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Abstract
In this paper we develop a method to estimate both individual social network size (i.e., degree)
and the distribution of network sizes in a population by asking respondents how many people they
know in specific subpopulations (e.g., people named Michael). Building on the scale-up method of
Killworth et al. (1998b) and other previous attempts to estimate individual network size, we
propose a latent non-random mixing model which resolves three known problems with previous
approaches. As a byproduct, our method also provides estimates of the rate of social mixing
between population groups. We demonstrate the model using a sample of 1,370 adults originally
collected by McCarty et al. (2001). Based on insights developed during the statistical modeling,
we conclude by offering practical guidelines for the design of future surveys to estimate social
network size. Most importantly, we show that if the first names to be asked about are chosen
properly, the simple scale-up degree estimates can enjoy the same bias-reduction as that from the
our more complex latent non-random mixing model.
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1 Introduction
Social networks have become an increasingly common framework for understanding and
explaining social phenomena. Yet, despite an abundance of sophisticated models, social
network research has yet to realize its full potential, in part because of the difficulty of
collecting social network data. In this paper we add to the toolkit of researchers interested in
network phenomena by developing methodology to address two fundamental questions
posed in the seminal paper of Pool and Kochen (1978): first, we would like to know for any
individual, how many other people she knows (i.e. her degree, di); and second, for a
population, we would like to know the distribution of acquaintance volume (i.e. the degree
distribution, pd).1

Recently, the second question, that of degree distribution, has received the most attention
because of interest in so-called “scale-free” networks (Barabási, 2003). Some networks,
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particularly technological networks, appear to have power-law degree distributions (i.e., p(d)
~ d−α for some constant α), and a number of mathematical and computational studies have
found that this extremely skewed degree distribution may affect the dynamics of processes
happening on the network including the spread of diseases and the evolution of group
behavior (Pastor-Satorras and Vespignani, 2001; Santos et al., 2006). However, the actual
functional form of the degree distribution of the acquaintanceship network is not known, and
that question has become so central to some researchers that Killworth et al. (2006) went so
far as to declare that estimating the degree distribution is “one of the grails of social network
theory.”

While estimating the degree distribution is certainly important for understanding how
networks affect the dynamics of social processes, the ability to quickly estimate the personal
network size of an individual is probably of greater long-term importance to social science.
Currently, the dominant framework for empirical social science is the sample survey which
has been astutely described by Barton (1968) as a “meatgrinder” that completely removes
people from their social contexts. Having a survey instrument which allows for the
collection of social content would allow researchers to address a range of questions. For
example, to understand differences in status attainment between siblings Conley (2004)
wanted to know whether siblings who knew more people tended to be more successful.
Because of difficulty in measuring personal network size, his analysis was ultimately
inconclusive.

This paper develops a method to estimate both individual network size and degree
distribution in a population using a battery of questions that can be easily embedded into
existing surveys. We begin with a review of previous attempts to measure personal network
size, focusing on the scale-up method of Killworth et al. (1998b) which is promising, but
known to suffer from three shortcomings: transmission errors, barrier effects and recall
error. In Section 3 we propose a latent non-random mixing model which resolves these
problems. As a byproduct of the latent non-random mixing model we also obtain new
information about the mixing patterns in the acquaintanceship network that we believe will
be of substantive value to the social science community. We then fit the model to 1,370
survey responses from McCarty et al. (2001), a nationally representative telephone sample
of Americans. In Section 5, we draw on insights developed during the statistical modeling to
offer practical guidelines for the design of future surveys. Most importantly we show that
future researchers can achieve improved network size estimates without complex statistical
computation if the names asked about are chosen properly. We conclude with a discussion
of the limitations of this method, specifically how additional demographic information for
first names (currently collected but not released by the Census Bureau) could improve
network size estimates.

2 Previous research
The most straightforward method for estimating the personal network size of a respondent
would be to simply ask them how many people they “know.” Although we are not aware of
any direct evidence that this procedure works poorly, we suspect it would not be very
accurate because of the well-documented problems with self-reported social network data
(Killworth and Bernard, 1976; Bernard et al., 1984; Brewer, 2000; Butts, 2003). A number
of more clever attempts have been made to address these questions and we will review them

1At first glance it may seem that any method which could estimate the degree distribution could also estimate the degree of an
individual, but that is not the case. For example, the scale-up method of Killworth et al. (1998b), which will be described in greater
detail later in this paper, provides estimates of the degree distribution, but cannot be used to estimate the degree of a specific
individual. It is also the case that some methods that allow a researcher to estimate the social network size of an individual are so
costly that they cannot be employed on the scale required to estimate the degree distribution in a population.
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here. Because of space constraints we will not, however, review the larger literature on
network data collection in general; interested readers should see Marsden (1990, 2005).

In the literature, we have identified four main methods attempting to estimate individual
personal network size—the reverse small-world method, the summation method, the diary
method, and finally the phonebook method/scale-up method—and these methods will now
be described with strengths and weaknesses summarized in Table 1.2

One of the earliest methods for estimating personal network size was the reverse small-
world method (Killworth and Bernard, 1978; Killworth et al., 1984; Bernard et al., 1990)
which, motivated by the small-world experiments of Milgram (1967), asked respondents to
name someone they would use if they were required to pass a message to a given target. By
asking respondents about a large number of such targets, it is possible that a respondent will
enumerate a large proportion of his acquaintance network. Unfortunately, the required
number of targets is quite large; most studies use 500 targets which at a rate 15 seconds per
target would take more than 2 hours to complete. Also, this procedure of searching in one’s
social network for an appropriate contact is difficult to model (Watts et al., 2002) and
therefore is hard to embed within a statistical framework that would allow for formal
inference and estimation of sampling uncertainty (i.e., standard errors).3

An additional procedure that cannot be modeled statistically, but which can be embedded in
a survey is the summation method (McCarty et al., 2001). In this method, respondents are
asked how many people they know in a list of specific relationship types, for example,
immediate family, neighborhood, coworkers, etc., and these responses are then summed to
yield an overall estimate. McCarty et al. (2001) propose 16 relation types which when added
together should yield the total personal network size.4 Unfortunately, since it is not possible
to construct a list of mutually exclusive groups, this procedure will lead to double counting
(e.g., someone who is a coworker can also be a neighbor) and respondents may not be able
to answer these questions accurately.

In addition to the reverse small-world method and the summation method, there are two
methods that were originally proposed by Pool and Kochen which have had substantial
impact on later work. The diary method required subjects to keep a daily record of all known
people encountered over the span of 100 days. This method, while yielding very rich and
accurate data, requires too much cooperation and time to be employed in routine sample
surveys.5 Later efforts have attempted to reduce the burden on respondents by using data on
contacts that are recorded automatically; for example, Christmas card mailing lists (Hill and
Dunbar, 2003), email logs (Kossinets and Watts, 2006), or cell-phone records (Onnela et al.,

2The random subgraph method described in Granovetter (1976) is excluded because it only allows for the estimation of the average
personal network size in a population.
3The reverse small-world procedure bears some resemblance to the “name generator” procedures which are frequently employed in
network research (Burt, 1984; Campbell and Lee, 1991; Marsden, 2005). In these procedures, respondents are asked “name generator”
questions which elicit names and then “name interpreters” to probe the respondent’s relationship with the named individual. For
example, the 1985 and 2004 General Social Survey included social network modules where respondents were asked to list people with
whom “they discussed important matters.” This approach tends to produce “core” discussion networks which are much smaller
(around 3 people) than the total number of acquaintances (Burt, 1984; Marsden, 1987; McPherson et al., 2006). Others have employed
different name generators which yield weaker ties, for example Fischer (1982). Ultimately name generators depend on respondents
enumerating alters one by one and thus will never be able to quickly measure an acquaintance network that could number in the
hundreds or thousands.
4The 16 categories are: immediate family, other birth family, family of spouse or significant other, coworkers, people at work but
don’t work with directly, best friends/confidantes, people known through hobbies/recreation, people from religious organization,
people from other organization, school relations, neighbors, just friends, people known through others, childhood relations, people
who provide a service, and, lastly, other (McCarty et al., 2001).
5Gurevich (1961) employed this method for his dissertation research on social networks, but because of the logistical difficulties with
employing the diary method, he was only able to study 27 people.
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2007). Because these methods are not embeddable within the standard sampling survey
framework, however, their general applicability in the context of this paper is limited.

The second method proposed by Pool and Kochen, however, has the potential to be
employed in a survey framework and is amenable to statistical modeling. This method—the
phone book method—has also received the most subsequent development. In its original
form, a respondent was provided randomly selected pages from the phone book and based
on the proportion of pages which contained the family name of someone known to
respondent, it was possible to estimate the respondent’s social network size. The estimation
was improved greatly in later work by Freeman and Thompson (1989) and Killworth et al.
(1990) which instead of providing respondents pages of phone books provided them with
lists of last names. The general logic of this procedure was then developed further as the
scale-up method (Killworth et al., 1998b).

We believe the scale-up method holds the greatest potential for getting accurate estimates
quickly with reasonable estimates of uncertainty. The scale-up method, however, is known
to suffer from three distinct problems: barrier effects, transmission effects, and recall error
(Killworth et al., 2003, 2006). In Section 2.1 we will describe the scale-up method and these
three issues in detail. Section 2.2 presents an earlier model by Zheng et al. (2006) that
partially addresses some of these issues.

2.1 The scale-up method and three problems
Consider a population of size N. We can store the information about the social network
connecting the population in an adjacency matrix Δ such that δij = 1 if person i knows
person j.6 The personal network size or degree of person i is then di = Σjδij.

The most direct method to estimate the personal network size of an individual, di, would be
to collect a simple random sample of n other population members and ask person i if she
knows each of these others. Inference for individual degrees is then based on the fact that the
number of person i’s acquaintances among these n randomly sampled individuals from the
population, follows approximately a binomial distribution with size n and probability di/N.
In large population, however, this method is extremely inefficient because the probability of
a relationship between any two people is very low. For example, if one assumes an average
personal network size of 750 (as estimated by Zheng et al. (2006)), then the probability of
two randomly chosen Americans knowing each other is only about 0.0000025 meaning that
a respondent would need to be asked about millions of people to produce a decent estimate.

A more efficient method would be to ask respondents about an entire set of people at once.
For example, asking, “How many women do you know who gave birth in the last 12
months?” instead of asking the respondent if she knows 3.6 million distinct people. The
scale-up method uses responses to questions of this form (“How many X’s do you know?”)
to estimate personal network size. For example, if you report knowing 3 women who gave
birth this represents about one-millionth of all women who gave birth within the last year.
We could then use this information to estimate that you know about one-millionth of all
Americans,

(1)

6What it means to “know” someone is itself a complex issue. Throughout this paper we will assume McCarty et al.’s definition, “that
you know them and they know you by sight or by name, that you could contact them, that they live within the United States, and that
there has been some contact (either in person, by telephone or mail) in the past 2 years.”
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The accuracy of this estimate can be increased by averaging responses of many groups
yielding the scale-up estimator (Killworth et al., 1998b)

(2)

where yik is the number of people that person i knows in subpopulation k, Nk is the size of
subpopulation k, and N is the size of the population. One important complication to note
with this estimator is that asking “How many women do you know that gave birth in the last
12 months?” is not equivalent to asking about 3.6 million random people; rather the people
asked about are women, probably between the ages of 18 and 45. This creates statistical
challenges that are addressed in detail in subsequent sections.

To estimate the standard error of the simple estimate, we follow the practice of Killworth et
al. (1998a) by assuming

(3)

The estimate of the probability of success, p = di/N, is

(4)

with standard error (including finite population correction) (Lohr, 1999)

Our simple degree estimate d̂i then has standard error

(5)

For example, if we asked respondents about the number of women they know who gave
birth in the past year, the approximate standard error of the degree estimate is calculated as

If in addition, we also asked respondents the number of people they know who have a twin
sibling, the number of people they know who are diabetics, and the number of people they
know who are named Michael, we would have increased our aggregate subpopulation size,

, from 3.6 million to approximately 18.6 million and in doing so decreased our
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estimated standard error to 61.5. In Figure 1, we plot  against . The
most drastic reduction in estimated error comes in increasing the survey fractional
subpopulation size to about 20 percent (or approximately 60 million in a population of 300
million). After roughly 20 percent adding additional subpopulations to the survey still
decreases the estimated standard error but at a slower rate.7

The original studies using the scale-up method relied on 29 subpopulations including some
defined by first name (e.g., Michael, Christina), occupation (e.g., postal worker, pilot, gun
dealer), ethnicity (e.g., Native American), or medical condition (e.g., diabetic, on kidney
dialysis); a complete list can be found in McCarty et al. (2001).8

The scale-up estimator using “How many X do you know?” data, is known to suffer from
three distinct problems: transmission errors, barrier effects, and recall problems (Killworth
et al., 2003, 2006). Transmission errors occur when the respondent knows someone in a
specific subpopulation, but is not aware that they are actually in that subpopulation. For
example, a respondent might know a woman who recently gave birth, but might not know
that she had recently given birth. These transmission errors likely vary from subpopulation
to subpopulation depending on the sensitivity and visibility of the information. These errors
are extremely difficult to quantify because very little is known about how much information
respondents have about the people they know (Laumann, 1969; Killworth et al., 2006;
Shelley et al., 2006).

Barrier effects occur whenever some individuals systematically know more (or fewer)
members of a specific subpopulation than would be expected under random mixing, and
thus can also be called non-random mixing. For example, since people tend to know others
of similar age and gender (McPherson et al., 2001), a 30-year old woman probably knows
more women who have recently given birth than would be predicted just based on her
personal network size and the number of women who have recently given birth. Similarly,
an 80-year old man probably knows fewer than would be expected under random mixing.
Therefore, estimating personal network size by asking only “How many women do you
know who have recently given birth?”—the estimator presented above in (1)—will tend to
overestimate the degree of women in their 30’s and underestimate the degree of men in their
80’s. Because these barrier effects can introduce a bias of unknown size, they have
prevented previous researchers from using the scale-up method to estimate the degree of any
particular individual.9

A final source of error is that responses to these questions are prone to recall error. To
understand this problem, consider how you would answer the question, “How many people
do you know named Michael?” For many people this is not an easy question and there is
evidence that people cannot answer accurately (Killworth et al., 2003). If people were
answering such questions consistently we would expect a linear relationship between the
size of the subpopulation and the mean number of individuals recalled. That is, if the size of
subgroup doubled, the mean number recalled should also double. This is not the case as can
be seen in Figure 2, which plots the mean number known in each subpopulation as a
function of subpopulation size for the 12 names in the McCarty et al. (2001) data. The figure

7The above error estimates depend on subpopulation sizes only through their sum and thus one obtains the same reduction in
estimated error by asking one question about a large subpopulation as would be obtained by asking several questions about smaller
subpopulations. This, however, is not true in practice since, as we will shown in this paper, one single large subpopulation introduces
more recall error and bias due to social structure than multiple smaller subpopulations would.
8The survey actually included 32 subpopulations, but for three of them researchers lacked an estimated population size. For these
three groups, the scale-up method was used in reverse to estimate their group sizes given estimated individual degrees.
9However, since researchers believed that these biases likely canceled out for sufficiently large samples, they have still used the scale-
up method to estimate the degree distribution (McCarty et al., 2001).
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shows that there was over-recall of small subpopulations and under-recall of large
subpopulations, a pattern that has been noted previously (Killworth et al., 2003; Zheng et al.,
2006).

2.2 The Zheng et al. (2006) Model with Overdispersion
Before presenting our model for estimating person network size using “How many X’s do
you know?” data, it is important to review the multilevel overdispersed Poisson model of
Zheng et al. (2006) which, rather than treating nonrandom mixing (i.e., barrier effects) as an
impediment to network size estimation, treated it as something important to estimate for its
own sake. Zheng et al. (2006) began by noting that under simple random mixing the
responses to the “How many X’s do you know?” questions, yik’s, would follow a Poisson
distribution with rate parameter determined by the degree of person i, di, and the network
prevalence of group k, bk. Here bk is the proportion of ties that involve individuals in
subpopulation k in the entire social network. If we can assume that individuals in the group
being asked about (e.g. people named Michael), on average, as popular as the rest of the
population, then bk≈Nk/N.

The responses to many of the questions in the McCarty et al. (2001) data did not follow a
Poisson distribution, however. In fact, most of the responses show overdispersion, that is,
excess variance given the mean. For example, consider the responses to the question: “How
many males do you know incarcerated in state or federal prison?” The mean of the responses
to this question was 1.0, but the variance was 8.0, indicating that some people are much
more likely to know someone in prison than others. To model this increased variance Zheng
et al. (2006) allowed individuals to vary in their propensity to form ties to different groups.
If these propensities follow a gamma distribution with a mean value of 1 and a shape
parameter of 1/(ωk − 1) then the yik can be modeled with a negative binomial distribution,

(6)

where μik = dibk. Thus, the ωk estimates the variation in individual propensities to form ties
to people in different groups and represent one way of quantifying non-random mixing (i.e.,
barrier effects).

Despite being developed to estimate ωk, the Zheng et al. model also produces personal
network size estimates, di. However, these estimates are still susceptible to the problems of
transmission effects, barrier effects, and recall bias that plague personal network size
estimation based on the “How many X’s do you know?” data.

3 A new statistical method for degree estimation
We now develop a new statistical procedure to address the three known problems with
estimating individual degree using the “How many X’s do you know?” data: transmission
effects, barrier effects, and recall bias. Transmission errors, while probably the most difficult
to quantify, are also the easiest to eliminate. We will limit our analysis to the 12
subpopulations defined by first names that were asked about in McCarty et al. (2001). These
12 names, half male and half female, are presented in Figure 3 with their age profiles.
Though McCarty et al.’s definition of knowing someone (see footnote 6 on page 8) does not
explicitly require respondents to know individuals by name, we believe that using first
names provides the minimum imaginable bias due to transmission errors; that is, it’s
unlikely that you know someone, but don’t know his/her first name.10 Even though using
only first names controls transmission errors, it does not address bias from barrier effects or
recall bias. In the remainder of this section, we propose a latent non-random mixing model
to address these two issues.
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3.1 Latent non-random mixing model
We begin by considering the impact of barrier effects, or non-random mixing, on degree
estimation. Figure 4 gives a graphical representation of a hypothetical 30-year old male with
the shaded oval representing the breadth of the individual’s network. Following standard
network terminology (Wasserman and Faust, 1994), we refer to the respondent as ego and
the people to whom he can form ties as alters. In this case, the respondent’s alters are
divided in 8 alter groups based on age and gender, though one could divide the network
based on additional characteristics as well. This example captures the well-documented
tendency for people to form ties to alters that are similar (McPherson et al., 2001). In this
case, 30 percent of ego’s network is made up of individuals in the most similar alter
category (males 21–40) while only 1 percent of his ties are to the more socially distant alter
category of females 61 and older.

If we ignore non-random mixing and ask this respondent how many Michaels he knows, we
will overestimate the size of his network using the scale-up method because Michael tends
to be a more popular name among younger males (Figure 3). If we asked how many Roses
he knows, in contrast, we would underestimate the size of his network since Rose is a name
that is more common with older females. In both cases, the properties of the estimates are
affected by the demographic profiles of the names that are used in the estimate. The simple
scale-up method, however, does not account for this problem.

We model the non-random mixing sketched in Figure 4 using a negative binomial model.
Specifically, we model explicitly the propensity for a respondent in ego-group e to know
members of alter group a. The model is then

(7)

(8)

(9) and di is the degree of person i, e is the ego group that person i belongs to, Nak/Na is the
relative size of name k within alter-group a (for example, 4% of males between ages 21 and
40 are named Michael), and m(e, a) is the mixing coefficient between ego-group e and alter-
group a that we will define in the following:

(10)

where dia is the number of person i’s acquaintances in alter group a. That is, m(e, a)
represents the expected fraction of the ties of someone in ego-group e that go to people in

alter-group a. For any group .

Therefore, the number of people that person i knows in group k, given that person i is in
ego-group e, is based on person i’s degree (di), the proportion of people in alter-group a that
are in group k, (Nak/Na), and the mixing rate between people in group e and people in group

10A definition of “know” that requires respondents to know an acquaintance’s name would address this issue. One could define
“know”, for example, as was done in the 2006 General Social Survey: “people that you are acquainted with (meaning that you know
their name and would stop and talk at least for a moment if you ran into the person on the street or in a shopping mall).” However,
simply changing the definition of “know” may not have a strong effect on how respondents actually answer the questions.
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a, (m(e, a)). Additionally, if we do not observe non-random mixing, then m(e, a) = Na/N and
μike in (7) reduces to dibk in (6).

In addition to μike, the latent non-random mixing model also depends on the overdispersion,

, which represents the variation in the relative propensity of respondents within an ego
group to form ties with individuals in a particular subpopulation k. Using m(e, a) we model
the variability in relative propensities that can be explained by non-random mixing between
the defined alter and ego groups. Explicitly modeling this variation should cause a reduction

in overdispersion parameter  when compared to ωk in (6) and Zheng et al. (2006). The

term  is still present in the latent non-random mixing model, however, since there is still
residual overdispersion based on additional ego and alter characteristics that could effect
their propensity to form ties.

Fitting the model in practice requires choosing the number of ego groups, E, and alter
groups, A. In this case, we classified egos by gender and by three age categories—youth
(18–24), adult (25–64) and senior (65+)—giving a total of six ego groups. Constructing the
alter groups requires information on the demographic profiles of the names used. The only
systematic source of this data that we could find was from the Social Security
Administration (SSA) which provides decade-by-decade tables of the proportion of births in
a decade made up of children with a particular name.11 We use these tables as a proxy for
the relative proportion of individuals with a particular name in the population.12 Based on
this information we opted for eight alter categories based on crossing gender (2 categories)
and age (4 categories: 0–20, 21–40, 41–60, 61+). Together this gives us a total of 48 mixing
parameters, m(e, a), to estimate (6 ego groups by 8 alter groups). We believe that this
represents a reasonable compromise between parsimony of parameters and obtaining
detailed information. Our model is flexible in this regard in that we could further stratify
based on available information of either the respondents or the demographic profiles of
names. This flexibility is especially important for survey researchers who often have much
more demographic information about respondents than is currently available for the names.

3.2 Correction for recall error
The model in (7) is a model for the actual network of the respondents assuming only random
sampling error. Unfortunately, the observed data rarely yield reliable information about this
network because of the systematic tendency for respondents to under-recall the number of
individuals they know in large subpopulations (Killworth et al., 2003; Zheng et al., 2006).
For example, assume that a respondent recalls knowing five people named Michael. Then,
the estimated network size would be:

11The Census Bureau collects respondent’s first names so they have all the information that would be needed to compile the
demographic profile of first names, but they do not routinely release this information and our efforts to acquire this information were
ultimately unsuccessful.
12By using the SSA data we are making three implicit assumptions. First we assume that life expectancy is uncorrelated with an
individual’s first name, since the data provide information only about the number of individuals born with a certain name and not the
number alive at the time of the survey. This may not be true in all cases. If a particular name is more common with individuals living
in poverty, for example, the life expectancy for individuals with that name is likely overall lower. Second, we assume that individuals
with a particular first name are not predisposed to any behavior such as immigration or emigration that would disproportionately alter
the number of individuals in the population with that name at the time of data collection. We do not believe that this assumption is
problematic for the names in the McCarty et al. survey. Third, we must assume that the factors that in°uenced individuals’ decisions
about registering for social security are uncorrelated with first names, even during the early years of Social Security (which was
established in 1935) when registration was not universal. Again, there are conditions under which this conditions could be violated,
but there is little reason to believe that is the case here. Having data on the demographic profiles of the first names from the Census
Bureau would reduce the need for such assumptions.
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(11)

However, Michael is a common name, making it likely that there are additional Michaels in
the respondent’s actual network who were not counted at the time of the survey (Killworth
et al., 2003; Zheng et al., 2006). Consistent with the approach taken in Killworth et al.
(2003), we could choose to address this issue in two ways which, though ultimately
equivalent, suggest two distinct modeling strategies.

First, we could assume that the respondent is inaccurately recalling the number of people
named Michael she knows from her true network. Under this framework, any correction we
propose should increase the numerator in (11). This requires that we propose a mechanism
by which respondents underreport their true number known on individual questions. In our
example, this would be equivalent to taking the 5 Michaels reported and applying some
function to produce a corrected response (presumably some number greater than 5), which
would then be used to fit the proposed model. It is difficult, however, to speculate about the
nature of this function in any detail.

Another approach would be to assume that respondents are not recalling from their actual
network, but rather from a recalled network which is a subset of the actual network. We
speculate that the recalled network is created when respondents change their definition of
“know” based on the fraction of their network made up of the population being queried such
that they use a more restrictive definition of “know” when answering about common
subpopulations (e.g., people named Michael) than when answering about rare
subpopulations (e.g., people named Ulysses). This means that, in the context of Section 2.2,
we no longer have that bk ≈ Nk/N. We can, however, use this information for calibration
because the true subpopulation sizes, Nk/N, are known and can be used as a point of
comparison to estimate and then correct for the amount of recall bias. Previous empirical
work (Killworth et al., 2003; Zheng et al., 2006; McCormick and Zheng, 2007) suggests that
the calibration curve, f(·) should impose less correction for smaller subpopulations and a
progressively greater correction as the popularity of the subpopulation increases.

We devise such a calibration curve as described in the Appendix and apply it to our model
as follows:

(12)

where

3.3 Model Fitting Algorithm

We use a multilevel model and Bayesian inference to estimate di, m(e, a), and  in the
latent non-random mixing model described in Section 3.1. We assume that log(di) follows a
normal distribution with mean μd and standard deviation σd. Zheng et al. (2006) postulate
that this prior should be reasonable based on previous work (specifically McCarty et al.
(2001)) and found that the prior worked well in their case. We estimate a value of m(e, a) for
all E ego groups and all A alter groups. For each ego group, e, and each alter group, a, we
assume that log(m(e, a)) has a normal prior distribution with mean μm(e,a) and standard
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deviation σm(e,a). For , we use independent uniform(0,1) priors on the inverse scale,

. Since  is constrained to (1, ∞), the inverse falls on (0,1). The Jacobian for

the transformation is . Finally, we give noninformative uniform priors to the
hyperparameters μd, μm(e,a), σd and σm(e,a). The joint posterior density can then be
expressed as

(13)

where .

Adapting Zheng et al. (2006), we use a Gibbs-Metropolis algorithm in each iteration v.

1. For each i, update di using a Metropolis step with jumping distribution log

, (jumping scale of di)2).

2. For each e, update the vector m(e, ·) using a Metropolis step. Define the proposed
value using a random direction and jumping rate. Each of the A elements of m(e, ·)
has a marginal jumping distribution log(m(e, a)*) ~ N(m(e, a)(v−1), (jumping scale
of m(e, ·))2). Then, rescale so that the row sum is one.

3.
Update  where 

4.
Update , where .

5.
Update  for each e where 

6. Update , for each e where

7. For each k, update  using a Metropolis step with jumping distribution

, (jumping scale of )2).

4 Results
To fit the model we used data from McCarty et al. (2001) which consisted of survey
responses from 1,370 adults living in the United States who were contacted via random digit
dialing.13 We obtained approximate convergence of our algorithm (R̂max < 1.1; see Gelman
et al. (2003)) using three parallel chains with 2000 iterations per chain. We used the first

13More specifically, we used survey 1 (796 respondents, January 1998) and survey 2 (574 respondents, January 1999). Sometimes
responses were categorized, in which cases we used the central value in the bin (e.g., imputing 7.5 for the response 5–10). To correct
for responses that were suspiciously large (e.g,, a person claiming to know over 50 Michaels), we truncated all response at 30, a
procedure which affects only 0.25% of the data. We also inspected the data using scatterplots which revealed a respondent who was
coded as knowing seven people in each subpopulation. We removed this case from the dataset.
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half of each chain for burn-in and thin the chain every ten iterations. As we will demonstrate
using a simulation study in Section 5.2 (see Figure 11) , the latent non-random mixing
model estimates with more accuracy both the degree distribution and the individual degrees
of the respondents, a major improvement over previous methods. Next we will present those
estimates.

4.1 Personal network size estimates
We estimated a mean network size of 611 (median = 472) and the distribution of network
sizes in presented in Figure 5. The solid line in Figure 5 is a log-normal distribution with
parameters determined via maximum likelihood (μ̂mle = 6.2 and σ̂mle = 0.68); the lognormal
distribution fits the distribution quiet well.14 Given the recent interest in power-laws and
networks, we also explored the fit of the power-law distribution (dashed line) with
parameters estimated via maximum likelihood (αmle = 1.28) (Clauset et al., 2007). The fit is
clearly poor, a result consistent with previous work showing that another social network—
the sexual contact network—is also poorly approximated by the power-law distribution
(Hamilton et al., 2008). Together these results suggests that some of the interest around
power-law degree distributions in social networks may be misplaced.

The estimated distribution is also presented separately for males and females in Figure 6.
Overall, we estimate that the degree distribution for males is similar to the distribution of
females, though males have slightly larger networks on average. Amongst male respondents,
we estimate a median degree of approximately 500 (mean 640) and we expect 90 percent of
males to have degree between 172 and 1581. For females we estimate a median degree of
452 (mean 590) with 90 percent of females expected to have degrees between 157 and 1488.

Figure 7 compares the estimated degree from the latent non-random mixing model to
estimates from the method of Zheng et al. (2006), a previous method that did not explicitly
deal with the three known problems with estimating individual degrees using “How many
X’s do you know?” data. In general, the estimates from the latent non-random mixing model
tend to be slightly smaller with an estimated median degree of 472 (mean 611) compared to
an estimated median degree of 610 (mean 750) in Zheng et al. (2006). The difference in
degree estimates is likely due to non-random mixing in the acquaintance network that was
not addressed in the procedure of Zheng et al. (2006). Figure 7 also reveals a clear
advantage of the latent non-random mixing estimates, that the correction in degree
estimation differs among ego groups due to non-random mixing. For example, although
there were six males names and six female names used in the McCarty et al. data, these
names were of very different sizes so that the combined set of names queried included 16.1
million males but only 3.3 million females (see Figure 3). The Zheng et al. model does not
account for this fact and thus overestimates the degree of male respondents. The latent non-
random mixing model, however, incorporates this information and thereby produces the
corresponding corrections. Similarly, Figure 3 demonstrates that the names used by McCarty
et al. were most popular amongst adult respondents, which explains why Figure 7 shows the
largest correction on the degree estimates of adult respondents.

14Though we state in Section 3.3 that the prior distribution for the degree is lognormal, the observed lognormal distribution in Figure
5 is not an artifact of our model. We confirmed this claim by performing additional simulation studies showing that the model will
recover the true nature of the population distribution even if that distribution is not lognormal. In these experiments we first truncated
the distribution estimates presented in Figure 5 at the median. We then used these (now not lognormally distributed) values to generate
data using random draws from a negative binomial distribution. We fit our model to this artificial data and are able to accurately
recover the data-generating degree distribution.
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4.2 Mixing estimates
Though we developed this procedure to obtain good estimates of personal network size, it
also gives us information about the mixing rates in the population. As far as we know, this is
the first survey-based approach to estimate such information which is thought to be
important for the spread of disease (Del Valle et al., 2007) and information (Volz, 2006).
These results are presented in Figure 8. As mentioned in the previous section, the mixing
matrix represents the proportion of the network of a person in ego group e that is made up of
alter group a. In this case we have six respondent categories and eight alter categories,
demonstrating that the number of groups can be manipulated to suit individual research
questions.

In general, Figure 8 indicates plausible relationships within subgroups with the dominant
pattern being that individuals tend to preferentially associate with others of similar age and
gender, a finding that is consistent with the large sociological literature on homophily—the
tendency for people to form ties to those who are similar (McPherson et al., 2001). This
trend is especially apparent for adult males who demonstrate a high proportion of their ties
to other males.

With additional information on the race/ethinicity of the different names, the latent non-
random mixing model could be used to estimate the extent of network-based segregation, an
approach that could have many advantages over traditional measures of residential
segregation (Echenique and Fryer, 2007).

4.3 Overdispersion
Another way to assess the latent non-random mixing model is to examine the overdispersion

parameter  which represents the variation in propensity to know individuals in a particular
group. In the latent non-random mixing model, a portion of this variability is modeled by the
ego-group dependent mean μike. The remaining unexplained variability forms the

overdispersion parameter, . In Section 3.1 we predicted that  would be smaller than the
overdispersion ωk reported by Zheng et al. (2006) since Zheng et al. (2006) does not model
non-random mixing.

This prediction turned out to be correct. With the exception of Anthony, all of the estimated
overdispersion estimates from the latent non-random mixing model are lower than those
presented in Zheng et al. (2006). To judge the magnitude of the difference we create a

standardized difference measure, . Here, the numerator,  represents the
reduction in overdispersion resulting from modeling non-random mixing explicitly in the
latent nonrandom mixing model. In the denominator, an ωk value of one corresponds to no
overdispersion. The ratio for group k, therefore, is the proportion of overdispersion
encountered in Zheng et al. (2006) that is explicitly modeled in the latent non-random
mixing model. The standardized difference was on average 0.213 units lower for the latent
non-random mixing model estimates than for the Zheng et al. estimates, indicating that
roughly 21 percent of the overdispersion found in Zheng et al. (2006) can be explained by
non-random mixing base due to age and gender. If appropriate ethnicity or other
demographic information about the names were available, we expect this reduction to be
even larger.

5 Designing future surveys
In the previous sections we analyzed existing data in a way that resolves three known
problems with estimating personal network size from “How many X’s do you know?” data.
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In this section, we offer survey design suggestions that allow researchers to capitalize on the
simplicity of the scale-up estimates while enjoying the same bias-reduction as in the latent
non-random mixing model. The findings in this section, therefore, offer an efficient and
easy-to-apply degree estimation method that is accessible to a wide range of applied
researchers who may not have the training or experience necessary to fit the latent non-
random mixing model.

In Section 5.1, we derive the requirement for selecting first names for the scale-up method
so that the estimator is equivalent to the degree estimator from fitting a latent non-random
mixing model using MCMC computation.15 The intuition behind this result is that the
names asked about should be chosen so that the combined set of people asked about is a
“scaled-down” version of the overall population. For example, if 20% of the general
population is females under 30 then 20% of the people with the names used must also be
females under 30. Section 5.2 presents practical advice for choosing such a set of names and
presents a simulation study of the performance of the suggested guidelines. Finally, Section
5.3 offers guidelines on the standard errors of the estimates.

5.1 Selecting names for the scale-up estimator
Unlike the scale-up estimator (2), the latent non-random mixing model accounts for barrier
effects due to some demographic factors by estimating degree differentially based on
characteristics of the respondent and of the potential alter population. If, however, there
were conditions where the simple scale-up estimator was expected to be equivalent to the
latent non-random mixing model, then the simple estimator would enjoy the same reduction
of bias from barrier effects as the more complex latent non-random mixing model estimates.
In this section we derive such conditions.

The latent non-random mixing model assumes an expected number of acquaintances for an
individual i in ego group e to people in group k (as in (7)),

On the other hand, the scale-up estimator assumes

(14)

With the third equality in (14), the Killworth et al. scale-up estimator (2) is in expectation
equivalent to that of the latent non-random mixing model. This equality holds if

(15)

or

(16)

15Those using the simple scale-up method will not, however, be able to estimate the social mixing parameters.
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In other words, the two estimators are equivalent if there is random mixing (15) or if the
combined set of names represents a “scaled-down” version of the population (16). Since
random mixing is not a reasonable assumption for the acquaintances network of Americans,
we need to focus on selecting the names to satisfy the scaled-down condition. That is, we
should select the set of names such that, if 15% of the population is males between ages 21

and 40 ( ) then 15% of the people asked about must also be males between ages 21 and 40

In actually choosing a set of names to satisfy the scaled-down condition, we found it more
convenient to work with a rearranged form of (16):

(17)

In order to find a set of names that satisfy (17) we found it helpful to create Figure 9 that
displays the relative popularity of many names over time by gender; lighter color represent
greater popularity. Given the trendiness of names demonstrated in Figure 9, we tried to
select a set of names such that the popularity across alter categories ended up balanced. For
example, if we consider selecting names to address barrier effects due to age, the names
selected should be popular in a particular time period then unpopular in the remaining time
periods.

Consider selecting three names from Figure 9: Walter, Bruce and Kyle. Walter was most
popular amongst those born from 1910–1940, but relatively unpopular otherwise, whereas
Bruce was popular during the middle of the century and Kyle near the end. Thus, the effects
of names at any one time period will be canceled out by the popularity of names in the other
time periods, preserving the required equality in the sum (17).16

When choosing what names to use, in addition to satisfying (17), it is also important
consider the overall popularity of the names. For efficiency’s sake we suggest using names
that are not too obscure, but we also suggest avoiding names that are too popular in order to
minimize the recall problems described in Section 3.2. Generally, we found that names
comprising approximately 0.1 to 0.2 percent of the population were easiest to work with
because at this level there are few recall problems and the average response ranges from
0.6–1.3 from the respondents. Choosing names that are not commonly associated with
nicknames will also help to minimize transmission errors.

5.2 Simulation Study
We now demonstrate the above guidelines in a simulation study. Again, we use the age and
gender profiles of the names as an example. If other information were available the general
approach presented here would still be applicable.

The name-age profiles presented in Figure 9, are all of the desired popularity (between 0.1
and 0.2 percent of the population). We have plotted the figures separately for male and
female names and clustered names based on age profiles. In the figure for male names, there
are three general clusters, roughly corresponding to the younger, middle-aged, and older

16Note that this only works well if the names Walter, Bruce, and Kyle have similar overall popularity because if one is much more
popular than the others, it will dominate the combined set of names. The McCarty et al. names for example have gender profiles that
are reasonably balanced but the male names are overall much more popular than the female names, see Figure 3.
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respondents. For women the pattern is less clear, which is expected since female names tend
to be more trendy for short time periods.

We demonstrate our guidelines by selecting two sets of names directly from these figures.
The first set of names in Table 2—the good names—were selected using the procedure
described in the previous section. This represents our best attempt to choose a set of names
that will produce reasonable estimates from the simple scale-up estimator. As a point of
comparison we also selected another set of the names—the bad names—that were popular
with individuals born in the first decades of the twentieth century. As a final point of
comparison, we will also use the set of 12 names from the McCarty et al. data.

Figure 10 provides a visual check of the scaled-down condition (15) for these three sets of
names by plotting the combined demographic profiles for each set compared to that of the
overall population. The figure reveals clear problems with the McCarty et al. names and the
bad names. In the bad names, for example, a much larger fraction of the subpopulation of
alters is made up of older individuals than in the population overall (as expected given our
method of selection). Thus, we expect that scale-up estimates based on the bad names will
over-estimate the degree of older respondents.

We assessed this prediction via a simulation study that fit the latent non-random mixing
model to the McCarty et al. data and then used these estimated parameters (degree,
overdispersion, mixing matrix) to generate a negative binomial sample of size 1,370. We
then fit the scale-up estimate, the latent non-random mixing model and the Zheng et al.
model to this simulated data to see how these estimates could recover the known data-
generating parameters.

Figure 11 presents the results of the simulation study. In each panel the difference between
the estimated degree and the known data-generating degree for individual i is plotted against
the age of the respondent. For the bad names (Table 2) individual degree is systematically
over-estimated for older individuals and under-estimated for younger individuals in all three
models, but the latent non-random mixing model showed the least age bias in estimates.
This over-estimation of the degree of older respondents was expected given the combined
demographic profiles of the set of bad names (Figure 10). For the names from the McCarty
et al. (2001) survey the scale-up estimator and the Zheng et al. model over-estimate the
degree of the younger members of the population, again as expected given the combined
demographic profiles of this set of names (Figure 10). The latent non-random mixing model,
however, produced estimates with no age bias. Finally, for the good names—those selected
according to the scaled-down condition—all three procedures work well, further supporting
the design strategy proposed in Section 5.1.

Overall, our simulation study shows that the proposed latent non-random mixing model
preformed better than existing methods when names were not chosen according to the
scaled-down condition, suggesting that it is the best approach from estimating personal
network size with most data. However, when the names were chosen according the scaled-
down condition, even the much simpler scale-up estimator works well.

5.3 Selecting the Number of Names
For researchers planning to use the scale-up method an important issue to consider in
addition to which names to use is how many names to use. Obviously, asking about more
names will produce a more precise estimate, but that precision comes at the cost of
increasing the length of the survey. To help researchers understand the trade-off, we return
to the approximate standard error under the binomial model presented in Section 2.1.
Simulation results using 6, 12, and 18 names chosen using the guidelines suggested above
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agree well (details omitted) with the results from the binomial model in (5). This suggests
that the simple standard error may be reasonable when the names are chosen appropriately.

To put the results of (5) into a more concrete context, a researcher who uses names whose
overall popularity reaches 2 million would expect a standard error of around

 = 259 for a estimated degree of 500 whereas with ΣNk=6 million, she
would expect a standard error of 6.2 ×  = 139 for the same respondent.
Finally, for the good names presented in Table 2, ΣNk=4 million so a researcher could
expect a standard error of 177 for a respondent with degree 500.

6 Discussion and Conclusion
Using “How many X’s do you know?” type data to produce estimates of individual degree
and degree distribution holds great potential for applied researchers. These questions require
limited time to answer, impose no more demands on respondents than the average survey
question, and can easily be integrated into currently existing surveys. The usefulness of this
method has previously been limited, however, by three previously documented problems.

In this paper we have proposed two additional tools for researchers. First, the latent non-
random mixing model in Section 3 deals with the known problems when using “How many
X’s do you know?” data allowing for improved personal network size estimation. In Section
5, we show that if future researchers choose the names used in their survey wisely—that is,
if the set of names satisfies the scaled-down condition—then they can get improved network
size estimates without fitting the latent nonrandom mixing model. We also provided
guidelines for selection such a set of names.

Though the methods presented here account for bias in individual degree estimation in ways
that are not present in other methods, they are only as good as the available data on the
demographics of first names. Using “How many X’s do you know?” data to estimate person
network size requires knowing the number of people in the population with the different first
names. In many countries such information may not be available. Further, the scaled-down
condition that we proposed can only control for non-random mixing across dimensions for
which there are sufficient data. For example, even if the set of names used satisfies the
scaled-down condition with respect to age and gender, there still could be a bias in the
individual estimates that is correlated with something that is not included in the model, such
as race/ethnicity. We therefore believe that improved information about the demographics of
different first names, information that is collected but not released by the U.S. Census
Bureau, would be a great benefit to social science, and as such we suggest that this
information be released to the public.

A potential area for future methodological work involves improving the calibration curve
used to adjust for recall bias. The curve is currently fit deterministically based on the twelve
names in the McCarty et al. (2001) data and the independent observations of Killworth et al.
(2003). In the future the curve could be dynamically fit for a given set of data as part of the
modeling process. Another area for future methodological work is formalizing the procedure
used to select names that satisfy the scaled-down condition. Our trial-and-error approached
worked well here because there were only 8 alter categories, but if there were more, a more
automated procedure would be preferable.

In addition to the general benefit to social science from more accurate estimates of personal
network size, we think that one of the most interesting and important potential applications
of these improved network size estimates is for the study of “hidden” or “hard-to-reach”
populations, such as injection drug users, men who have sex with men, and sex workers and
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their clients. In most countries these are the subpopulations at greatest risk for becoming
infected with HIV, but, unfortunately, the sizes of these subpopulations are not known and
this hinders efforts to fight the spread of the disease (UNAIDS, 2003). As was shown by
Killworth et al. (1998b) and Bernard et al. (1991), estimates of person network size along
with “How many X’s do you know?” data can be used to estimate the size of hidden
populations. For example, if you know 300 people and 2 injection drug users, then we can
estimate that there are about 2 million injection drug users in the United States

. Thus, the improved degree estimates described in this paper
should lead to improved estimates of the sizes of hidden populations.

Appendix

A Details of the calibration curve
Killworth et al. (2003) and Zheng et al. (2006) both suggested that the relation between

 (the subpopulation sizes in the actual social network and the
recalled social network on the log scale) begins along the y = x line and the slopes decreases
to 1/2 (corresponding to a square root relation on the original scale) as the fractional
subpopulation size increases.

Based on this assumption and some boundary conditions, McCormick and Zheng (2007)
derived that

where b = −7. For details on this derivation, the readers are referred to McCormick and

Zheng (2007). Therefore the calibration curve between bk and  used in (12) is then

where
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Figure 1.
Standard error of the simple scale-up degree estimate (scaled by the square root of the true
degree) plotted against fractional subpopulation size. As we increase the fraction of
population represented by survey subpopulations, the precision of the estimate improves,
with diminishing improvements after about 20%.
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Figure 2.
Mean number recalled as a function of subpopulation size for 12 names. If respondents
recall perfectly, then we would expect the mean number recalled to increase linearly as the
subpopulation size increases. The best-fit line and loess curve show that this was not the
case suggesting that there is recall error.
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Figure 3.
Age profiles for the 12 names used in the analysis (data source: Social Security
Administration). The heights of the bars represent the percent of American newborns in a
given decade with a particular name. The total subpopulation size is given across the top of
each graph. The male names chosen by McCarty et al. are much more popular than the

female names. These age profiles are the information required to construct the matrix of 
terms.
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Figure 4.
Non-random mixing by age and gender in an example ego’s network. In the latent non-
random mixing model m(e, a) allows the propensity of ties to vary based on characteristics
of both the alters and the egos. Here, by ego, we refer to a survey respondent and by alter,
we refer to a member of subgroup a with whom the respondent could potentially form ties.

McCormick et al. Page 24

J Am Stat Assoc. Author manuscript; available in PMC 2013 May 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Estimated degree distribution from the fitted model. The median is about 470 and the mean
is about 610. The shading represents posterior simulation draws to indicate inferential
uncertainty in the histograms. The overlay line is a log-normal distribution with parameters
estimated via maximum likelihood using the observed data (μ̂mle = 6.2 and σ̂mle = 0.68).
The dashed line is a power-law density with scaling parameter estimated via maximum
likelihood (α̂mle = 1.28)
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Figure 6.
Estimated degree distribution by gender. Shading represents simulation draws from the
posterior and implies inferential uncertainty. The average degree for males is slightly larger
than for females. For males the median is about 500 (mean 640) while the median for
females is about 452 (mean 590).
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Figure 7.
Comparison of the estimates from Zheng et al. and the latent nonrandom mixing (LNRM)
model broken down by age and gender: grey points represent males and black points
females. Whereas the Zheng et al. estimates do not account for non-random mixing, the
latent non-random mixing model considers non-random mixing within each ego group
individually. Since our model has six ego groups, there are six distinct patterns in the figure.
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Figure 8.
Barplot of the mixing matrix. Each of the six stacks of bars represents the network of one
ego group. Each stack describes the proportion of the given ego group’s ties that are formed
with all of the alter groups; thus, the total proportion within each stack is 1. For each
individual bar, a shift to the left indicates an increased propensity to know female alters.
Thick lines represent +/− one standard error (estimated from the posterior) while thin lines
are +/− two standard errors.
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Figure 9.
Heat maps of additional male and female names based on data from the Social Security
Administration. Lighter color indicates higher popularity. Three distinct popularity profiles
are clear in the male names. The clustering of female popularity profiles is still present, but
less clear for the male names.
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Figure 10.
Combined demographic profiles for three sets of names (shaded bars) and population
proportion of the corresponding category (solid lines).
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Figure 11.
A comparison of the performance of the latent non-random mixing model, the Zheng et al.
overdispersion model, and the Killworth et al. scale-up method. In each panel the difference
between the estimated degree and the known data-generating degree is plotted against age.
Three different sets of names were used: a set of names that do not satisfy the scaled-down
condition (bad names), the names used in the McCarty et al. survey, and a set of names that
satisfy the scaled-down condition (good names). With the bad names, all three procedures
show some age bias in estimates, but these biases are smallest with the latent non-random
mixing model. With the McCarty et al. names, the scale-up estimate and the Zheng et al.
estimates show age bias, but the estimates from the latent non-random mixing model are
excellent. With the good names, all three procedures preform well.
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Table 1

Strengths and weaknesses of methods for estimating person network size.

Method embeddable in survey statistical modeling

reverse small-world method no no

summation method yes no

diary method no no

phonebook/scale-up method yes yes
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Table 2

A set of names that approximately meet the scaled-down condition— the good names—and a set of names
that do not—the bad names.

Good names Bad names

Male Female Male Female

Walter Rose Walter Alice

Bruce Tina Jack Marie

Kyle Emily Harold Rose

Ralph Martha Ralph Joyce

Alan Paula Roy Marilyn

Adam Rachel Carl Gloria
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