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Abstract 

Objective: Tooth/implant supported fixed prostheses may present biomechanical 

design problems, as the implant is rigidly anchored within the alveolus, whereas 

the tooth is attached by the periodontal ligament to the bone allowing movement. 

Many clinicians prefer tooth/implant supported fixed prosthesis designs with rigid 

connectors. However, there are some doubts about the effect of attachment 

placement in different prosthesis designs. The purpose of this study was to exam-

ine the stresses accumulated around the implant and natural teeth under occlusal 

forces using three dimensional finite element analysis (3D FEA). 

Materials and Methods: In this study, different connection designs of 

tooth/implant fixed prosthesis in distal extension situations were investigated by 

3D FEA. Three models with various connection designs were studied; in the first 

model an implant rigidly connected to an abutment, in the second and third mod-

els an implant connected to abutment tooth with nonrigid connector in the distal 

part of the tooth and mesial part of the implant. In each model, a screw type im-

plant (5×11mm) and a mandibular second premolar were used. The stress values 

of these models loaded with vertical forces (250N) were analyzed. 

Results: There was no difference in stress distribution around the bone support of 

the implant. Maximum stress values were observed at the crestal bone of the im-

plant. In all models, tooth movement was higher than implant movement. 

Conclusion: There is no difference in using a rigid connector, non rigid connector 

in the distal surface of the tooth or in the mesial surface of an implant. 

Key Words: 3D Finite Element Analysis; Fixed Prosthesis; Rigid Connection; 

Non- Rigid Connection 
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INTRODUCTION 

Dental implant has been accepted as a success-

ful clinical reality due to osseointegration. De-

spite the fact that  dental  implants   have  been 

 

used widely for restoring complete and partial 

edentulous jaws, still there is debate on con-

necting the implant to the natural tooth [1]. 
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Having used implant in fixed partial denture, 

fixed prostheses can be supported either by 

implant or tooth/implant (tooth/implant sup-

ported fixed prostheses [TIFPs]).  

According to Branemark protocol in partially 

edentulous dentition taking into account the 

differential reaction of the implant and natural 

tooth in static and dynamic load, the connec-

tion of the natural tooth to the implant is 

avoided [2]. Since there is a biomechanical 

challenge in connecting teeth to osseointegrat-

ed implants, the use of rigid connectors (RCs) 

in TIFPs is not supported by Skalak [3,4]. Im-

plants being rigidly fixed to the bone differ 

from natural teeth surrounded by periodontal 

ligaments in terms of viscoelastic properties. 

Consequently,  under  masticatory load, differ- 

ent patterns of stress and strain can be seen in 

the bone around the implant and the tooth [5-

8].  Besides,  the  stress  and  strain  pattern  on 

natural  teeth  and  the  surrounding structures, 

which healthy periodontal ligament allows a 

mobility of 50 to 200 µm to the natural teeth 

and the flexibility of the bone may allow 10 

µm implant movement [6]. The other criterion 

is that no lateral force should be designed on 

the prosthesis.  

To compensate for dissimilar mobility of natu-

ral teeth and implant systems, several specific 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

methods have been suggested. 

Non rigid connectors (NRCs) act as stress 

breakers with the ability to separate the splint-

ed units [8,14], an implant with a stress-

absorbing element (intra mobile element or 

stress-breaking element) or an implant with a 

stress-eliminating space have been recom-

mended by some authors for TIFPs [6,15,20].  

However, several reports have explored the 

use of non-rigid connectors and the association 

with abutment tooth intrusion [16,17].  

Theoretically, the tooth intrusion phenomenon 

could be the consequence of disuse atrophy, 

mechanical binding and weakened rebound 

memory.  

On the other hand, thanks to prosthesis and 

implant, rigid connectors have the inherent 

flexibility to modify dissimilar mobility char-

acteristics [18].  

Although the long-term radiographic evalua-

tion of TIFPs is in favor of non-rigid connect-

ors for less bone loss around  the   implant   in 

comparison with rigid connectors [18,19], 

there is no agreement on proper connector’s 

design selection for TIFPs systems.  

The outcome of in vitro studies has shown un-

equal force distribution which is not usually 

compatible with the observed results in in vivo 

studies [ 20-23, 28-33].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material Young (Elastic)’s Modulus (MPa) Poisson’s Ratio 

Cortical bone 13700 0.30 

Cancellous bone 1370 0.30 

Titanium (implant system) 103400 0.35 

Gold alloy 100000 0.30 

Porcelain 69000 0.28 

Dentin 18600 0.31 

Pulp 3 0.45 

Periodontal ligament 69 0.45 

 

Table1. Mechanical properties of the Materials 
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MATERIALS AND METHODS 

The review of the literature reveals that con-

sensus regarding the use of RCs, NRCs or 

stress-absorbing element has not been 

achieved. Besides, there is no detailed assess-

ment of the role and location of NRCs between 

the natural tooth and implant [24-27, 34]. In 

this in vitro study, our null hypothesis was that 

various connection designs in the TIFPs may 

not change the load transfer between the im-

plant and tooth abutments. Therefore, the pur-

pose of this study was to examine the stress 

distribution on the supporting structures of the 

TIFPs under static vertical loads with the 3D 

FEA. In this study, three types of different 

TIFP designs in the distal extension partially 

edentulous mandible were evaluated. It was 

assumed that the first and second molars were 

extracted and an implant was inserted in the 

second molar position. Computer tomography 

(CT) images of an adult human mandible was  

used to make the three dimensional model of 

the edentulous mandible distal to the second 

premolar [35-37]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CT data in DICOM format was imported into 

the software of Rapid Form (INUS Technolo-

gy, Seoul, Korea).  

In this software, the CT data were directly 

converted to surface and finally the solid mod-

el. The height of the posterior mandibular re-

gion was determined as 23mm, the cortical 

bone thickness was determined as 2mm and 

the periodontal membrane width was accepted 

as 0.25mm [38].  

For the solid-model construction of these pros-

theses, three extracted intact teeth (second 

premolar, first and second molars) and an im-

plant fixture (Biomet 3i, 5×11) were used. 

They were digitized using the optical digitiz-

ing system ATOS II (GOM, Braunschweig, 

Germany) [39,41].  

This system digitizes the objects with high ac-

curacy and 3D local.  The measured data can 

be exported as point clouds, sections or STL-

data. Here, STL-data imported to Rapid Form 

(INUS Technology, Seoul, Korea) was used to 

make the solid models of the teeth and implant 

system (Fig 1) [41-,43].  

 

Fig1. The prepared 3D solid model, A) the 3-unit FP, B) the implant system, C) the assembled model con-

sisting of tooth (second premolar), PDL, the implant system, the 3-unit FP, and alveolar bone. 
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Fig2. The equivalent Von Mises stress contours, A) model 1, B) model 2, C) model 3 
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Then the models of the pulp and the simplified 

0.25mm periodontal ligament (PDL) of the 

second premolar were obtained as reference 

from Wheeler`s measurements [38]. The axes 

of the natural teeth and the implants in the 

models were compatible with the Spee Curve. 

In addition, the prepared models of the teeth 

were used to construct a 3-unit FPD in Solid 

Works 2008 environment [42].  

In this design of the prosthesis, the thickness 

of porcelain was 1.5 to 2mm and gold alloy 

was used as a metal substructure material (Ta-

ble 1) [44]. Finally, all these prepared models 

were assembled. Three models consisted of: 

Model 1: The second premolar and the implant 

were connected rigidly. 

Model 2: The second premolar and the implant 

were connected by a non-rigid attachment with 

the matrix connector positioned on the distal 

side of the second premolar. 

Model 3: The second premolar and the implant 

were connected by a non-rigid attachment with 

the matrix connector positioned on the mesial 

side of the implant (Table 2). 

When a rigid connector was used in the FE 

models, the nodes attached to the patrix/matrix 

components at the same location needed to 

merge to modify the original interfacial fixa-

tion (contact), becoming a bonded condition.  

This did not allow relative micro-motion and 

the displacement was continuous between the 

different materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, mesh generation and data pro-

cessing were carried out in the 3D FEM analy-

sis package (ABAQUS V6.7-1; Simulia Corp., 

Providence, USA). The mesh consisted of the 

4-node linear tetrahedral solid elements with 

an approximate element size of 0.3mm 

(300μm) to obtain more accurate results [38].
  

The entire model included 911,449 elements 

and 1,196,657 nodes.
 

Materials used in this study were  evaluated  as
 

homogenous, isotropic and linear and the os-

seointegration of the implants was accepted as 

100% [26]. In the mathematical model, while 

the implants were directly in contact with the 

bone, the natural teeth had primary mobility 

within the borders of the periodontal mem-

brane. Besides, the matrix and the patrix sur-

faces of the NRC of the TIFP were allowed to 

vertically move on each other. The nodes at 

the mesial and distal surfaces of the alveolar 

bone were fixed in all directions as the bound-

ary condition. Contact between the patrix and 

matrix surfaces of the nonrigid connectors was 

assigned as tangential-frictionless (non bond-

ed), to simulate the sliding function of a non-

rigid connector; whereas the other parts of  

the model were assumed to be completely tied 

to each other. A linear static analysis was per-

formed on the prepared 3D solid models with a 

vertical occlusal load of 250 N on the occlusal 

surface of each tooth at a right angle (0° to the 

long axis of supports) on the central fossa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fixed prosthesis design 

 

Model 1 
The second and the implant are connected rigidly 

 

Model 2 
The second premolar and the implant are connected by a nonrigid  attachment with the ma-

trix connector positioned on the distal side of the premolar 

 

Model 3 
The second premolar and the implant are connected by a non-rigid attachment with the ma-

trix connector positioned on the mesial side of the implant 

 

 

Table 2. Fixed Prosthesis Designs Used in this Study 
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C 

Fig 3. The Vone Mises stress contours of the implant, A) model 1, B) model 2, C) model 3 
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RESULT 

Stress at Bone Regions 

The patterns of stress distribution in all three 

models were almost similar, but the differ-

ences were in the stress values. The maximum 

stress values in the mesial and distal surfaces 

of the crestal region of the implant bone inter-

face was 45.62 and 31.05 MPa, respectively. 

The maximum stress values accumulated 

around the natural tooth were 6.47 MPa in the 

mesial and 3.68 MPa in the distal crestal sur-

face. The equivalent Von Mises stress con-

tours for the rigid connection configuration are 

shown in Figure 2A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 2 (The second premolar and the implant 

are connected by a non-rigid attachment with 

the matrix connector positioned in the distal 

side of the second premolar):  

The highest equivalent Von Mises stress val-

ues were obtained in the cortical bone region 

of both mesial and distal sides with values 

ranging between 46.69 and 25.38 MPa, respec-

tively. The maximum stresses around the natu-

ral tooth were 10.10 MPa and 3.29 MPa in 

mesial and distal crestal region, respectively. 

The Von Mises stress contours for Model 2 are 

shown in Figure 2B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Around 

Natural Tooth (MPa) 

 

Around 

Implant Abutment(MPa) 

 Mesial Distal Mesial Distal 

Model 1 6.47 3.68 45.62 31.05 

Model 2 10.10 3.29 46.69 25.38 

Model 3 9.64 3.67 46.98 21.78 

 

Table 3. Von Mises Stresses at Critical Regions (MPa) 

 

Fig 4.The equivalent Von Mises stress in the bone regions 
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Model 3 (The second premolar and the implant 

are connected by a non-rigid attachment with 

the matrix connector positioned on the mesial 

side of the implant): The highest equivalent 

Von Mises stress values were 46.98 and 21.78 

MPa, respectively in the mesial and distal cor-

tical region of the implant abutment. The 

stresses around the natural tooth were 9.64 and 

3.67 MPa in the mesial and distal cortical re-

gion, respectively. The equivalent Von Mises 

stress contours for Model 3 are shown in Fig-

ure 2C. Maximum equivalent Von Mises stress 

values in selected critical regions of the mod-

els are summarized in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stress at the Implant System 

There was no significant difference in the pat-

terns of  Von Mises  stress  distribution  in  im- 

plant system of all three models. 

But, the values of stress were different in each 

model.  

Model 1: The maximum stress value on the 

implant was 149.1 MPa. The maximum stress-

es in mesial and  distal side of the implant 

were 52.74 and 16.88 MPa, respectively. The 

Von Mises stress contours of the implant for 

Model 1 are shown in Figure 3. 

Model 2: The highest Von Mises stress was 

165.0 MPa for the implant system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 5. The Von Mises  stress of the implant 

 

 Maximum (MPa) Mesial (MPa) Distal (MPa) 

Model 1 149.1 52.74 16.88 

Model 2 165.0 57.66 18.70 

Model 3 138.3 67.59 12.17 

 

Table 4.Von Mises Stresses at the Implant System (MPa) 
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The maximum Von Mises stresses were 57.66 

and 18.70 MPa in the mesial and distal of the 

implant, respectively. The Von Mises stress 

contours of the implant for Model 2 are shown 

in Figure 3. 

Model 3: The highest equivalent Von Mises 

stress value was 138.3 MPa in the implant. 

The maximum Von Mises stresses accumulat-

ed in the mesial and distal side of the implant 

were 67.59 and 12.17 MPa, respectively.  

The Von Mises stress contours of the implant 

for Model 3 are shown in Figure 3. The maxi-

mum equivalent Von Mises stress values in all 

three models are summarized in Table 4. 

 

Displacement of the tooth and the Implant 

Model 1: The maximum vertical displace-

ments of the natural tooth and the implant 

were 26.01 and 20.24 μm, respectively. In ad-

dition, the maximum equivalent displacement  

was 28.74 μm for the natural tooth and 21.30 

μm for the implant. 

Model 2: The highest vertical displacements 

obtained for the natural tooth and the implant  

were 27.37 and 21.15 μm, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum equivalent displacements were 

28.89 μm for the natural tooth and 21.66 μm 

for the implant. 

Model 3: The highest vertical displacement 

values were 25.65 and 21.48 μm for the natu-

ral tooth and the implant, respectively. The 

maximum equivalent displacement was  28.19 

μm for  the natural tooth and 22.06 μm for the  

implant. The maximum vertical and equivalent 

displacement values for the natural tooth and 

the implant of the models are summarized in 

Table 5. 

 

DISCUSSION     

The study of biomechanics of stress loaded 

in dentistry has been performed widely by the 

3D  FEA  model;   however,   the   current   in 

vestiga- tions used in this  study by the FEA 

program were  limited  by  the  unrealistic  

assumptions such as  homogeneous, linear 

elastic and iso- tropic condition for the 

bone, tooth and  peri- odontal ligament.  

Furthermore, in this method it has been as-

sumed that bonding of the bone and the im-

plant are perfect. In this study, masticatory 

 

Fig 6. The displacement of the natural tooth and the implant 
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forces were static and loaded axially relative to 

the occlusal plane compared with the dynamic 

masticatory forces, which are oblique to the 

occlusal surface. Consequently, the reconstruc-

tion of all the natural details can hardly be ob-

tained.  

There is some controversy about the mechani-

cal property of the PDL. This range is about 

0.01MPa to 1750 MPa [49]. 

The Young
`
s modulus of the PDL in this arti-

cle seems to be a generally well-accepted val-

ue and has been used in many other similar 

studies. So Young`s modulus of the PDL was 

selected as 69MPa [21,24,25,34,48].  

Taking these limitations into account, identical 

stress values with reality cannot be achieved in 

this study, but the differences in stress and 

cones of different TIFP designs could be ob-

served. Stress increased in the mesiocervical 

surface of the implant in all TIFP designs. The 

implant movement in the alveolus is at the mi-

cron level as the rigid anchorage between the 

bone and the implant [26,47].  

Comparing the natural tooth with the implant, 

intrusion may occur during mastication in nat-

ural dentition, while stress may accumulate 

around the implant. 

Moreover, the rotational center in the implant 

which is at the crestal bone level is much 

higher than natural teeth [20,34,46]. Therefore, 

the cortical bone is the stress accumulation 

area in the implant support [34].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formation of cortical and spongious bone 

structure with two different structures and dif-

ferent elastic moduli and rigidity make the cor-

tical bone susceptible to stress accumulation in 

this area [20,34]. A similar outcome was 

achieved by Mish and Ismail regarding 3D 

FEA results [32]. Moreover, Melo et al. evalu-

ated the effect of NRCs in the amount of stress 

accumulated in the surrounding bone of TIFPs 

and they did not observe any reduction of 

stress [33]. In Menicucci et al. in vitro studies, 

the deteriorating effect was found in the static 

load compared with the transitional one.  

In addition, they stated that periodontal liga-

ment is the pivotal factor in the distribution of 

applied force between the tooth and the im-

plant with rigid connection [23].  

In terms of location of the NRC in the TIFP 

designs, Bechelli advocates the implant sup-

port sides. Physiological movement of the nat-

ural tooth, protection from torque effect and 

equal distribution of force on the implant and 

the tooth are the advantages of Bechelli’s sup-

ported design [13].  

Burak et al. investigated these three models by 

2D FEA and photoelastic analysis and stated 

that the stress on implant support was de-

creased more in model 3 than models 1 and 2. 

These last two models had the same stress dis-

tribution pattern [34]. This study is contrary to 

Burak’s finding and the stress distribution pat-

terns were similar in the three models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Natural Tooth (μm) 

 
Implant (μm) 

 
Vertical  

displacement 
Eqivalent  

displacement 
Vertical 

displacement 
Equivalent 

displacement 

Model 1 26.01 28.74 20.24 21.30 

Model 2 27.37 28.89 21.15 21.66 

Model 3 25.65 28.19 21.48 22.06 

 

Table5. Vertical and equivalent displacement at the natural tooth and the implant (μm) 
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Stress distribution in the mesiocervical area 

was much greater than the distocervical in the 

three models and it was great-er in models 2 

and 3 than model 1 (Fig. 4). 

It seems that the occlusal load of TIFP did not 

distribute equally in the supportive area. Stress 

distribution in model 3 was less than model 1 

and 2 as the attachment was on the mesial side 

of the implant.  

Implant stress distribution in model 2 was 

greater than the two other systems, as the pon-

tic was cantilevered (Fig. 5).  

Implant mobility was greater in model 3 and 

lesser in model 1, so placement of the attach-

ment implant may have an important role (Fig. 

6). 

 

CONCLUSION 

Within the limitations of this study, the follow-

ing conclusions are drawn: 

1- According to this 3D FEA, there is no dif-

ference in stress distribution of the implant 

bone support in the 3 models.  

2- Displacement of the implant in model 3 was 

greater than the two other models. 

3- There was less stress distribution in implant 

system in model 3 than the two other models. 

4- Different TIFP designs did not affect the 

stress accumulation around the natural teeth. 
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