
The efficiency of dynamic and static facial expression
recognition

Jason M. Gold # $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Jarrett D. Barker $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Shawn Barr $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Jennifer L. Bittner $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

W. Drew Bromfield $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Nicole Chu $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Roy A. Goode $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Doori Lee $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Michael Simmons $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Aparna Srinath $
Department of Psychological and Brain Sciences,

Indiana University, Bloomington, Indiana, USA

Unlike frozen snapshots of facial expressions that we
often see in photographs, natural facial expressions are
dynamic events that unfold in a particular fashion over
time. But how important are the temporal properties of
expressions for our ability to reliably extract information
about a person’s emotional state? We addressed this
question experimentally by gauging human performance
in recognizing facial expressions with varying temporal
properties relative to that of a statistically optimal
(‘‘ideal’’) observer. We found that people recognized
emotions just as efficiently when viewing them as
naturally evolving dynamic events, temporally reversed
events, temporally randomized events, or single images

frozen in time. Our results suggest that the dynamic
properties of human facial movements may play a
surprisingly small role in people’s ability to infer the
emotional states of others from their facial expressions.

Introduction

The ability to reliably identify another person’s
emotional state from their body language is an integral
part of even the most basic of human social interac-
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tions. Previous research has shown that we rely upon a
wide variety of information sources in order to infer
others’ emotions, such as their facial expressions
(Ekman, 1993), gait (Clarke, Bradshaw, Field, Hamp-
son, & Rose, 2005), and vocal prosody (Banse &
Scherer, 1996). Although we are clearly able to derive
information about emotion through static images of
facial expressions, it is less clear whether we gain any
perceptual advantage from viewing facial expressions
as naturally evolving dynamic events. The results of
previous experiments that have attempted to address
this question have been inconsistent, with some
suggesting dynamic cues may offer significant process-
ing advantages (Ambadar, Schooler, & Cohn, 2005;
Bassili, 1979; Bould & Morris, 2008; Brainard, 1997;
Cunningham & Wallraven, 2009; Edwards, 1998;
Knappmeyer, Thornton, & Bulthoff, 2003; Lander,
Christie, & Bruce, 1999; Wehrle, Kaiser, Schmidt, &
Scherer, 2000) and others suggesting they may not
(Bruce et al., 1999; Christie & Bruce, 1998; Fiorentini &
Viviani, 2011; Kamachi et al., 2001; Katsyri & Sams,
2008). Thus, it currently remains unclear what role
dynamic cues play in our ability to extract information
about emotion from facial expressions (see Fiorentini &
Viviani, 2011, for a recent overview).

One factor that may be at least partially responsible
for this lack of consistency across studies is the absence
of an objective measure of how much information is
available to observers across varying tasks and stimulus
conditions. For example, several studies have directly
compared observers’ ability to recognize expressions
that dynamically evolve over time to their performance
with only single static images of fully evolved
expressions (Ambadar et al., 2005; Bassili 1979; Bould
& Morris, 2008; Chiller-Glaus, Schwaninger, Hofer,
Kleiner, & Knappmeyer, 2011; Christie & Bruce, 1998;
Cunningham & Wallraven, 2009; Fiorentini & Viviani,
2011; Fujimura & Suzuki, 2010; Katsyri & Sams, 2008;
Lander & Bruce, 2000; O’Toole et al., 2011). In most
cases, this kind of direct comparison of human
performance across different stimulus conditions can
be challenging because it confounds the ability to use
information with the physical availability of informa-
tion. That is, differences in performance across two or
more stimulus conditions (e.g., dynamic vs. static
expressions) can be due to either differences in the
ability of observers to make use of available informa-
tion, differences in the physical availability of infor-
mation, or some combination of the two. As a result, it
is difficult to interpret such data in the absence of an
objective measure of stimulus information.

One approach to this problem that has been used
successfully in other contexts is to measure the
performance of an ‘‘ideal observer’’—a statistically
optimal decision rule that is guaranteed to yield an
upper bound on task performance (Geisler, 1989, 2004;

Green & Swets, 1966). Because the ideal observer is
only limited by the physical availability of information,
its performance provides a direct measure of the
relative amount of information available across a set of
conditions. Further, comparison of human to ideal
performance, a measure known as ‘‘efficiency,’’ factors
out the effects of any variations in information content,
yielding a pure measure of a human observer’s relative
ability to make use of available information across a set
of conditions (Geisler, 2011).

Given the above, the goals of the experiment reported
here were to use ideal observer analysis to (a) measure
the amount of information physically available to an
observer when recognizing static and dynamic facial
expressions, and (b) measure how efficiently human
observers make use of that information when perform-
ing those tasks. Specifically, we measured both human
and ideal observer contrast energy thresholds for
recognizing the emotions of facial expressions that were
presented as either naturally unfolding dynamic events,
temporally randomized dynamic events, or single static
snapshots frozen in time. Using this approach, we were
able to objectively compare the amount of information
carried by dynamic, static, and temporally randomized
expressions, as well as measure the relative amount of
information used by human observers when viewing
each kind of event.

Methods

Observers

Sixteen observers (eight male, eight female) partici-
pated in the experiment. Half of the participants were
authors and the other half were naive to the purposes of
the experiment. Naive subjects participated in the
experiment for course credit. All observers had normal
or corrected-to-normal visual acuity.

Stimuli and apparatus

We generated our stimuli by digitally recording (at 30
frames/s) a set of eight actors (four male, four female)
who were asked to make six different basic facial
expressions of emotion (Ekman, 1972). The emotions
were happiness, sadness, anger, disgust, fear, and
surprise. Each expression started from a neutral state
and naturally evolved into a full expression (‘‘Dynamic’’
expressions; Figure 1). The transition point between a
neutral expression and the initial formation of an
expression, as well as the point at which an expression
reached its fully articulated state, was determined by two
raters (both authors). Most expressions were fully
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formed over the course of 30 frames, and none required
more than 30 frames to reach their fruition. Actors were
asked to maintain their full expressions for several
seconds, and thus most of the movies that required less
than 30 frames to reach their apex included additional
fully expressed frames. Due to head movements or other
artifacts, the apex frame of a small number of movies
was repeated for the remainder of the 30 frames (this
occurred for only 7 out of 48 movies, and involved
repeating the last frame between 1–4 times).

For each movie frame, the actor’s face was resized
and centered within an oval aperture of a fixed height/
width ratio (164 · 140 pixels, 2.78 · 2.28 from a viewing
distance of 130 cm). Each movie was expressed in units
of contrast by scaling it between�1 and 1. The oval
aperture was then centered within a 256· 256 pixel (4.28

· 4.28) uniform gray background of zero contrast
(which corresponded to a luminance of 38 cd/m2). The
aperture edge was slightly blurred to produce a gradual
transition between the face image and the gray

background. The frame rate of the CRT on which the
stimuli were displayed was 85 Hz, and each of the 30
individual movie images was repeated for three succes-
sive screen refreshes, producing a stimulus duration of
1059 ms at an effective frame rate of 30 frames/s. The
contrast energy (i.e., integrated squared contrast) of the
stimuli was adjusted across trials in order to obtain
contrast energy expression discrimination thresholds in
each condition (see ‘‘Threshold and efficiency measure-
ment’’ below for more details on the staircase procedure
and threshold measurement). The contrast energy of the
stimulus was adjusted by multiplying a selected movie by
an appropriate constant and then converting the pixel
contrast values to luminance values according to the
equation Lpix¼ Cpix*Lbgþ Lbg, where Lpix is pixel
luminance, Cpix is pixel contrast and Lbg is background
luminance. These luminance values were then converted
to RGB values (according to a look-up table generated
using a Minolta LS-100 photometer [Konica Minolta
Sensing, Inc., Ramsey, NJ]) and displayed on the CRT.

Figure 1. The full Dynamic movies of each actor (columns) making each facial expression (rows, from top to bottom: anger, disgust,

fear, happiness, sadness, surprise).
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From these Dynamic expression movies, we gener-
ated two additional sets of stimuli: a set of ‘‘Static’’
expressions (Figure 2), in which the final image of each
Dynamic expression was shown for the same duration
as the full Dynamic expression movie; and a set of
‘‘Shuffled’’ expressions (Figure 3), in which the order of
the images that made up each Dynamic movie was
randomly permuted.

In the Static condition, movies were generated by
replicating the last frame from each corresponding
Dynamic movie 30 times (Figure 2). In the Shuffled
condition, a set of 10 different random frame permu-
tations was generated and these orders were applied to
each of the Dynamic movies, producing a total of 480
temporally shuffled movies (see the ‘‘Ideal observer’’
section below for more on the use of a limited set of
random permutations).

To make the task more difficult and to carry out the
ideal observer analysis, we added a unique sample of
Gaussian white contrast noise (r¼ 0.25) to each pixel of

the stimulus on each trial. The noise matched the movie
both in size and mean luminance, and was added to the
stimuli in all three conditions (Dynamic, Static, and
Shuffled). Previous experiments have shown that con-
trast energy thresholds in similar tasks increase linearly
with external noise variance (e.g., Gold, Bennett, &
Sekuler, 1999b; Tjan, Braje, Legge, & Kersten, 1995), a
property that implies observers are using a ‘‘contrast
invariant’’ strategy (i.e., their strategy is independent of
the contrast of the signal and the variance of the
externally added noise; Pelli, 1990). Thus, it is unlikely
that the manipulation of contrast and the addition of
external noise in our task had a significant influence on
observers’ recognition strategies.

Procedure

On each trial, a movie was randomly chosen with
equal probability and displayed on the computer

Figure 2. The Static images (i.e., final movie frames) of each actor (columns) making each facial expression (rows, from top to bottom:

anger, disgust, fear, happiness, sadness, surprise).
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screen. After each stimulus presentation, a selection
window with the names of the six different possible
emotions appeared and remained on the screen for an
unlimited amount of time until the participant chose
one of the options with a mouse click. Auditory
accuracy feedback was given after each trial. Each
human observer participated in all three conditions of
the experiment. Trials were blocked by condition, and
the order of conditions was randomized across
participants. Each observer was familiarized with the
stimuli from all three experimental conditions prior to
participating in the experiment by completing 15
practice trials in each condition.

Threshold and efficiency measurement

Task difficulty was manipulated by varying the
contrast energy (i.e., integrated squared contrast) of the
movies across 240 trials in each condition using a 1-
down, 1-up adaptive staircase procedure (Macmillan &

Creelman, 1991). Weibull psychometric functions were
fit to the staircase data, and threshold was defined as
the contrast energy that yielded 50% correct perfor-
mance (note that chance performance would be ;17%
correct in a 1 of 6 classification task; 50% correct was
defined as threshold because it falls very close to the
middle of a typical psychometric function in a 1 of 6
recognition task). Efficiency was defined as the ratio of
ideal-to-human contrast energy threshold in a given
condition.

Ideal observer

The ideal observer’s performance was measured by
computer simulations in each stimulus condition that
the human observers were tested in (Dynamic, Static,
and Shuffled). The ideal decision rule for our task and
stimuli was derived using Bayes’ rule and is similar in
principle to other tasks involving 1-of-N recognition
(e.g., Gold, Bennett, & Sekuler, 1999a; Tjan et al.,

Figure 3. An example of a random frame permutation (‘Shuffle’) applied to each dynamic movie shown in Figure 1.
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1995). In our experiment, observers were asked to
determine the expression, Ei (where i refers to the ith of
r possible expressions), that was most likely to have
appeared within the noisy stimulus data, D. According
to Bayes’ rule, the a posteriori probability of Ei having
been presented given D can be expressed as

PðEijDÞ ¼ PðEiÞPðDjEiÞ=PðDÞ ð1Þ
For our task and stimuli, the prior probability of seeing
any given expression, P(Ei), and the normalizing factor
P(D) are both constant for all Ei, and thus can be
removed without changing the relative ordering of
P(EijD). Therefore, the ideal observer chooses the
expression that maximizes P(DjEi). For the case where
there are m possible faces for each expression shown in
additive Gaussian white noise, the ideal observer must
compute this probability for all m possible faces within
each expression category (all of which are equally
probable) and compute the summed probability across
faces, resulting in the following probability function:

PðDjEiÞ ¼
Xm

k¼1

Yn

j¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

1

2r2
ðDj�EijkÞ2 ð2Þ

where n is the total number of pixels in the entire

stimulus (i.e., all pixels of all 30 frames) and r is the
standard deviation of the Gaussian distribution from
which the external noise was generated. The ideal
decision rule is to choose the expression Ei that
maximizes this function.

In the case of the Static and Dynamic conditions, m
¼ 8 faces within each expression category. In the case of
the Shuffled condition, it is intractable to carry out the
ideal observer analysis on all possible randomly
permuted frame orders. Therefore, we generated a
subset of p random frame permutation orders, where p
¼ 10, and applied this random order to each face,
yielding 8 (faces) · 10 (frame orders)¼ 80 faces within
each expression category. This produced an extra layer
of summation in the probability function described in
Equation 2, corresponding to the number of permuta-
tion orders, i.e.:

PðDjEiÞ ¼
Xp

l¼1

Xm

k¼1

Yn

j¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

1

2r2
ðDj�EijklÞ2 ð3Þ

Thresholds for the ideal observer in all conditions were
measured in the same fashion as the human observers,
with 2,500 simulated trials per condition.

Figure 4. Contrast energy thresholds for human observers (small closed circles, large open circles and solid line, left ordinate) and the

ideal observer (small open circles and dashed line, right ordinate) for the Static, Dynamic, and Shuffled facial expression stimuli. Each

solid circle corresponds to an individual human participant; large open circles correspond to the mean threshold across participants in

each condition. Error bars on each mean correspond to 61 SEM.
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Results

The results of our experiment are shown in Figures 4
and 5. Figure 4 plots thresholds for each individual
observer (small solid circles) and the mean across
observers (large open circles) in each condition. These
data show that average performance was best for Static
expressions, slightly worse for Dynamic expressions,
and worst for Shuffled expressions. A one-way repeated
measures analysis of variance showed there was a
significant effect of stimulus type, F(2, 30)¼ 10.73, p¼
0.0003, and a post-hoc Tukey honestly significant
difference test indicated this effect was due to
thresholds being significantly greater for the Shuffled
than both the Static (p¼ 0.001) and the Dynamic (p¼
0.046) conditions; the difference between Dynamic and
Static thresholds was not statistically significant (p ¼
0.23).

The dashed line and small open circles in Figure 4
plot the thresholds for the ideal observer in each
condition of our experiment. Note that human
thresholds are plotted on the left axis and ideal

thresholds are plotted on the right axis. Both axes span
a total of two log units, but the ideal axis is shifted two
log units lower than the human axis. Separate axes were
used in this fashion because the ideal observer was over
two orders of magnitude better than our human
observers in all conditions, as is typical with most
complex pattern recognition tasks (e.g., Gold et al.,
1999a; Gold, Tadin, Cook, & Blake, 2008; Tjan et al.,
1995). However, because we were interested in observ-
ers’ relative performance across conditions rather than
their absolute performance, different axes were used to
place the human and ideal data in a similar range.

The results of the ideal observer analysis show that
the amount of discriminative information was not the
same for Dynamic, Static, and Shuffled expressions. In
fact, the ideal observer’s pattern of thresholds was
remarkably similar to what we obtained with our human
participants: The ideal observer performed best with
Static faces, worse with Dynamic faces, and worst with
Shuffled faces. The resulting human efficiencies, com-
puted as the ratio of ideal/human threshold in each
condition for each human observer, are plotted in Figure
5. These data show that, when the amount of physically

Figure 5. Corresponding efficiencies (ideal/human contrast energy thresholds) for each human participant shown in Figure 4. Small

closed circles correspond to efficiencies for individual observers; large open circles correspond to the mean efficiency across

observers. Error bars on each mean correspond to 61 SEM.
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available information is taken into account, efficiency is
nearly identical for Dynamic, Static, and Shuffled
expressions. A one-way repeated measures analysis of
variance confirmed that there were no significant
differences across conditions, F(2, 30)¼ 1.39, p¼ 0.265.

Discussion

The results of our experiment offer some interesting
new insights into the information carried by static and
dynamic facial expressions as well as the human ability
to make use of that information. First and foremost,
our finding that efficiency did not differ significantly for
Static and Dynamic expressions indicates that when the
amount of physically available information is taken
into account, the presence of dynamic facial cues
appears to offer no additional information processing
benefit to human observers beyond those carried by a
single static snapshot of a fully expressed emotion.

Second, our ideal observer analysis revealed that a
static snapshot of a fully articulated facial expression
actually carries more discriminative information with
respect to discerning others’ emotional states than a
naturally evolving dynamic event. At first, this may
seem like a counterintuitive result. However, recall that
our Static face stimuli were generated by replicating the
final frame of our Dynamic face stimuli. If we were to
assume that these final frames tend to be the most
distinctive exemplars from each Dynamic expression,
then it would follow that our Static stimuli should in
turn carry more information overall, as each frame of
the Static stimuli would be maximally informative
across time. Note that repeating the same movie frame
30 times in a row does add additional information
beyond that carried by a single frame shown only once.
This is because each repeated frame is presented in a
new sample of noise, and thus the ideal observer (and
potentially any observer) benefits from receiving
repeated presentations of the same signal due to the
statistical averaging of noise.

Figure 6. Ideal observer contrast energy thresholds for individual frames in the Dynamic facial expressions. The left-hand scale plots

thresholds for each frame shown a single time in Gaussian White noise. The right-hand scale plots thresholds for each frame repeated

30 times in Gaussian White noise. The solid line is the best fitting exponential function of the form y¼ y0þ aeð�ðx�x0Þ=sÞ. Error bars for
each threshold correspond to 61 SD, and were estimated by bootstrap simulations (Efron & Tibshirani, 1993).
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We tested the idea that the final frames of the
expressions carried the most relative information by
independently measuring the ideal observer’s perfor-
mance at each frame in the Dynamic movies (Figure 6).
We found that indeed, the ideal observer’s threshold
was highest for the first movie frame (where all actors
had a neutral expression—although not identical
neutral expressions, as evidenced by the ideal observer’s
ability to perform the task) and progressively decreased
across successive frames. These results offer an
interesting new insight into the temporal evolution of
information in human facial expressions: Namely, they
show that human facial expressions may become
systematically more informative as they unfold over
time.

Finally, our finding that efficiency did not signifi-
cantly differ for Dynamic and Shuffled expressions
suggests that human observers are remarkably insen-
sitive to the temporal structure of the flow of

information during the production of a facial expres-
sion. Although this may seem like an implausible result,
Figure 3 demonstrates that it is surprisingly easy to
identify an actor’s expression when the order of the
stimulus frames is randomly permuted. Observers in
our experiment shared this subjective impression, which
was ultimately borne out in their task performance and
information processing efficiency.

Our results with Dynamic and Shuffled expressions
are consistent with the idea that observers do not
require the contiguous temporal progression of infor-
mation that takes place during the creation of natural
dynamic expressions in order to efficiently extract
information from them. If so, this predicts that
observers’ efficiencies should also not be affected by
other temporal transformations, such as the reversal of
the expression events. We tested this prediction by
measuring thresholds and efficiencies for the same
Dynamic and Shuffled stimuli as in our main experi-

Figure 7. The Reversed movies of each actor (columns) making each facial expression (rows, from top to bottom: anger, disgust, fear,

happiness, sadness, surprise).
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ment, along with a Reversed condition in which all of
the Dynamic expressions were shown in reverse
temporal order (Figure 7). Six authors and seven new
naive observers participated in the experiment. All
other aspects of the stimuli and experimental design
were identical to those in the original experiment.

The results of this follow-up experiment are shown in
Figures 8 and 9. Figure 8 plots thresholds for the ideal
observer (dashed line and small open circles), individ-
ual human observers (small closed circles), and the
mean across human observers (solid line and large open
circles). The data from one naive observer was removed
from the analysis due to an inability to perform the task
above 40% correct in all conditions. First, note that the
ideal observer’s thresholds are identical for the
Dynamic and Reversed stimuli, because the stimuli are
equally informative in both conditions. Second, the
pattern across conditions was very similar for our
human observers: Mean thresholds for Forward and
Reversed expressions were nearly identical and, as in
our original experiment, thresholds were higher for the
Shuffled expressions. The corresponding efficiencies are
plotted in Figure 9. These data show that efficiency was
nearly the same across all three conditions. A one-way
repeated measures analysis of variance confirmed that

there were no significant differences across conditions,
F(2, 22) ¼ 0.01, p ¼ 0.99.

Conclusions

Establishing how much information is carried by
different aspects of facial expressions, as well as how
much each contributes to our ability to discern
emotion, is of fundamental importance to ultimately
achieving a general understanding of how emotions are
implicitly communicated. Although our intuition may
strongly suggest that the dynamic properties of facial
expressions should play an important role in this
process, the results of previous experiments designed to
evaluate the contribution of dynamic facial cues to the
recognition of emotion have been equivocal. A large
part of this inconsistency may stem from a general
confounding of the physical availability of information
with the psychological ability to make use of informa-
tion. Our experiments have shown that when these two
factors are carefully dissociated, the presence of
dynamic facial cues appears to offer no additional
benefit to emotion recognition beyond what is already

Figure 8. Contrast energy thresholds for human observers (small solid circles, large open circles and solid line, left ordinate) and the

ideal observer (small open circles and dashed line, right ordinate) for the Dynamic, Reversed, and Shuffled facial expression stimuli.

Each solid circle corresponds to an individual human participant; large open circles correspond to the mean threshold across human

participants in each condition. Error bars on each mean correspond to 61 SEM.
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provided by a single, static snapshot of a facial
expression.

Keywords: ideal observer, face perception, facial
expressions, efficiency
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