes assumed to be more infectious than
symptomatic infections [35], reflecting the many uncertainties regarding the relative
infectiousness of different disease classes [16, 22, 49]. Because of these complications, there
is no standard approach for incorporating infectiousness within model frameworks. Here we
have chosen to focus on a simple model framework for clarity, but it is important to
emphasize that the same kinds of decisions must be made regardless of the level of
individual detail included in a model.

Modeling the overall population infectiousness
Once individual infectiousness has been defined, the model must then be calibrated to
ensure that it reflects a particular transmission setting. Studies comparing EIR to patterns of
infection in endemic regions provide data relating transmission intensity to the distribution
of disease classes (see hypothetical example in Figure 1a). Population infectiousness (κ), the
probability that a mosquito bite on a random individual will result in mosquito infection, is
often adjusted to reflect this relationship for a specific location. Figure 1b compares this
process for two different models of relative infectiousness that result in the same population
infectiousness: (i) the “standard” assumption that symptomatic infections are highly
infectious, asymptomatic infections are mildly infectious and subpatent infections are only
slightly infectious and (ii) the “uniform” assumption that all infections are equally
infectious. At equilibrium, these differences will not impact model results, but as EIR
changes – for example following an intervention – assumptions about the distribution of
individual infectiousness will have an impact (Figure 1c). In the case of the “standard”
assumption, for example, population infectiousness in the model may even increase when
transmission intensity drops because more people become symptomatic.

Regardless of how individual infectiousness is encoded, every malaria transmission model
implicitly or explicitly specifies a relationship between EIR and population infectiousness.
Data from field studies, however, show no discernible pattern between EIR and population
infectiousness (Figure 2), making it very difficult to validate modeled EIR-κ relationships.
Even if we allow for measurement error and lack of standardized techniques, there is no
reason to expect a single setting-transcending relationship between EIR and population
infectiousness. The dominant determinants of infectiousness will likely differ between
settings due to a multitude of factors including spatial and temporal heterogeneity in
transmission and interventions, variable levels of transmission-blocking immunity, human
genetic background and parasite genetic diversity. More data is needed that directly
measures the EIR-κ relationship longitudinally in areas where transmission intensity is
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changing, providing insights into how setting specific variables modulate the underlying
determinants of infectiousness.

The effect of model assumptions on the predicted impact of control
The modeling decisions about how to represent the human infectious reservoir have
important implications for predicting the impact of control programs. Box 2 illustrates the
amount of mosquito control that would be required to reduce transmission by a prescribed
amount under the two hypothetical models shown in Figure 1. Mosquito control will cause a
direct reduction in EIR and lead to a change in the population infectiousness - as specified
by the EIR-κ relationship - which will further modify the EIR. We use mosquito control as
an example because it does not directly modify the EIR- κ relationship specified by the
human model and thus allows us to separate the direct and indirect impacts of the control.
Importantly, these issues occur for both simple deterministic models and in complex
individual-based formulations, but the impact of model uncertainties are less transparent and
harder to interpret as model complexity increases.

Conclusions
Mathematical models can identify key knowledge gaps and examine the implications of
biological relationships that are heterogeneous and hard to measure in the field, providing
qualitative insights into the mechanisms of malaria transmission. Making quantitative
predictions is much more challenging. Understandably, the quality of a malaria transmission
model is often measured by its ability to reproduce observed patterns of clinical disease and
infection prevalence. As a result, poorly understood aspects of transmission like human
infectiousness are often adjusted to ensure internal model consistency. Here we have shown
that assumptions about heterogeneities in human infectiousness can have important
implications on predictions about the impact of control programs. Clearly communicating
model assumptions and sources of uncertainty is critical, not only for the interpretation of
model results by policy makers, but also to drive an iterative process between the
development of theory and data collection. Basic research aimed at elucidating the main
drivers of infectiousness in different transmission settings will be critical to understanding
the potential impact of different control interventions.
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Highlights

- Mathematical models of malaria control must define human-to-mosquito infectiousness.

- Uncertainty about human infectiousness can lead to inaccurate policy predictions.

- More longitudinal data is needed on human infectiousness in endemic regions.
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Box 1. Integrating data within models of malaria transmission dynamics

The malaria transmission cycle links mosquito-to-human transmission and human-to-
mosquito transmission via the human and mosquito infection dynamics. Although field
data from the mosquito component of the transmission cycle can be used to estimate
parameters from the human component, point estimates do not explain how changes in
mosquito infections translate to changes in human infections or how these changes will
impact transmission overall. Mathematical models aim to track these interactions by
mechanistically linking dynamics in the direction that transmission actually occurs. This
means that whereas field data can use the prevalence of mosquito infection to estimate
human population infectiousness without directly considering the human population
dynamics, mathematical models must use the current state of the modeled human
population to arrive at human population infectiousness. This involves specifying how
individual infectiousness is defined and then scaling up to population infectiousness. An
important consequence of this is that data used to estimate population infectiousness is
often different from data used to inform how population infectiousness is modeled
(Figure I).

Malaria transmission terms

• population infectiousness (κ): The probability that a mosquito becomes
infected after biting a random human.

• sporozoite: The parasite form responsible for transmission from mosquito to
human.

• sporozoite rate (s): The fraction of the mosquito population that has
sporozoites. The sporozoite rate is often used as a proxy for the fraction of
mosquitoes that are infectious to humans.

• mosquito density (m): The average number of mosquitoes per human.

• mosquito biting rate (a): The average number of times a mosquito will bite
humans per unit time.

• human biting rate (ma): The expected number of mosquito bites received by
an average human per unit time. The human biting rate can be mathematically
expressed as the product of the mosquito density and the mosquito biting rate.

• entomological inoculation rate (EIR): The expected number of infectious
mosquito bites received by an average human per unit time. The EIR can be
expressed mathematically as the product of the human biting rate and the
sporozoite rate (EIR = mas).
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Figure I. Estimating parameters versus modeling the malaria transmission cycle. Field
data on the sporozoite rate (s) can be used to estimate both the entomological inoculation
rate (EIR) and the population infectiousness (κ). The EIR is estimated using the
sporozoite rate and the human biting rate (black arrow following the counterclockwise
direction of the transmission cycle). The population infectiousness can be estimated using
the sporozoite rate together with other information about the mosquito dynamics (black
arrow flowing opposite to direction of transmission cycle). Mathematical models,
however, must map information about the sporozoite rate forward along the direction of
the transmission cycle to determine population infectiousness. This involves making
assumptions about individual infectiousness within the human population. Mathematical
models will often use available data on individual infectiousness to inform this choice.
There is no standardized method for collecting data on individual infectiousness and a
sample of the types of data available are depicted (bottom shaded area).
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Box 2. The role of heterogeneity in human infectiousness on the modeled
impact of control

The specific assumptions about how infectiousness is distributed within the population
will impact how a population responds to an intervention. Consider for example how a
reduction in mosquito density translates to a change in EIR (Figure I). Decreasing
mosquito density via the parameter m will cause a direct reduction in the EIR. This
change in EIR will have downstream impacts dependent on the specific form of the
modeled EIR-κ relationship. In general, models producing different EIR- κ relationships
will require different levels of control to achieve a specified change in EIR (Figure II). In
this specific example of mosquito control, a uniform distribution of infectiousness (filled
circles) predicts a lower required reduction in mosquito density than a more
heterogeneous distribution (filled squares). Here we focus on the impact of reducing
mosquito density because it allows a clear separation between the direct impact of the
intervention and the indirect impact that occurs through the resulting modulation of the
population infectiousness. More generally, control measures, such as treatment, can
target the human population and directly modify the EIR- κ relationship. In this case
however, the resulting EIR- κ relationship will still depend on the specific assumptions
of how infectiousness is distributed within the population.

Figure I. Deconstructing direct and indirect impacts of mosquito control. (a) The relative
EIR after a reduction in mosquito density consists of the direct impact and an indirect
impact caused by the induced change in population infectiousness. This expression does
not depend on the specific details of the human model but instead only on the EIR-κ
relationship produced by the human model. (b) Consider an intervention that halves the
mosquito density. If the population infectiousness does not respond to this change then
the overall impact will be to halve the EIR (dashed horizontal line). Conversely, if
population infectiousness changes in response to the reduction in mosquito density then
the overall impact on EIR will be modulated by this effect. Namely, if population
infectiousness decreases the overall reduction in EIR will be greater (lower shaded
region) and if the population infectiousness increases the overall reduction in EIR will be
less (upper shaded region). Inset: The equation in (a) was computed using the
equilibrium sporozoite rate determined by a simple model for mosquito dynamics [51].
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Figure II. Required mosquito control depends on EIR-κ relationships Each curve
corresponds to a different initial and target EIR (as described in inset) and shows the
required percent reduction in mosquito density as a function of relative population
infectiousness. The relative population infectiousness is determined by the EIR-κ
relationship. For example each filled circle corresponds to the EIR-κ relationship as
specified by the “uniform” assumption and each filled square corresponds to the EIR-κ
relationship specified by the “standard” assumption (see Figure 1c).
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Figure 1. The impact of changes in transmission intensity (EIR) on population infectiousness
depends on infectiousness assumptions
(a) An example of the relationship between disease status and transmission intensity. When
EIR is low most infected individuals have little immunity and can suffer from disease (dark
grey), but as EIR increases and overall prevalence rises, increasing proportions of infected
individuals have asymptomatic or subpatent infections (medium and light grey,
respectively). (b) Calculating population infectiousness (κ) from the prevalence of infection
and distribution of disease classes. For a given parasite prevalence, two different
assumptions about infectiousness among different disease classes (“standard” and
“uniform”) are calibrated to yield the same population infectiousness. (c) The relationship
between EIR and population infectiousness (κ) for two different models. The functional
form of the EIR- κ relationship depends on the distribution of disease classes and the
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assumptions about how infectiousness is distributed between these classes. The two models
are calibrated for a particular setting (shown in (b)), which is the point where the solid and
dashed curves intersect (the calibrated population infectiousness). As transmission intensity
is decreased following control, the relationship between the new equilibrium EIR and κ
depends on assumptions about how infectiousness is distributed among the human
population.
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Figure 2. Estimates of annual transmission intensity (EIR) and population infectiousness (κ)
Data from a published survey [50] representing estimates of transmission intensity (annual
EIR) and population infectiousness (κ) for different settings. Transmission intensity (EIR) is
estimated using standard approaches that combine estimates of the human biting rate and
infection rates in the mosquito population. Estimates of population infectiousness were
attained directly using feeding experiments and/or indirectly using infection rates in the
mosquito population. If multiple estimates of population infectiousness were available for
the same site then the geometric mean was used. Inset: magnification of area inside dashed
box in main panel.
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