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Abstract

Sensory systems exhibit mechanisms of neural adaptation, which adjust neuronal activity based on 

recent stimulus history. In primary visual cortex (V1), in particular, adaptation controls the 

responsiveness of individual neurons and shifts their visual selectivity. What benefits does 

adaptation confer to a neuronal population? We measured adaptation in the responses of 

populations of cat V1 neurons to stimulus ensembles with markedly different statistics of stimulus 

orientation. We found that adaptation serves two homeostatic goals. First, it maintains equality in 

the time-averaged responses across the population. Second, it maintains independence in 

selectivity across the population. Adaptation scales and distorts population activity according to a 

simple multiplicative rule that depends on neuronal orientation preference and on stimulus 

orientation. We conclude that adaptation in V1 acts as a mechanism of homeostasis, enforcing a 

tendency towards equality and independence in neural activity across the population.

Sensory systems constantly exhibit perceptual adaptation, which goes unnoticed in our daily 

experience but becomes apparent after prolonged exposure to a given stimulus. Visual 

perception, for instance, can be profoundly affected after viewing steady motion1,2 or 

constant orientation3,4. Such perceptual phenomena are thought to arise from adaptation 

mechanisms that adjust neuronal activity based on recent stimulus history.

Sensory systems, indeed, exhibit various forms of neural adaptation5-14. In primary visual 

cortex (V1), in particular, adaptation controls the responsiveness of individual neurons6,15-20 

and shifts their visual selectivity6,15,16,21,22. While the first effect is akin to general neural 

fatigue, the second suggests a more specific adjustment of stimulus representation. 

However, sensory processing is mediated by neuronal populations23, and the overall effects 

of adaptation on population activity have been hypothesized2,24-26 but not measured. What 

benefits does adaptation confer to a neuronal population?
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Results

To characterize coding and adaptation in a large population of cortical neurons, we recorded 

spiking activity from the primary visual cortex (V1) of anesthetized cats using 10 ×10 

electrode arrays (Fig. 1b). We characterized responses as a function of stimulus 

orientation27 using sequences of static gratings with random orientation and phase, each 

presented for 32 ms (Fig. 1a). We considered stimulus ensembles with two statistical 

distributions5,7-10: uniform and biased. In the uniform case, the probability of each 

orientation was equal27. In the biased case, the probability of one orientation was markedly 

higher than the others.

As shown previously27, population responses to stimuli with uniform statistics could be 

accurately fitted on the basis of the tuning curves of the neurons. We illustrate this with the 

results of a typical experiment (Fig. 1c, e-g). The stimulus was a time series of orientations 

(Fig. 1e) and the population responses varied as a function of time and of the preferred 

orientation of the neurons (Fig. 1f). We divided the axis of preferred orientation evenly into 

bins, each pooling the activity of neurons with similar orientation preferences. The 

population activity tracked the stimulus closely. By applying simple regression to these 

responses, we obtained tuning curves for each of the bins of preferred orientation (Fig. 1c). 

These tuning curves are homogeneous: they are similar to each other except for their 

preferred orientation. As expected27, the tuning curves could be used to fit the population 

responses to the stimulus sequence through summation (Fig. 1g). This simple operation 

(followed by a mild nonlinearity27) captured a high proportion (63%) of the explainable 

variance in the population responses in this experiment. A similar result was observed in 5 

other experiments (Suppl. Fig. 1a).

When we changed the statistics of the stimulus ensemble, the cortex displayed a remarkable 

ability to adapt (Fig. 1i-k). We biased the stimulus sequence markedly in favor of one 

orientation (the “adaptor”), presenting it three times more often than the rest (Fig. 1i). Based 

on the tuning curves obtained with the uniform stimulus ensemble (Fig. 1c) the neurons 

selective for the adaptor orientation should respond on average much more than the others 

(Fig. 1k). The actual response of the population, instead, showed no such bias: the average 

over time of the cortical response to the biased stimulus ensemble did not show significant 

variation across neurons differing in preferred orientation (Fig. 1j). From the cortical 

responses it was not apparent that one orientation was shown three times more than the 

others. Evidently the neurons in visual cortex had adapted to the biased ensemble, and their 

adaptation had been strong enough to completely counteract the bias in the ensemble. 

Moreover, this adaptation was not so strong as to overcompensate, i.e. as to create a “hole” 

in the population responses.

The effects of adaptation were well described by a new set of tuning curves, one that was 

tailored for the biased ensemble (Fig. 1d,l). We obtained these adapted tuning curves (Fig. 

1d) by applying regression on the population responses to the biased ensemble (Fig. 1j). 
Applying these tuning curves to the biased stimulus ensemble (Fig. 1i) yielded a fit (Fig. 1l) 
that resembled closely the measured population responses (Fig. 1j). This fit captured 40% of 

the explainable variance in the responses, significantly higher than the 22% captured by the 
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homogeneous tuning curves. This increase in predictive power was observed in 4 other 

experiments (Suppl. Fig. 1c,d). In particular, the adapted tuning curves correctly captured 

how the average population response would show no trace of the bias in the stimulus (Fig. 

1l, bottom).

The adapted tuning curves were significantly different from those measured during the 

presentation of the uniform ensemble, both in this experiment (Fig. 1c, d) and the others 

(Suppl. Figs. 2 and 3). Indeed, if one used the adapted tuning curves to simulate the 

responses to the uniform ensemble, one would grossly underestimate the responses of some 

of the neurons (Fig. 1h, and Suppl. Fig. 1b).

Similar results were obtained in 9 experimental sessions in 3 cats (Fig. 2). To pool the 

results across sessions we gave the orientation of the adaptor the nominal value of 0 deg, and 

the average response to the uniform ensemble the nominal value of 1 (Fig. 2a). The average 

population response to the biased ensemble was flat (Fig. 2d), showing neither a peak nor a 

trough for the responses of neurons tuned to the adaptor. Looking at these average 

responses, it would be impossible to tell that the adaptor had been shown 3-5 times more 

than the other orientations. Indeed, there was no statistical difference between the average 

responses of neurons selective for the adaptor (0 deg) and for the orthogonal orientation (t-

test, p=0.98). As we have seen in the example experiment (Fig. 1), therefore, adaptation 

changed the tuning curves just as needed to counter the bias in the stimulus ensemble – 

neither too much nor too little.

Just as we have seen in the example data set (Fig. 1), achieving this equalization requires 

significant changes in tuning curves (Fig. 2). In other words, no single set of tuning curves 

could predict the measured responses to both the uniform and biased stimulus ensembles. 

For instance, the responses to the biased ensemble (Fig. 2d) could be fitted by the adapted 

tuning curves (capturing 54%±20% of the explainable variance, SE, n = 4, Fig. 2f), but 

could not be obtained from the homogeneous tuning curves, which predicted a non-existing 

peak in the population responses at the orientation of the adaptor (16%±12% of the 

explainable variance, Fig. 2e). Conversely, the responses measured with the uniform 

stimulus ensemble could be fitted by the homogeneous tuning curves (88%±16% of the 

explainable variance, n = 8, Fig. 2b), but could not be obtained with the adapted tuning 

curves, which predicted a non-existing hole in the population responses at the orientation of 

the adaptor (capturing 48%±11% of the explainable variance, Fig. 2c).

This analysis, therefore, reveals that adaptation maintains equality in the time-average 

activity of different neurons, in the face of biases in the stimulus ensemble. Achieving this 

equality requires appropriate calibration: if adaptation were stronger or weaker there would 

be a valley or a mountain in the population responses, and instead there is neither. Equality, 

however, can only be maintained for a range of stimulus biases. At the extreme, if a single 

orientation were shown 100% of the time (as is typically the case in previous studies of 

adaptation) one would expect the neurons selective for that orientation to respond more than 

the rest. Indeed, while we saw complete equalization when the probability of the adaptor 

was 30-40% (Fig. 2e), equalization was less perfect when we increased this probability to 

50% (Suppl. Fig. 4).
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In addition to equalization, adaptation helped maintain decorrelation across the population 

(Fig. 3). Because of the width of the tuning curves, a biased stimulus sequence tends to 

engage not only the neurons selective for the adaptor orientation but also those selective for 

nearby orientations. In the absence of adaptation, the activity of these neurons would 

therefore become highly correlated (a “correlation catastrophe”). To look for these effects, 

we computed the correlation coefficients between pairs of bins, for each combination of 

orientation preference. These are known as “signal” correlations28, and they reflect the 

similarity in tuning curves. As expected, the matrix of correlations in the uniform case was 

diagonal (Fig. 3a). The tuning curves obtained in this condition capture this diagonal aspect 

(Fig. 3b), but they also predict that in the responses to the biased stimulus ensemble there 

should be a strong central peak in the matrix (Fig. 3e): the “correlation catastrophe”. Instead, 

the population responses to the biased stimulus ensemble (Fig. 3d) showed a diagonal 

structure of correlations that is similar to the one seen with the uniform stimulus ensemble 

(Fig. 3a). Consistent with a longstanding theoretical proposal24,29-31, therefore, adaptation 

prevented responses of cortical neurons from becoming more correlated.

This effect of decorrelation could be captured by the adapted tuning curves: running the 

biased stimulus ensemble through these adapted curves resulted in a diagonal matrix of 

correlations without a central peak (Fig. 3f). The adapted tuning curves, instead, would not 

have been appropriate in response to the uniform stimulus ensemble, as they would have 

caused a large central hole in the matrix of correlations (Fig. 3c).

Taken together, these results indicate that adaptation provides two homeostatic effects to the 

population, maintaining equality not only in the first order statistics, but also in the second 

order statistics. These effects are achieved quickly, with an average time constant of 1.7 ± 

0.4 s (s.d., Suppl. Fig. 5). In such a short interval the cortex was able to engage adaptation 

mechanisms that effectively counteracted the bias in the stimulus ensemble, both in terms of 

first and of second order statistics. However, adaptation is known to operate on more than 

one time scale6,32,33. Perhaps a relevant determinant of time scale is the number of stimuli 

that adaptation mechanisms need to observe to be fully engaged. In our experiments, 1.7 s 

correspond to ~53 stimuli. It was sufficient for V1 to observe the same orientation in 16-26 

of those stimuli to drastically adapt its responsiveness and selectivity.

What does adaptation change in a population to allow it to discount these stimulus statistics? 

Since the effects of adaptation are captured by changes in tuning curves, the answer lies in 

the attributes of these tuning curves (Fig. 1c,d). To characterize these tuning curves, and to 

reveal more detailed effects, we examined the full matrix of responses to individual flashing 

gratings, averaging the results of all our experiments (Fig. 4a-c). This response matrix (Fig. 

4b) depends both on the preferred orientation of the neurons (rows) and on the orientation of 

the stimulus (columns). Taking sections across the rows yields the familiar tuning curves of 

each preference bin (Fig. 4a). Taking sections across columns instead yields population 

response profiles, one for each stimulus orientation (Fig. 4c).

The response matrix measured with the biased ensemble summarizes the effects of 

adaptation (Fig. 4d-f). A qualitative look at these tuning curves and population responses 

indicates that adaptation had two main effects. The first effect was an offset: a small 

Benucci et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2013 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduction of all responses, regardless of orientation preference (Fig. 4d) and of stimulus 

orientation (Fig. 4f). We will model this effect with a simple subtractive shift. The second 

effect was a marked reduction in amplitude of the tuning curves, which as strongest for the 

tuning curves of neurons with orientation preference near zero, the nominal orientation of 

the adaptor (Fig. 4d). This effect amounted to creating a hole in the diagonal of the matrix 

(Fig. 4e).

There are two simple ways to creating such a hole along the diagonal of the response matrix 

(Fig. 4e): across rows and across columns. The first possibility is intuitive and rests on 

neuron identity: adaptation would reduce mostly the responses of the neurons selective for 

the adaptor (Fig. 4d). The second possibility is less intuitive, and rests on the stimuli rather 

than on the neurons: adaptation would control the population responsiveness to different 

stimuli, reducing it most strongly for stimuli with the same orientation as the adaptor (Fig. 

4f).

Both descriptions are rooted in studies of adaptation in single neurons. The neuron-specific 

description of adaptation evokes simple forms of neural fatigue, and agrees with the view of 

adaptation as controlling a neuron's responsiveness or sensitivity18-20. The stimulus-specific 

description involves fatiguing stimuli (rather than neurons), reducing their effectiveness in 

driving the cortex. This description agrees with the stimulus-specific effects of adaptation 

that have been reported in single neurons 6,15-1734.

To resolve the dichotomy in these descriptions, we designed a simple model that includes 

both neuron-specific and stimulus-specific factors (Fig. 4g-i). In the model, the response 

matrix is scaled by two multiplicative gain factors. One of these factors specifies how much 

to reduce the responsiveness of each neuron (Fig. 4i) and the other specifies how much to 

reduce the responses to each stimulus (Fig. 4g). We described the gain factors as Gaussians 

peaking at zero (the orientation of the adaptor and the preferred orientation of neurons tuned 

for the adaptor). The two Gaussians are multiplied to obtain a matrix of gain factors (Fig. 

4h). In practice, the model works as follows: take the response matrix measured with the 

uniform stimulus ensemble (Fig. 4b), multiply it pointwise by the matrix of gain factors 

(Fig. 4h), and subtract a constant offset. The model is defined by only five parameters: the 

two widths and two amplitudes of the Gaussians, and the constant offset.

This simple model described accurately the effects of adaptation (Fig. 4j-l). The fitted model 

predicted a response matrix (Fig. 4k) that was extremely similar to the actual one (Fig. 4e), 

explaining 89.3% of the variance in this matrix. This similarity is confirmed by plotting the 

tuning curves on top of the measured ones (Fig. 4j) or by plotting the population response 

profiles on top of the measured ones (Fig. 4l). Similar results were obtained when working 

with matrices obtained separately from the experiments with adaptor probability of 30-40% 

(n=6, 80.0% of the variance) and with adaptor probability of 50% (n=5, 86.7% of the 

variance).

In particular, the model correctly predicted that adaptation would reduce the tuning curves 

and repel them away from the adaptor orientation (Fig. 5a-c). Because one of the gain 

factors depends on stimulus orientation (Fig. 4g), it scales the tuning curves more on the 
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flank towards the adaptor than on the other flank, pushing them away from the adaptor 

orientation (Fig. 5a). The result is that tuning curves are reduced6,18-20 (Fig. 5b) and change 

in preferred orientation15,16,21,22 (Fig. 5c). Our simple model captures these effects very 

precisely (Fig. 5a-c, green curves).

In addition, the model makes a novel prediction: that adaptation should not only reduce 

population response profiles but also repel them away from the adaptor (Fig. 5p-r). The 

second gain factor depends on preferred orientation (Fig. 4i), so it scales the population 

profiles more on the flank where neurons are selective for the adaptor than on the opposite 

flank, pushing them away from the adaptor orientation. These predictions are verified in the 

data: population responsiveness is reduced (Fig. 5e) and the peak of the population response 

profile is pushed away from the adaptor orientation (Fig. 5f). The model predicts these 

effects (Fig. 5d-f, green curves).

Because it accounts for responses simultaneously recorded from a population, the model 

allows us to measure the relative importance of stimulus-specific adaptation and neuron-

specific adaptation. Remarkably, the less intuitive component of the model, the one that is 

stimulus-specific (Fig. 4g) was even stronger than the neuron-specific one (Fig. 4i). The 

reduction in stimulus-specific gain was consistently larger than the reduction in neuron-

specific gain, both in individual experimental sessions and in averages across sessions 

(Suppl. Fig. 6). The most important effect of adaptation is therefore the one that is stimulus-

specific, as if adaptation had reduced the effective strength of stimuli with orientation near 

the adaptor.

Our analysis of the effects of adaptation at the level of populations has concerned the 

average responses that the neurons give to repeated stimulus presentations (commonly 

termed “signal”), and not the trial-by-trial deviations from these average responses 

(“noise”). Measurements performed in awake primates following traditional, prolonged 

adaptation to single stimuli suggest that adaptation reduces the correlation among these 

deviations (“noise correlations”, Ref. 28) in neuronal pairs35. Under our experimental 

conditions, however, we found little evidence for such an effect (Fig. 6). Indeed, adaptation 

to a biased ensemble reduced noise correlations in some pairs, but increased it in others (Fig. 

6a). The overall effect seemed to vary across data sets (Fig. 6b): in some, adaptation slightly 

reduced noise correlations (6/11 with p<0.05: Wilcoxon rank sum test), and in others it 

slightly increased them (4/11), or showed no significant difference (1/11). On average, 

however, noise correlations stayed quite constant: the average difference in noise correlation 

between experiments with biased statistics and experiments with uniform statistics was a 

negligible 0.02±0.06 (s.d., N = 69,596 pairs). Similar effects were seen when the spike 

binning was shifted relative to the stimulus refresh times (not shown), and when noise 

correlations were computed over longer time intervals (2 s bins rather than 32 ms bins, 

Suppl. Fig. 7). We then asked whether adaptation might influence noise correlations more 

for pairs that are selective for certain orientations than for others35. The results were 

negative, with similarly low effects of adaptation on noise correlations regardless of the 

preferred orientation in a pair, relative to the adaptor (Suppl. Fig. 8). These results indicate 

that under our experimental conditions the effects of adaptation on the population code can 
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be fully summarized by the effects on average signals and signal correlations, with little 

effect on trial-by-trial deviations from these signals.

Discussion

To summarize, we discovered that primary visual cortex displays a remarkable ability to 

counteract biases in the stimulus ensemble, by rapidly introducing the appropriate opposing 

biases in the responsiveness and selectivity of neurons. These adaptation phenomena are due 

to homeostatic mechanisms that have two simple goals: to maintain equality in the time-

averaged responses across the population, and to enforce independence in selectivity across 

the population.

These results provide experimental evidence for prescient previous proposals. The first goal, 

equalization, is consistent with proposals made by psychophysicists of adaptation being a 

“graphic equalizer” to counteract changes in the statistics of the environment1. It also echoes 

proposals that adaptation may act to “centre” a population response by subtracting the 

responses to the prevailing stimulus distribution25, or to scale responses so that the average 

of a measured signals is always mapped onto a fixed internal representation26 . The second 

goal, independence, was predicted by a longstanding proposal concerning the role of 

adaptation in maintaining decorrelation in cortex24,25,29,30.

We were able to understand the goals of these homeostatic mechanisms because we 

measured responses in a whole population, and because we measured activity concurrently 

with changes in stimulus statistics5,7-10. Recording from a whole population is a promising 

technique to study adaptation36. The key technical innovation here, however, lies in the 

choice of stimuli. These stimuli allowed us to observe the homeostatic mechanisms achieve 

their stable (and arguably intended) effects rather than their fleeting (and arguably 

unintended) aftereffects. By contrast, previous studies of adaptation in V1 used the 

traditional adapt-test technique6 developed in psychophysics1,3,37-41, where the phases of 

adaptation and response measurement are distinct. This technique can only reveal 

adaptation's aftereffects, those that persist after a change in stimulus properties even though 

they are no longer needed.

We further discovered that adaptation in primary visual cortex follows a very simple 

arithmetical rule to shape the population responses. At the heart of this rule is multiplication 

with two gain factors, one that depends on stimulus attributes and one that depends on 

neuronal preference. This rule provides a unified framework that encompasses the known 

effects of adaptation on responsiveness and orientation selectivity of individual V1 neurons. 

Having this arithmetical rule, in turn, can guide and constrain research into the underlying 

circuits and mechanisms. These could involve synaptic depression42,43 and fatigue at a prior 

cortical stage 34. For instance, since our recordings mostly targeted layer 2/3, the adaptation 

we measured there could be at least partially inherited from inputs from layer 4.

The mechanisms we have discovered may well operate in the whole cortex, but for now we 

can only demonstrate that they do so in primary visual cortex, and specifically in the 

processing of stimulus orientation. Future work could establish the degree to which our 
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observations generalize to other stimulus variables beyond orientation, and to other cortical 

areas beyond V1. Further work is also required to understand how the effects of adaptation 

in one sensory area cascade into subsequent ones, leading to compounding perceptual 

effects 44. For instance, the effects of adaptation observed in primary visual cortex appear to 

be quite distinct from those observed in cortical area MT (Refs. 34,45). It is not entirely 

clear to what degree these differences can be explained by inheritance. Moreover, though it 

is possible that the effects of adaptation in area MT would be consistent with those that we 

propose, this needs to be established experimentally, for instance by adapting MT neurons to 

aspects of the stimuli that do not elicit selective responses in V1.

Adaptation is thought to be a mechanism constantly at work throughout cortex. We tend to 

notice its perceptual effects only when it does not work properly, or rather when it is 

catching up with a marked change in stimulus statistics1-4. The simple arithmetical rules that 

we have uncovered to describe neural adaptation may guide future work to study this 

perceptual adaptation. Moreover, they provide a framework to link adaptation with other 

mechanisms of homeostasis, such as the ones at work during plasticity and development46. 

Meanwhile, the results we have observed in primary visual cortex offer a promising first 

glimpse at how an entire cortical population adapts to the statistics of its inputs.

Methods

Experiments were carried out at the Smith-Kettlewell Eye Research Institute, under the 

supervision of the local Institutional Animal Care and Use Committee. They were performed 

in the same animals and with the same methods as in our previous study27.

Briefly, 4 young adult female cats (2-4 Kg) were anesthetized with ketamine and xylazine 

during surgical procedures and with sodium pentothal and fentanyl during electrical 

recordings. A neuromuscular blocker was administered to prevent eye movements. The 

animals were respirated and the depth of anesthesia carefully monitored and adjusted by 

following EEG and vital signs. Utah probes (Blackrock, Utah) were inserted in area V1 with 

a pneumatic device to minimize tissue damage, and covered in 2% agar to improve stability. 

The probes consisted of a grid of 10×10 silicon electrodes with 400 μm spacing and 1.5 mm 

electrode length. Insertion depths were about 0.8–1 mm, resulting in recordings confined 

mostly to layers 2/3. Receptive fields were typically on the vertical meridian, indicating that 

the electrodes were placed at the border between areas 17 and 18, which together form cat 

area V1.

Stimuli were presented to the contralateral eye on a CRT monitor (refresh rate 120 Hz, mean 

luminance 32 cd/m2). They consisted of large, stationary gratings (30 deg in diameter) 

flashed in random sequence for 32 ms each. Each grating had one of 4 spatial phases and 

one of 6-12 orientations. The orientations could occur either with equal probability or with a 

biased statistics, where the ‘adaptor’ orientation had a higher probability of occurrence (p = 

0.30, 0.35, 0.40, or 0.50). Grating contrast was typically 50-80% and spatial frequency was 

0.2 cycles/deg. This spatial frequency was empirically determined to be effective in 

activating the recorded neurons, and is visible to neurons in both area 17 and 18 (Ref. 47). 

Sequences were broken into 4–8 segments lasting 6-20 s each. Additional control segments 
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were measured in response to gray screen. Segments were presented in random order and 

each block of segments was generally presented ten times.

Well-tuned multiunit activity was typically recorded from most of the 96 electrodes. Traces 

were acquired at 12 kHz and firing rates were obtained by low-pass filtering the spike trains 

with a cutoff at 25 Hz. Firing rates were then resampled at 32 ms intervals (the duration of 

our flashed gratings). To identify multi-unit activity (MUA) we set thresholds at 4 s.d. of the 

background noise in each of the 96 channels of the multielectrode array.

Population responses were computed by binning sites (15 deg bin width) according to their 

preferred orientation. Such preferred orientation was determined in the first experiment of 

the series with an unbiased stimulus sequence using event-related analysis27. Binned 

responses in subsequent experiments with a biased stimulus ensemble where normalized to 

the time averages of responses to the first experiment. To compute correlation coefficients, 

instead, responses were normalized to the standard deviation over time.

To study the effects of adaptation we could not use the traditional method of event-related 

analysis27 because this method works only for random stimuli whose distribution is uniform 

and spherical48. We therefore measured a neuron's filter (or receptive field) F(τ, θ)in time τ 

and orientation θ as the least-square solution to the equation r(t) = ΣθΣτS(t – τ, θ)F(τ, θ), 

where r(t) is the response of the neuron at time t and S(t – τ, θ) is the stimulus at time t – τ 

and orientation θ (a matrix of zeros and ones). We solved the equation in Matlab version 

R2012a using the pseudoinverse operator pinv. In the case of uniform stimuli, this procedure 

is analogous to simple stimulus-triggered averaging (Suppl. Fig. 9). Other aspects of the LN 

model, including the static nonlinearity, are as in our previous study27. The static 

nonlinearity was imposed to be the same when modeling the responses to uniform and 

biased stimuli; this ended up being an excellent approximation as the fits barely improved if 

we allowed two different nonlinearities in the two adaptation conditions.

Only experiments with average responses r(t) having a mean over variance (s/n) 

significantly lower at times before the stimulus onset than at times during peak response 

(~40 ms after stimulus onset) were considered for further analysis.

The filters F(τ, θ)were matrices of size 12 × 8, where 12 was the number of preferred 

orientations and 8 the number of time steps in the past (Suppl. Fig. 9a). From these matrices 

we obtained one-dimensional tuning curves by considering the time at which the filter 

attained its maximal value.

To study how adaptation affected the correlations between stimuli (Fig. 3) we first averaged 

responses across stimulus repetitions. Then, we normalized the data by the standard 

deviation over time of the responses in the uniform-ensemble condition. Finally, we 

computed the covariance between pairs of orientation bins: cov = E[(Ri – E(Ri))(Rj – E(Rj))], 

where E is the expectation operator, and Ri(t) and Rj(t) are the responses of neurons in bins i 

and j.

The model of adaptation (Fig 4g-l) specifies the responses to individual gratings of neurons 

selective for orientation θp to stimulus with orientation θs. The response of the neurons when 
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the stimulus ensemble is uniform is Runiform(θs, θp), and the responses when the stimulus 

ensemble is biased is Rbiased(θs, θp).

The model can be written as follows

where θa is the adaptor orientation. In this equation, α is an overall gain factor, K is a 

subtractive term, and S and P are terms that govern the stimulus-specific adaptation and the 

neuron-specific adaptation:

where G(μ, σ) is a circular Gaussian with mean μ and standard deviation σ. The value of 

28.3 deg was simply obtained by fitting a Gaussian function to the tuning curves. In other 

words:

The subtractive baseline K can be taken to be a constant or, for improved fits, to be a 

function of stimulus orientation as follows:

Here, the parameters k and σk determine the strength and tuning of the subtractive term. In 

the fits, the latter came out to be very large, leading to an almost flat curve, i.e. almost a 

constant.

The model, therefore, has five free parameters: the three multiplicative gain factors α, as, 

and ap, and the two parameters of the subtractive baseline, k and σk.

To compute noise correlations, we measured multiunit activity on 44-96 responsive 

recording sites per experiment. Sites were considered responsive if their mean response 

explained at least 10% of the variance across repeats. We divided time in 32 ms or 2 s bins 

and represented the spike count at time t of the ith site to the nth repeat of a stimulus 

sequence as ri,n(t). The noise correlations between a pair of sites i and j are calculated as the 

Pearson's linear correlation coefficient between (ri,n(t) – r̂i(t)) and (rj,n(t) – r̂j(t)), where r̂k (t) 

is the mean response of site k across all stimulus repeats. We also considered the time bins 

1.5 s after stimulus onset, to allow for the effects of adaptation to stabilize.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Adaptation in visual cortex prevents biases in the population
a: Stimuli were sequences of gratings with random orientation.

b: Layout of a 10×10 electrode array aligned with a map of preferred orientation (replotted 

from Ref. 49).

c: Tuning curves of neurons grouped by preferred orientation, measured with a uniform 

stimulus. Responses are scaled to the values of 1 at the preferred orientation and 0 at the 

orthogonal orientation.
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d: Tuning curves measured with a biased stimulus, where the orientation of 0 deg was 

presented more often than the others. Thicker curves in c and d are tuning curves of neurons 

selective for -15 deg and +15 deg.

e: A segment of the stimulus sequence in the uniform ensemble. Each dot symbolizes a 

grating. In the whole sequence, the probability of presentation across orientations is flat 

(bottom panel).

f: Responses to the sequence in e. Each orientation bin is normalized to its own time average 

(bottom panel).

g: Fitted responses using the homogeneous tuning curves. Time averages are in bottom 

panel, blue line.

h: Simulation made using the adapted tuning curves. Time averages are in bottom panel, red 

line.

i-j: Same as e-f, but for a biased stimulus ensemble. Responses have the same scaling factor 

as those in f.
k: Simulation made using the homogeneous tuning curves.

l: Fitted responses using the adapted tuning curves.

Data in this figure are from experiments 75-6-2+3, with adaptor probability of 35%. Error 

bars in J-l bottom panels, ± 1 s.d.
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Fig. 2. Adaptation equalizes population responses
a: The time average of the population responses to uniform stimulus ensembles was 

normalized to 1.

b: Time averages of fits by homogeneous tuning curves, averaged across 5 experiments 

(blue curve, shaded area ± 1 s.e.).

c: Time averages of predictions by adapted tuning curves, averaged across 5 experiments 

(red curve).

d-f: Same as a-c in responses to stimuli in biased ensembles. Data and error bars (± 1 s.e., 

n=4) illustrate equalization, and are repeated in each panel. The homogeneous tuning curves 

incorrectly predict a large peak (e), whereas the fits by the adapted tuning curves correctly 

capture equalization (f).
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Fig. 3. Adaptation decorrelates population responses
a: Correlation coefficients between pairs of neuronal bins measured with the uniform 

stimulus ensemble (n=5). The values on the diagonal are scaled to 1. The subsequent panels 

have the same scaling factors.

b-c: Correlation coefficients of responses fitted by uniform tuning curves (b) and predicted 

by adapted tuning curves (c).

d-f: Same as a-c for responses to stimuli in the biased ensemble. The homogeneous tuning 

curves incorrectly predict a central peak in correlation (b) whereas the fits by the adapted 

tuning curves correctly capture a diagonal matrix (c).
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Fig. 4. Neuron-specific and stimulus-specific components of adaptation
a: Tuning curves measured with uniform stimulus ensembles, averaged over all 11 sessions 

in 4 cats. As elsewhere, zero indicates the orientation of the adaptor.

b: Matrix of responses to individual gratings, as a function of preferred orientation and 

stimulus orientation.

c: Population response profiles in response to stimuli of different orientations.

d-f: same as a-c, measured in responses to stimuli with biased statistics.

g-i: A simple multiplicative model of adaptation, based on two gain factors, one dependent 

on stimulus orientation (g) and one dependent on neuronal preferred orientation (i). Their 

product is a gain matrix (h).

j-l: Model fits. Format is as in d-f. The predicted response matrix (k) is, obtained by 

multiplying the gain matrix by the response matrix measured with the uniform ensemble 

(inset). Predicted tuning curves (j) and population response profiles (l) closely resemble the 

measured ones (replotted in red).
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Fig. 5. Effects of adaptation on tuning curves and population responses
a: Tuning curves of neurons selective for +15 deg and -15 deg relative to adaptor, measured 

with uniform stimuli (blue curves, left scale), with biased stimuli (red curves, right scale). 

Green curve shows model fit.

b: Changes in tuning curve amplitude as a function of preferred orientation. Red dots are 

data, green curve is the model fit. Points marked 1 and 2 indicate the examples in a.

c: Same as b, but for changes in preferred orientation.

d-f: Same as a-c, but for population response profiles.
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Fig. 6. Adaptation to biased ensembles does not affect pairwise noise correlations
a: Noise correlations between pairs of units in response to uniform and biased ensembles. 

Colors distinguish data sets (n=11). For graphical purposes, only a randomly selected 5% of 

the 69,596 pairs are displayed.

b: The same data, averaged within each data set (n = 11, each with 1,892-9,120 pairs). The 

error bars indicate ± 1 s.d. of the difference in noise correlations in responses to the uniform 

and biased ensembles.
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