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Metabolites, typically recognized as small molecules that are involved in cellular reactions,
provide a functional signature of phenotype that is complimentary to the upstream
biochemical information obtained from genes, transcripts, and proteins. The high-level of
correlation between metabolites and phenotype has created a surge of interest in the field
that is reflected in the number of metabolomic publications growing from just a few articles
in 1999 to over five thousand in 2011. Although relatively new compared to its genomic and
proteomic predecessors, already metabolomics has led to the discovery of biomarkers for
disease, fundamental insights into cellular biochemistry, and clues related to disease
pathogenesis.1,2

The success of metabolomics over the past decade has largely relied on advances in mass
spectrometry instrumentation, which make it possible to detect thousands of metabolites
simultaneously from a biological sample. Coupled with developments in bioinformatic tools
such as XCMS-Online3,4, it has now become relatively routine to comprehensively compare
the levels of thousands of metabolite peaks in one sample group to another in an untargeted
manner. This approach, called untargeted metabolomics, has the potential to implicate
unexpected pathways with a unique phenotype or disease process.

Despite the attractiveness of having a comprehensive and unbiased approach for profiling
metabolites that is analogous to the other ‘omic sciences, an overwhelming proportion of the
metabolomics community exclusively uses a targeted platform in which only a specified list
of metabolites is measured. The benefit of such a targeted platform is speed. Unlike the
untargeted platform, after the targeted mass spectrometry methods are established, minimal
effort and resources are required to profile these specific metabolites over a large number of
samples. The major bottleneck of untargeted metabolomics, in contrast, has been the
challenge of determining the identities of the peaks found to be dysregulated in untargeted
profiling data.

Traditionally, the untargeted metabolomic platform involves multiple steps as represented in
Figure 1 (bottom). The first step is acquiring global mass spectrometry data (MS1) for each
of the samples. Next, these data are analyzed by using bioinformatic software which
performs quantitative analysis to find peaks that are significantly changing between sample
groups. The investigator then typically searches the mass-to-charge ratio of the peaks of
interest manually in metabolite databases. Searches that return hits within the mass accuracy
of the instrument are considered putative identifications. To confirm the identifications,

*To whom correspondence should be addressed. gjpattij@wustl.edu, siuzdak@scripps.edu.

NIH Public Access
Author Manuscript
Nat Biotechnol. Author manuscript; available in PMC 2013 May 29.

Published in final edited form as:
Nat Biotechnol. 2012 September ; 30(9): 826–828. doi:10.1038/nbt.2348.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tandem mass spectral data (i.e., MS2 data) from the research sample is then compared to that
of a commercial standard. To obtain MS2 data, a targeted MS2 analysis is typically
performed on one of the research samples in which the peak was determined to be up-
regulated. The fragmentation pattern of these MS2 data is then manually compared to the
MS2 data from a commercial standard (it should be noted that not all commercial standards
can be resolved by MS2 data alone, such as stereoisomers).

To facilitate metabolite identification in the untargeted workflow, in 2004 we launched a
freely accessible metabolite database called METLIN5 (http://metlin.scripps.edu) which
incorporates tandem mass spectral data from model compounds. Recently, other metabolite
databases such as the Human Metabolome Database (HMDB)6, MassBank7, and
LipidMaps8 have also begun incorporating MS2 data for standard compounds. These
repositories allow investigators to compare MS2 data from their research samples to MS2

data from model compounds catalogued in the database and thereby improve the speed,
efficiency, and cost effectiveness of untargeted studies.

Over the past 7 years, our objective has been to generate a sufficiently large MS2 library that
could be used in an automated fashion to revise the traditional untargeted metabolomic
workflow (Figure 1, bottom). Since we originally published METLIN in 2005, we have
increased the number of MS2 spectra included in the database by a factor of 150. As of April
2012, METLIN contains tandem mass spectral data on more than 10,000 distinct metabolites
at 4 different collision energies. These data were collected by using an electrospray
ionization-quadrupole time-of-flight (ESI-QTOF) mass spectrometer in both positive and
negative detection mode, representing a total number of more than 48,000 high-resolution
spectra. To estimate the current coverage of physiologically relevant metabolites in
METLIN and the other 3 largest databases available, metabolites were isolated from E.coli
and standard human serum by using defined protocols9. Samples were analyzed in both
positive and negative mode with an ESI-QTOF mass spectrometer (see Supplemental
Information). Each peak detected (excluding isotopes) was searched in each of the 4
databases. Figure 2 shows the number of hits for each database and also the subset of these
hits for which MS2 data are available to confirm the metabolite identification.

In addition to its increased size, here we describe a new version of the METLIN database
that we have developed with advanced functionality to automate metabolite identification
and reduce the labor-intensive bottleneck that has traditionally been associated with
untargeted metabolite profiling. Instead of comparing MS2 data from research samples to
MS2 data of commercial standards manually, the new version of METLIN allows
metabolomic investigators to upload their MS2 data to the METLIN database so that the
comparisons can be performed in an automated way. By having automated MS2 matching,
metabolite identities can be confirmed much more efficiently and faster compared to the
traditional untargeted metabolomic workflow. The quality of the match between the MS2

data from the research sample and the MS2 data from the METLIN library is measured by a
newly introduced METLIN scoring system, which is based on a modified version of the
established X-Rank scoring system10. To evaluate the correlation of METLIN MS2 data to
MS2 data acquired by using different instrument platforms, a comparative experiment was
performed using 23 metabolite standards. The compounds were measured on five different
instruments and the resulting spectra were matched against the METLIN database. The
correct result was returned based on the X-Rank scoring system as the first hit for 90 out of
the 101 spectra (89.1%, see Supplemental Information).

Some classes of metabolites produce characteristic fragments or neutral losses in their MS2

spectra that can be used as signatures for unique chemical functional groups. For example,
the MS2 spectra of phosphatidylcholines are characterized by a fragment at m/z 184.07. For
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instances in which the MS2 data uploaded by a user does not match any compound in the
database, the new version of the METLIN database will search the MS2 data for
characteristic fragments that can be used for molecular classification. The search can also be
performed manually by accessing the “fragment search” or “neutral loss search” options.
These tools provide a novel mechanism by which unknown metabolites can be chemically
classified and take advantage of the large number of MS2 data in the library.

To highlight the new database functionalities, we performed MS2 on select peaks from the
metabolite extracts of E. coli and human serum. These MS2 data were uploaded to the
METLIN database and fragment matching was performed by using the automated feature
described above. Representative examples of metabolites identified on the basis of MS1 and
MS2 data by using this method are shown in Supplementary Information. Identified
compounds ranged from lipids to smaller, polar metabolites. Additionally, representative
examples of unknown compounds that were classified by characteristic fragments are also
shown.

With the combination of the METLIN functionalities described here and the increasing
speed of QTOF instrumentation for performing MS2, there is potential to reduce the
untargeted metabolomic workflow to just two steps (Figure 1, top). By using high-scan
speed QTOF instruments, MS1 and MS2 data can be acquired simultaneously in a single run.
Quantitative information can then be extracted from the data by using the bioinformatic
software XCMS-Online3 and metabolites can be identified simultaneously by matching the
MS2 data against the METLIN MS2 database in an automated fashion, an approach that is
self-directed or autonomous in nature. With this truncated workflow, the time needed to
perform untargeted profiling and subsequent metabolite identification may be reduced to
minutes to hours compared to the days or weeks needed with the traditional workflow. The
results shown here from automated MS2 matching highlight the applicability of the method
for performing high-throughput, untargeted metabolomics by using such an accelerated
workflow. Moreover, we have shown that the coverage of the METLIN database enables the
characterization and identification of thousands of naturally occurring metabolites in
biological samples. Thus, the new METLIN database has the potential to expedite the
workflow by which we do untargeted metabolomics as more investigators obtain mass
spectrometry instrumentation that can produce high-quality MS2 data with increasing speed
and sensitivity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic representation of the traditional metabolomic workflow involving six steps and
the new METLIN-based workflow with only two steps. In the two-step autonomous
workflow, MS1 and MS2 data are acquired simultaneously during profiling and searched in
the METLIN database for automated identification, thereby reducing the time of the
workflow from days/weeks to minutes/hours.
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Figure 2.
Estimate of physiological relevance of metabolite coverage in metabolomic databases.
Metabolites from human serum and E.coli were isolated, analyzed in both positive and
negative mode by ESI-QTOF mass spectrometry, and the mass of each was searched with a
tolerance of 5 ppm in METLIN, LipidMaps, HMDB, and MassBank. LipidMaps contains
primarily data on lipids, a subset of the metabolome, but was included in the comparison for
the sake of completeness. The total number of features detected that were searched was
12,170 for human serum and 11,641 for E.coli. The number of hits on the basis of accurate
mass is shown in light blue and light red. The subset of those hits that also contain tandem
mass spectral data is shown in dark blue and dark red, respectively.
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