Skip to main content
. 2012 Nov;146(3):251–260. doi: 10.1111/j.1399-3054.2012.01639.x

Table 2.

Characteristics of the calibration models for the three sensors. Models were parameterised for all data points or by separating the dicot (grapevine and kiwi) and monocot (wheat and maize) species (P < 0.0001 for all models). They were linear (a + bx) for Dualex, homographic [(ax)/ (b − x)] for SPAD and exponential (a + becx) for CCM. The 95% confidence intervals for the fit coefficients are indicated in brackets (non-significant in italic). Residual sum of squares (RSS), root mean square error (RMSE), bias (BIAS), standard error of prediction corrected for bias (SEPC), relative error (%) = SEPC/mean are given

Sensor Species Model parameters Model statistics Mean Min Max

a b c R2 RSS RMSE BIAS SEPC (µg cm−2) N Error (%)
Dualex Monocots −7.46 (2.0) 1.04 (0.046) 0.963 631 6.36 −5.67 2.89 39.9 12.4 61.6 79 7
Dicots −4.82 (1.4) 1.24 (0.047) 0.960 960 4.24 1.57 3.94 26.7 5.18 49.5 117 15
Global 1.12 (1.8) 0.993 (0.051) 0.883 4952 5.20 −1.34 5.03 32.0 5.18 61.6 196 16
SPAD Monocots 82.2 (10) 135 (11) 0.941 1000 3.56 −0.06 3.56 38.2 9.40 57.8 79 9
Dicots 59.0 (6.1) 95.0 (5.8) 0.915 2026 4.16 −0.12 4.16 29.1 1.30 47.6 117 14
Global 138 (47) 185 (48) 0.876 5269 5.18 0 5.18 32.7 1.30 57.8 196 16
CCM Monocots 72.4 (6.8) −68.8 (5.8) −0.0242 (0.0045) 0.913 1484 4.33 0 4.33 27.5 2.90 63.1 79 16
Dicots 86.1 (14) −84.9 (13) −0.0267 (0.0070) 0.897 2440 4.57 0 4.57 15.2 1.20 38.4 117 30
Global 61.1 (5.7) −60.2 (4.6) −0.0407 (0.0089) 0.863 5804 5.44 0 5.44 20.1 1.20 63.1 196 27