Skip to main content
. 2012 Oct 16;90(3):369–387. doi: 10.1007/s11524-012-9769-4

Table 2.

ARIMA models, goodness-of-fit, stationary R2, and effect coefficient (ω) for the impact assessments of the NYC and Madrid birth outcomes with (a) a pulse or short-term-change-independent variable and (b) a level or permanent (perm)-change-independent variable

Sites and outcomes ARIMA model Fit statistics Stationary R2 Effect coefficient for event variable
NYC
 LBW pulse and perm (0,1,1) (0,0,0) Q = 11.8 df = 17 p = 0.812 0.26 ω = 0.005 p = 0.979
 Preterm birth pulse (1,0,0) (1,0,1) Q = 12.3 df = 15 p = 0.659 0.09 ω = −0.001 p = 0.992
 Preterm perm (0,1,1) (1,0,1 Q = 14.9 df = 15 p = 0.462 0.32 ω = −0.026 p = 0.914
 IMR pulse (0,1,1) (1,1,1)a Q = 20.4 df = 15 p = 0.158 0.65 ω = 0.118 p = 0.820
 IMR perm (0,1,1) (1,1,1)a Q = 20.7 df = 15 p = 0.146 0.68 ω = 0.967 p = 0.003
Madrid
 LBW pulse (0,1,1) (1,1,0)b Q = 16.6 df = 16 p = 0.410 0.79 ω = 1.247 p < 0.001
 LBW perm (0,1,1) (1,1,0)b Q = 16.6 df = 16 p = 0.410 0.79 ω = 1.247 p < 0.001
 Preterm birth pulse (1,1,0) (1,0,1)b Q = 15.7 df = 15 p = 0.405 0.40 ω = 1.33 p < 0.01
 Preterm birth perm (1,1,0) (1,0,1)b Q = 12.8 df = 15 p = 0.614 0.51 ω = 0.198 p = 0.390
 IMR pulse (0,1,1) (0,1,1)c Q = 8.4 df = 16 p = 0.937 0.65 ω = 0.585 p = 0.587
 IMR perm (0,1,1,) (0,1,1)c Q = 9.1 df = 16 p = 0.911 0.65 ω = −0.790 p = 0.204

aDummy variable 1-year delayed so that the intervention =0 for quarter 1, 1990 to quarter 3, 2002 and =1 for quarter 4, 2002 to quarter 4, 2008

bOutliers controlled

cDummy variable 1-year delayed so that the intervention =0 for quarter 1, 1990 to quarter 1, 2005 and =1 for quarter 2, 2005 to quarter 4, 2009