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Abstract
One central problem in biology is to understand how gene expression is regulated under different
conditions. Microarray gene expression data and other high throughput data have made it possible
to dissect transcriptional regulatory networks at the genomics level. Owing to the very large
number of genes that need to be studied, the relatively small number of data sets available, the
noise in the data and the different natures of the distinct data types, network inference presents
great challenges. In this article, we review statistical and computational methods that have been
developed in the last decade in response to genomics data for inferring transcriptional regulatory
networks.

1 Introduction
The central dogma of molecular biology is DNA→RNA→Protein, where DNA is
transcribed to RNA, which is subsequently translated into protein to perform diverse
functions. Transcription regulation is a fundamental biological process and much effort has
been made to identify important players in this process and to understand how they work
with each other to regulate gene expression levels. Before transcription of a specific gene is
initiated, its regulatory region is bound by one or more transcription factors (TFs), which
recognise their targets through specific sequences, often called binding motifs. After the
binding of TFs to the regulatory region of a gene, they recruit the transcriptional machinery
to initiate the transcription process. After a gene is transcribed, the product messenger RNA
(mRNA) is transported to the cytoplasm of a cell, where it is used as a template for
translation. Chromatin structure also plays a key role in transcription regulation and is under
many levels of tight regulation.1,2 After transcription, mRNA decay and silencing are
examples of yet further regulation of gene expression.3 Therefore, the transcript abundance
in a cell is the result of joint actions of many regulators. Because of its central role in
molecular biology, delineating transcriptional regulatory networks (TRNs) has been a very
active research area and much progress has been made in recent years as a result of the
availability of genome-wide gene expression data and other high throughput data. In this
review, we discuss statistical and computational methods that have been developed to infer
TRNs. We will primarily focus on inferring the regulatory targets of different TFs through
the analysis of different types of genomics data.

In the simplest case, a TRN can be represented by a G × R matrix, where G is the number of
genes considered and R is the number of TFs involved in regulation. An entry of 1 in the (i,
j) position indicates a regulatory relationship between the j-th TF and the i-th gene, and an
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entry 0 indicates no regulation between them. Under this formulation, the goal of a TRN
inference is to infer which elements in this matrix are 1. This matrix can be made more
general to allow distinction between activation and repression and the joint action from
multiple TFs. Furthermore, the strength of regulation may also be included in this matrix,
that is, a 0 element indicates regulation relationship, but non-0 elements can take on real
values that quantify the regulatory strength of a TF on its target genes.

For the purpose of inferring TRNs, the most relevant type of genomics data are location data
including ChIP-chip data using either gene-based microarrays4,5 or tiling arrays,6,7 and
ChIP-seq data.8,9 ChIP stands for chromatin immunoprecipitation, which is a protocol to
separate the truncated DNA sequences that bind to specific protein from DNA suspensions.
The DNA sequence samples are then amplified and measured through microarray or
sequencing technique with different genome coverage. Each ChIP-chip or ChIP-seq
experiment involves one TF and the results give information about the binding locations in
the genome for this specific TF either in vivo4,5 or in vitro.10,11 The binding locations can
then be associated with genes according to genome annotation. From the experimental
results, for each location in the genome, the data are either summarised as a statistical
significance level for binding between a TF and this location, or an intensity level that
quantifies the strength of binding. In their analysis of nine TFs involved in the yeast cell
cycle, Simon et al.12 showed that the observed binding patterns for these nine TFs can
largely explain the expression profiles of their target genes. For example, the binding targets
of TFs that are active in the early phase of the cell cycle also tend to have their peak
expression levels in the early phase. Therefore, it may be possible to infer TRNs directly
from ChIP-chip data. For example, for a given TF, we can select a statistical significance
threshold, say 0.001, and view all genes that have an observed statistical significance for
binding for this TF less than the threshold as regulatory targets for this TF. It is apparent that
such a thresholding rule will lead to both false-positive and false-negative results due to the
inherent noises in ChIP-chip data collection. If the threshold is set too stringently, we will
miss too many regulatory targets, whereas there will be many false-positive results if the
threshold is set too high. The newly developed ChIP-seq has the potential to outperform
ChIP-chip to provide more accurate results on TF-DNA binding locations. Additionally,
three other concerns make this naïve TRN method less appealing. First, the observed
binding information does not imply regulatory relationship between a TF and a gene that it
is binding to, even when the results are highly significant. Gao et al.13 estimated that only
58% of the genes whose promoters were bound by a TF are its true regulatory targets.
Second, TF binding is a dynamic process, and a TF can have different targets at different
time points in a time course experiment and/or under different conditions. If we draw
conclusions on the regulatory targets for a TF based on one or a few ChIP-chip experiments,
we will miss many true targets and also include many false targets for this TF under other
conditions even if the experiments are done perfectly. Third, TRNs involve combinatorial
effects of multiple TFs whereas ChIP-chip data only involve one TF per chip, so joint
regulation from multiple TFs needs to be inferred indirectly.14

In addition to location data, other types of genomics data offer valuable information on
TRNs, with the most commonly available and studied type being microarray gene
expression data. Compared to the relatively limited amount of ChIP-chip or ChIP-seq data,
there is a very large amount of gene expression data in the literature,15–18 and there are
many public repositories for expression data. It is easy to understand how gene expression
data can help delineate TRNs. If a set of genes are under the control of the same TFs, they
should exhibit similar expression profiles over time or across different conditions. If we can
identify a gene cluster based on their similar expression profiles, we may hypothesise that
they should share similar regulation patterns and use this rationale to improve TRN
inference. Alternatively, if we can either observe or infer the activity levels of a TF across a
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set of conditions, we may infer its regulatory targets by selecting those genes showing
similar (maybe time delayed) expression profiles. These ideas have been formalised
mathematically in the literature and we will discuss these methods below.

Another type of data commonly used in inferring TRNs are DNA sequences. As TFs
recognise their targets through specific sequences, genes sharing common sequences in their
regulatory regions are more likely to be under similar regulation. This logic has been
extensively used to infer TF binding motifs. On the other hand, if the binding motif for a TF
is known, a gene whose regulatory region contains one or more instance of this motif is
more likely to be the regulatory target of this TF. Putative regulatory targets only identified
through motif matching are known to lead to many false-positive and false-negative results
as many genes whose regulatory regions contain the motifs are not the regulatory targets and
many regulatory targets do not have known binding motifs in their regulatory regions. This
lack of sensitivity and specificity through sequence and motif analysis alone is the result of
many unknown factors and mechanisms for gene expression regulation. Nevertheless,
sequence information does provide valuable information complementary to ChIP-chip and
expression data for TRN inference.

Apart from the above three data types commonly used in TRN inference, other high
throughput data also offer useful information, such as mRNA decay data19 and chromatin
modification data.2 In principle, joint analysis of all data types under a single unified
framework should be the most informative way for TRN inference. In this article, we review
various approaches that have been developed for reconstructing TRNs based on one or more
data types discussed above. We will focus on the basic modelling assumption and main
ideas in inferential strategies without going to detailed implementations and parameter
inference. The technical details can be found in the original articles. Because TRN inference
research is highly inter-disciplinary and fast evolving, we only provide a partial review of
what are available with a focus on those methods with a strong statistical flavour.

2 Methods based only on gene expression data
Since microarray technology was first developed for expression analysis, gene expression
microarrays were the only genomic array type available before other platforms, e.g. ChIP-
chip data. Even today, most genomics data are collected from gene expression microarrays.
Therefore, considerable efforts were made to deduce genetic networks from gene expression
data alone. In this review, we begin with the methods that use only gene expression data for
network inference. In this context, most methods consider general relationships among
genes, without specific reference to TFs. Therefore, the inferred network should be more
appropriately described as gene regulatory networks (GRNs).20

For gene expression data, there are broadly two types of experiments. In the first type, gene
expression profiles are followed across a number of time points. For the second type, a
number of perturbations or a number of individual samples are studied but only one
observation is made for each perturbation/individual. Some published methods can be
applied to both types of gene expression data, whereas specific methods have been
developed to deal with only one type, e.g. time course experiments. In our following
discussion, we call these types time course and steady state data.

2.1 Relevance networks
One intuitive method for network reconstruction is to examine the degree of association of
expression profiles between each pair of genes. A strong association suggests either two
genes are under similar regulatory control or one gene is involved in the regulation of the
other gene. A network can thus be built based on pairwise dependencies,21 and this network
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is sometimes called relevance network (RN). Practical issues involve (1) the choice of
association measures, which can be based on standard Pearson correlation coefficient, its
various transformations, or more robust mutual information measures, and (2) the labelling
of the network, whether to keep all the edges or only focus on those passing a specific
threshold. In this context, a sub-network where all gene pairs have high association values is
sometimes called a module,22 and it has been found that these modules studied as a unit can
lead to interesting biological findings. One drawback of this approach is that pairwise
dependency may be due to either direct regulatory relationship or indirect relationship
through other genes. Therefore, if the primary objective is to identify genes that directly
interact with each other, the networks constructed purely from pairwise analysis may contain
many false-positive results. One simple way to reduce the number of false positives is to
study association between two genes in the presence of one or more other genes. The basic
idea is that if both genes are regulated through a third gene, then conditional on the third
gene, the first two genes will no longer be associated. This idea can be realised in different
forms. ARACNE developed by Margolin et al.23 uses the data processing inequality

where I(g1, g3) is the mutual information between g1 and g3 to remove dependency due to
other genes such as g2. A similar idea using conditional correlation coefficients was used by
Rice et al.24 and Wille and Buhlmann.25

2.2 Gaussian graphical models
If we consider all the genes simultaneously instead of two or three at a time, we may model
the joint distribution as a multivariate normal with its mean and covariance matrix. Although
the multivariate normality assumption may be violated for real data, it does provide a
compromise between real data complexity and statistical and computational feasibility. In
this formulation called Gaussian graphical models (GGMs), the associations between the
genes are described by a covariance matrix Σ = {σij}, where σij is the covariance between
genes i and j. One attractive property of GGMs is that it is straightforward to calculate the
conditional correlation coefficient between genes i and j conditional on all other genes. This
conditional association is defined as partial correlation coefficient ρij = −σij/(σiσjj)1/2, where
σij is the (i, j)-th element in Σ−1, the inverse of the covariance matrix Σ. Σ−1 is often called
the precision or concentration matrix. Two genes in a GGM are connected by an edge if ρij
is not equal to 0, and the edges are undirected. This is in contrast to RNs, which can be built
from the Σ matrix. Therefore, if we have access to the true covariance matrix describing
pairwise associations between gene pairs, the GGM formulation will allow us to distinguish
gene pairs that directly interact from those that indirectly interact through other genes.
However, the matrix Σ is unknown and has to be estimated from the observed data. In
typical microarray studies, G is usually in the order of thousands whereas the number of
experiments is usually much smaller. Therefore, the rank of Σ is much smaller than its
dimension, and this matrix is singular. Early on, Toh and Horimoto26 proposed to reduce the
dimensionality of the matrix Σ by first clustering genes into clusters and then only
evaluating the relationships among gene clusters. It is apparent that there will be significant
information loss in this process and we can no longer refer to individual genes, which are the
primary targets of network inference.

Under a GGM, we can consider one gene at a time and model the dependency between this
gene and other genes through regression, where the dependent variable is the expression
level of a specific gene and the independent variables are the expression levels of other
genes. More specifically, we have the following regression model:
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(1)

where mi is the expression level for the i-th gene, βij is the regression coefficient of the j-th
gene on the i-th gene and εi is the noise term. This regression model is over-parameterised in
our context as the number of predictors, i.e. genes, is generally much larger than the number
of observations. However, because a biological network is usually sparse, that is, the number
of regulators for a gene is limited, this sparsity assumption can be used for statistical
inference.27–34 For example, Meinshausen and Buhlmann29 proposed to consider one gene
at a time and perform regression through regularised regression methods such as LASSO.35

The objective function has the following form:

where  is the regression coefficient vector for gene i, and λ is the penalty term that
balances between model fit and model complexity. This procedure often leads to a model
with a few non-zero regression coefficients. The interpretation of these parameters is that
those genes with non-zero regression coefficients have an impact on the i-th gene. This
regression analysis can be repeated for every single gene treated as the dependent variable to
construct the network. Because each gene is fitted separately, the resulting network structure
may not be symmetric, e.g. it may happen that βij = 0 but βji ≠ 0, leading to interpretation
problems. The sparsity regression can also be accomplished through specifying sparse priors
within the Bayesian setting.27,31 Other methods based on the regression setting include
approaches from iterative greedy algorithms and combinatorial optimisation algorithms.36,37

Gardner et al.38 addressed the sparsity problem by considering a fixed number of TFs at a
time and then selecting the subset with the best fit to the experimental data.

Amore direct way of imposing sparsity constraint on the whole network was proposed by
Peng et al.30 Their objective function is:

where βij = ρij(σjj/σii)1/2 is the regression coefficient, wi is the weight for gene i, which may
be related to the variance of the noise for the i-th gene, and λ is again the penalty term that
balances between model fit and model complexity across all the genes. The resulting matrix
should retain symmetry under this approach. The authors argued that the general sparsity
constraint on the whole network leaves room for specific genes to have many connections,
an attractive feature to accommodate the presence of so-called hub genes that have many
interactions. Similarly, a threshold gradient descent method was proposed by Li and Gui28

to estimate the precision matrix.

Yeung et al.39 proposed to use singular value decomposition (SVD) in this context for TRN
inference. In the case that external perturbations are used, they wrote their system in the
following matrix form:
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where ΔMG×K is the change of expression levels for all the genes, represented by the G
rows, after each of the K perturbations represented by the columns, MG×K is the collection
of all the expression levels, BG×G is the regression coefficient matrix, EG×K summarises the
external perturbations and εG×K is the noise matrix. Standard regression does not apply here
because more genes than conditions are studied. With SVD, MT can be written as

, where UK×G and VG×G are orthogonal and DG×G is a diagonal

matrix. The pseudo-inverse of MT can be calculated as . The family of

solutions for BG×G has the form of , where CG×G
is an arbitrary G × G matrix. Yeung et al.34 proposed to select among these solutions the
sparsest one as the inferred network.

2.3 Bayesian networks
One extensively studied class of models in causal inference is Bayesian networks (BNs) and
it is not surprising that they were proposed very early on to infer gene networks based on
gene expression data.40,41 Within a BN, the relationships among the genes are described by
a directed acyclic graph (DAG), where the state of a gene is jointly determined by its
parental nodes in a probabilistic manner. For a given DAG, the joint distribution of all the
genes can be factored into a product of conditional probabilities. The balance between
model fit and model complexity is integrated into the learning for the structure of the
underlying DAG for a gene network. BN analysis itself is a very broad and active research
field.42 Because most published articles simply adopted existing methods to analyse gene
expression data, we will not attempt to review the general methods related to BNs here, but
note a number of limitations in the context of gene network inference. First, different DAGs
may give rise to the same likelihood for the observed data, leading to equivalent classes.
Therefore, it is impossible to distinguish these DAGs purely from the observed data.
Second, different perturbation experiments are treated exchangeably in the analysis although
the underlying biological states are clearly different. Third, BNs do not allow feedback
loops, a common phenomenon in biological networks. Dynamic Bayesian networks (DBNs),
which can alleviate this problem to some extent, have been proposed.43,44 However, a time
homogeneous transition model is normally assumed in DBNs, an oversimplification of the
dynamics of the biological process. Fourth, continuous observations need to be discretised
for BN analysis. It is often a non-trivial task to decide on the number of levels and the
thresholds used for discretisation. Finally, although methods have been developed to
incorporate prior information in BN analysis,45 it is difficult to incorporate some aspects of
biological knowledge explicitly, e.g. the kinetic models relating transcription rates with TF
activities to be discussed below. The performance of BNs and DBNs was evaluated through
simulations.46 It was found that some local structures of the networks may be recovered and
the author also showed the importance of incorporating prior biological knowledge and
having the systems studied at appropriate time points, preferentially right after the system is
perturbed.

The relative performance of RNs, GGMs and BNs has been compared in the
literature.23,47,48 Both BNs and GGMs had better performance than RNs. It was found that
structural perturbations are more informative than dynamic perturbations, e.g. time course
experiments. In addition, when a small system was considered, BNs outperformed GGMs.

2.4 Time course microarray gene expression data
The methods discussed above can be applied to both perturbation data and time course data.
However, the above methods treat each time point separately, so the time dependencies are
not utilised. This may potentially lead to loss of information for TRN inference. Many
statistical methods have been developed to analyse time course gene expression data, and
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here we focus on those whose primary goal is to infer regulatory relationships among the
genes.

Similar to the regression setting discussed above, the following model can be used to
describe the dynamics of a gene:

(2)

where the dependent variable is the expression level change between two observation points
instead of the expression level itself, and there is an additional term di that characterises the
decay rate of the i-th gene. If we ignore the decay rate in this model, the methods discussed
in the previous section can be applied here for inference. To take advantage of the fact that
expression levels at nearby points tend to be similar, the TSNI algorithm developed by
Bansal et al.49 uses splines to smooth the observed time course data first and then apply
SVD to the gene expression matrix to reduce the dimensionality of the predictors.

In contrast to linear models analysed in most published articles, Wang50 considered the
following non-linear regression model:

where the joint effect from multiple genes are modelled through a multiplicative function
and time-delayed responses are allowed by incorporating gene expression levels at previous
time points, t − Δt and t − 2Δt. The exponents in the equation, wji, wki and wli, quantify the
effects of the corresponding genes, and di is the mRNA decay rate. This model can be
considered a variant of the S-system.51,52 It is apparent that the model fitting can be
challenging for this setup. Indeed, the author only considered a limited set of genes when
this model was applied and used the genetic algorithm coupled with Bayesian information
criterion (BIC) for model selection.

When data from samples in steady state and time course experiments are both available,
Bonneau et al.53 proposed to use a single regression model of equation form (1) to analyse
them together. Here is a brief justification. Consider the time course dynamic model of
equation form (2). At the steady date, there is no change of expression levels, and we have

So the regression model can be written as

which has similar form to the dynamic model of equation form (2). Bonneau et al. also
considered alternative forms of the regulation function that may incorporate interactions,
e.g. adding another term min(mi, mj), in the model.

Only gene expression data are used for network inference in the methods discussed so far. In
this setting, there is an implicit assumption that the observed expression level for a gene can
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be used as a surrogate for the TF activity level of this gene so that it can be used as a
predictor in regression models. However, it is well known that there is poor correlation
between gene expression levels and protein activity levels due to many steps involved from
transcription to translation, and then to post-translational modification. Although the above
methods have the advantage that they are generic, easily understood, and adapted from
established methods, it would seem intuitive that more can be gained by appropriately
modelling the underlying biological process and incorporating prior knowledge and different
data types in TRN inference.

3 Methods based on combined data analysis
3.1 Clustering-based analysis

Clustering analysis is the most commonly used method for visualising gene expression
patterns.54 Many statistical methods have been proposed to cluster genes. Sets of genes with
highly similar expression profiles are often called modules.22 Genes in the same cluster tend
to have similar biological functions, so these clusters can be used to infer the functional
roles of un-annotated genes. As TFs are a major regulator of transcription, genes in the same
cluster or module are more likely to be under the control of the same or similar TFs.
Because TFs recognise their targets through sequence specific binding motifs, the regulatory
regions of genes in the same cluster should be enriched for some binding motifs. The
discovery of these binding motifs can facilitate the inference of relevant TFs if the binding
motifs of the TFs are known from prior experiments. In fact, this was done early on in
microarray data analysis, e.g. Spellman et al.18 Since a set of genes may be co-regulated
only under a subset of the experimental conditions, a number of methods have been
developed to cluster genes under specific conditions,55–57 and the gene clusters thus
identified are sometimes called conditional specific expression modules. The methodologies
developed in this context can also be extended to combine data from diverse data sources.58

For a given gene cluster or module, it is natural to relate it to the activities of a set of TFs. In
the absence of information for TF activities, the corresponding gene expression levels may
be used as surrogates. Segal et al.59 developed an iterative procedure for combining gene
expression data with regulator activities (estimated by gene expression levels) for both
improved cluster analysis and the interpretation of how each cluster is regulated. The basic
idea is to iterate between two steps. The first step involves inferring key regulators for each
cluster by correlating regulator levels with expression patterns of genes in the cluster across
a large number of experimental conditions. In the second step, regulator activities and gene
expression data are jointly used to more accurately assign each gene to its corresponding
cluster. However, this procedure is limited by the pre-specified number of clusters and the
possibly poor correspondence between gene expression levels and regulator activities. A
similar approach to incorporate gene expression data and sequence data was introduced by
the same authors.60 In the context of biclustering, Reiss et al.61 developed an iterative
algorithm to incorporate sequence information into building biclusters.

Bar-Joseph et al.62 proposed a procedure called GRAM for TRN inference by combining
gene expression data and ChIP-chip data. In the first step, they used a stringent criterion to
infer the binding targets only for those TF-gene pairs that are highly statistically significant,
e.g. p-value less than 0.001. Then, gene expression data are used to define a core expression
profile for a set of genes sharing a common set of TFs as their regulators. After the core
expression profiles are defined, other genes are included in a transcription module if their
expression profile is similar to the core profile and there is some marginal evidence of
binding. A conceptually similar approach was proposed by Lemmens et al.63 that also
incorporates motif data in the analysis.
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Model-based clustering methods have also been proposed to combine gene expression data
with other information. A two-component mixture model was proposed by Wang et al.64 to
infer true regulatory sites from combined analysis of gene expression data with either
sequence data or ChIP-chip data. A sparse regression mixture model was developed by Li et
al.65 where the mean expression profile in each cluster is determined by the additive effects
of a set of regulators. Liu et al.66 proposed an infinite mixture model to jointly analyse gene
expression data and ChIP-chip data. In this work, the expression information for a specific
gene i is represented by a vector mi = (mi1, …, miK) across a set of K experiments. The
ChIP-chip binding data between R TFs and this gene is summarised by γi = (γi1, …, γiR),
where γij indicates statistical evidence for binding from ChIP-chip data. A gene in each
cluster is assumed to have a multivariate normal component describing expression levels
and a binary vector component modelling binding patterns.

Compared to the methods that rely only on gene expression data for network inference, these
cluster-based methods aim to integrate other information, gene annotations, sequence
information, or ChIP-chip data, to both make more accurate gene groupings and interpret
each cluster as a result of the joint action of a set of regulators. Therefore, not only can we
learn which genes belong to the same cluster, we can also explain the regulation mechanism
that makes these genes in the same cluster. One major drawback of these methods is that
gene expression data are often used as surrogates for TF activities, which may lead to poor
performance due to the lack of correspondence between them. In the following, we will
review kinetic models relating transcription levels/rates with TF activities, and discuss
various methods that have been proposed to infer TF activities from gene expression data.

3.2 Kinetic models for mRNA synthesis
We first consider the Michaelis–Menten kinetics model, which has been used67 to relate
transcription (mRNA synthesis) rate si for the i-th gene with a single TF activity r in the
following form:

(3)

where bi is the maximum transcription rate, ci is the half-saturation constant and ai is the
basal transcription rate. The parameters used in this formulation, a, b and c, are TF-gene
specific. The value of 1/c, denoted by γ, can also be interpreted as the ratio of association
constant (ka) and dissociation constant (kd) between TF and DNA. Let PD denote the
concentration of TF-DNA complexes and D denote the concentration of non-occupied sites.
DNA occupancy is defined as O = PD/(PD + D). At equilibrium, ka/kd = PD/(D × P), where
P is the free TF concentration. Therefore, O = 1/[1 + (ka/kd)/P] = P/[ka/kd + P]. As O is the
proportion of the sites occupied by the TF-DNA complexes, it is reasonable to assume that
the transcription rate is a linear function of the occupancy, leading to a functional form of
Equation (3).68 The value of O may be estimated from high-throughput TF-DNA interaction
data4,5 or from sequence data68 based on the binding motif of the TF. To allow for the
saturation effect, we can use the following model:

When there are two TFs, under different assumptions on the cooperativity of the two factors,
e.g. independent binding, Nachman et al.69 derived the binding pattern probabilities under
the equilibrium state. Then the overall transcription rate can be calculated as the weighted
average of these four probabilities, where the weights correspond to the transcription rate at
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a specific binding pattern. More general forms are given in Nachman et al.69 Consider the
scenario that transcription can only start when a set of R regulators are all present in the
promoter region of a gene,

where cij is an association constant for binding between gene i and TF j and βij measures the
cooperativity in binding. Pan et al.70 modelled binding as a function of sequences.

Chen et al.71 considered a simpler additive model of the following form:

A similar functional form was used by Chen et al.72 who also included a time delay term
from gene expression level to activity level.

Based on equilibrium assumption, Sun et al.73 considered a similar model of the form

where βij is the binding affinity between gene i and TF j which can be approximated by the
binding intensity measured from ChIP-chip data.

When different TFs can either activate or repress a gene, Yeung et al.39 considered the
following model:

where βij is the activation cooperativity of the j-th TF on the i-th gene, and γik is the
repression cooperativity of the k-th TF on the i-th gene. When there are no repressors, this
model is very similar to the additive model of Chen et al.71

Porreca et al.74 considered piecewise linear models as a compromise between linear models,
which are easy to handle computationally and statistically but may only provide an
approximation to real models, and non-linear models, which are more relevant biologically
but present significant computationally challenges.

In summary, a variety of kinetics models have been considered in the literature, some based
on physical-chemical principles whereas others purely from statistical convenience. A more
detailed review on various kinetics models for the synthesis rate of the i-th gene, si, can be
found in Ben-Tabou de-Leon and Davidson.75
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The kinetics of mRNA degradation is usually modelled as a first-order differential equation.
The combination of mRNA synthesis and degradation depicts the rate of transcription level
of a given gene (or dmi/dt).

3.3 Regulation models
For a given kinetics model, we have the following differential equation describing the
dynamics of the gene expression level for the i-th gene:

where mi is the mRNA level of the i-th gene, si is the transcriptional synthesis rate, di is the
mRNA decay rate and εi is the noise associated with the system and measurements. This
model can be used to describe time course gene expression patterns. If the cells have
reached an equilibrium state, we have si − dimi = 0. Hence the transcript abundance at the
equilibrium state mi is proportional to si/di. Therefore, we can relate the expression level
with TF activities through the kinetics models discussed in the previous section. When a
TRN is known, the above models can be used to both estimate TF activities and kinetics
parameters67,69,76,77 from the observed expression data. For example, when the regulatory
targets are assumed to be known for a TF, the Michaelis-Menten kinetics model can be used
to infer TF activities as well as the kinetic parameters either through maximum likelihood67

or Bayesian approach.76 However, care needs to be taken because there may be
identifiability problems for some systems.78

Because linear models are most commonly used in relating expression levels with TF
binding and TF activities, we will focus on linear statistical approaches in the following
discussion. In this case, the following model has been used by a number of
groups.13,73,79,80:

where mi is either the absolute or relative observed expression level for the i-th gene, aij
represents the regulatory strength between the j-th TF and the i-th gene (which can be
measured from location data) and rj represents the activity of the j-th TF. When the ChIP-
chip data are used as an estimate for the aij, e.g. the binding intensity is used as a surrogate,
the estimates of the TF activities reduce to a regular regression problem.13,80 Cokus et al.81

studied the dynamics of the inferred TF activities from linear regression models. For time
course data, Wang et al.82 proposed to borrow information across time points to have
improved TF activity estimates. This is achieved through the following model:

where rj(t) is modelled by natural cubic B-splines, and xij is the estimated regulation strength
between TF j and gene i. These studies found that the inferred TF activities can be
substantially different from the expression levels of the same gene, leading to concerns on
potential biases in using expression levels as surrogates for TF activities in many of the
published studies.
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Because physical binding does not imply regulation,13 TRN inference can be improved by
combining ChIP-chip data with gene expression data. Sun et al.73 proposed BEAM, a
Bayesian method for integrating ChIP-chip data and expression data, based on the following
model:

(4)

where the log-ratio of the expression levels (mi and ) between two conditions is related to

the additive effects from a set of R TFs through the log-ratio of the TF activities (rj and )
and the regulatory strength aij. Instead of directly using the binding intensities from ChIP-
chip data,13,80 Sun et al. assumed that aij = bijcij, where cij is the unknown but desired
regulatory relationship between TF j and gene i. With this formulation, model (4) becomes

Under this set-up, gene expression levels mi and binding intensities bij are observed, and
there is some partial knowledge on cij. The objective is to infer the true regulatory matrix cij.
For a set of K experiments, the above model can be written in the following matrix form
(ignoring the noise terms):

(5)

In this form, the same reference sample is used and the same regulatory matrix AG×R is
assumed across all K experiments. The K columns in ΓR×K summarise the activities of the R
TFs in the K experiments.

BEAM assumes that some information is available on the TFs involved in regulation and the
availability of ChIP-chip data to provide useful information on the general structure of the
TRN. In addition to ChIP-chip data, sequence data can be used to estimate regulatory
potential between a TF and a gene. Xing and van der Laan83 used regression analysis to
identify active TFs based on expression data and motifs from known TFs. However, they did
not estimate TF activities or regulatory strengths. With sequence information as input for
predicting TF binding, an approach similar to BEAM was proposed by Sabatti and James84

to infer TRNs.

It is apparent that, if only gene expression data are available, it is generally impossible to
factor the observed expression matrix MG×K in the form of Equation (5) without imposing
any constraints on AG×R and ΓR×K. Liao et al.79 discussed the constraints on the structure of
AG×R, essentially the distribution of the 0 elements in this matrix, needed under which the
decomposition is unique and called the analysis as Network Component Analysis (NCA).
Compared to Bayesian approaches,73,84 NCA requires prior knowledge on the connectivity
between TFs and genes but does not need inputs on regulatory strengths or TF activities. To
accommodate uncertainties in the connectivities, Yu and Li85 proposed a two-stage
constrained space factor analysis where the constraints are derived from ChIP-chip or other
data and the algorithm iterates between network configuration estimation and regulation
strength estimation. When the number of TFs is large with possible interactions among
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them, Boulesteix and Strimmer86 proposed to use partial least squares in this regression
setting to reduce the dimensionality of the predictor space, i.e. the space spanned by the TFs.

Despite somewhat different motivations, these methods all share the same general modelling
form, involving three sets of variables: the gene expression levels, the regulation strengths
between TFs and their target genes, and the TF activities. Statistical estimation of TF
activities is part of the inference procedure. Pournara and Wernisch87 compared the
performance of some methods in this context and concluded that most of the tested
algorithms are successful in reconstructing the connectivity structure as well as the TF
profile.

Tanay and Shamir88 considered a different functional form, called a dose-affinity-response
function, that relates the response (transcription rate) with the TF doses (activities) and the
affinities of TFs to the regulatory region of a gene (regulatory strength). The affinity
information can be gathered from the ChIP-chip data and the doses are iteratively estimated
from motif information. It appears that only single TFs can be analysed under this approach
for practical data and all the variables need to be discretised.

3.4 State-space models
We discussed time course data methods above where only gene expression data are used for
inferring relationships among genes. If we consider each gene being regulated by a set of
TFs whose activities are unknown, this naturally leads to classical state space models
(SSMs).90 In an SSM, the gene expression levels, mt = (m1(t), m2(t), …, mG(t)), are
assumed to be generated from a set of R hidden state variables, ht = (h1(t), h2(t), …, hR(t)),
and that the ht follow the first-order Markov process as follows:

where T is the state dynamics matrix, A is the observation matrix and Σw and Σv are the
covariance matrices for errors associated with the state and observed variables wt and vt,
respectively. This formulation fits naturally to our understanding of transcription regulation
because the hidden variables can be interpreted as TFs, the A matrix defines how TFs
regulate gene expression levels, and the T matrix defines how TFs regulate among each
other over time. The second component of this SSM has the same form as Equation (5), with
the difference being that the first component is used to describe the dynamics of the hidden
state variables. Because T is time independent, this model implicitly assumes a time
invariant regulation pattern among the TFs. If this assumption largely holds, SSMs may
allow us to borrow information across time points to make more efficient TRN inference.
However, the downside of this model is that if this time homogeneity assumption is
seriously violated, the TRN inference can be biased. In this case, we may use non-
parametric methods to model TF activities across time,82 but statistical methods are lacking
for model inference in this more general case. A more general model form (called an input
driven model89) has also been considered in the literature:

where gene expression data are allowed to affect the hidden state variables. As SSMs have
been extensively studied in the literature, the model inference can be estimated using
established maximum likelihood methods or Bayesian methods. For example, the methods
that can be applied to estimate the number of state variables include BIC,90 cross
validation91 and Bayesian approaches.92
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In the specific context of TRN inference, the hidden variables have clear biological
interpretation as TFs and possibly other regulators. Therefore, with ChIP-chip and sequence
data, the structure of the regulation network reflected in A and possibly the T matrix may be
partially known. Assuming knowledge on the structure, Xiong and Choe93 proposed a
constrained SSM approach for TRN inference. Similarly, when the connectivity matrix is
assumed to be known, Sanguinetti et al.94 used an SSM to model the dynamics of the
observed expression data. In this case, the sparsity constraint is directly provided by the
connectivity matrix. With prior knowledge on the TFs involved in regulation, SSMs have
also been used to infer TF activities.95

3.5 mRNA decay data
Although mRNA decay rate, denoted by di, in the above discussion is a key component in
the kinetics and regulation model, it is not used in most statistical methods. This is partly
due to the limited information on the decay rate at the genome level19 that can be used in the
analysis. In addition, at the steady state, the decay rate appears as a factor in the model for
the mean gene expression level, so ignoring it does not change the general model form.
However, in the analysis of time course data, the decay rate does play an important role and
it is conceivable that more accurate TRN inference may be achieved if each gene’s
approximate decay rate can be incorporated in statistical analysis.

In the context of time course gene expression data analysis, Chen and Zhao96 used gene
expression data and mRNA decay date to estimate transcription rate through simple
differential equations. They found that the estimated transcription rates may be more
informative on co-regulation and DNA binding motif discoveries. In TRN inference, mRNA
decay rates were used by Nachman et al.69 to estimate transcription rate. One caveat in using
experimentally derived decay rates is that their values are also context dependent,97 so it
may not add to TRN inference if the expression data and decay data were observed under
very different experimental conditions.

4 Discussion
We have reviewed many statistical and computational methods that have been developed in
recent years to reconstruct transcriptional regulatory networks from gene expression data,
ChIP-chip data, sequence data, and mRNA decay data. Although we have primarily focused
on TF-gene interactions in this review, there are many other important regulators involved in
chromatin modification and post-transcription regulation. It would be ideal to consider them
all under a consistent framework to reconstruct TRNs. For example, Whitington et al.98

found that chromatin information offers accurate prediction of tissue-specific binding sites
and such data will undoubtedly lead to more accurate TRN inference.

Because the focus of this current review is the inference of TF targets, a thorough review of
the extensive literature on inferring TF binding motifs is beyond the scope of this article. We
simply note that a large number of methods have been developed to infer TF binding motifs
based on gene expression data, sequence data and ChIP-chip data. Some of these motif-
finding algorithms are closely tied to TRN inference. For example, REDUCE99 regresses
gene expression levels on the presence or absence of a putative motif in the promoter
regions of all the genes. A functional motif can be identified if there is an association
between the observed expression levels and the presence or absence of this motif. In
essence, this motif occurrence serves as a surrogate for TF occupancy. The same idea was
used to infer binding motifs from ChIP-chip data100 and combined analysis of gene
expression and ChIP-chip data for motif discovery.101 More accurate motif knowledge can
provide more informative prior as well as more effective filtering for TRN inference.
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Most TRN work relies on expression studies conducted under controlled experiments.
However, the combination of naturally occurring variations observed in individuals in a
population sample does represent a rich set of perturbation experiments, though not as well
controlled. Such samples have been used to study gene expression profiles across
individuals and to identify genetic regions controlling gene expression patterns.102–104

These studies also yield valuable information on TRNs. However, early results did not show
an enrichment for TFs in the identified regions.105 More recent studies do suggest that more
informative regulation results can be derived if different data types are systematically
integrated, including binding and protein interaction information.106

In addition to collecting more data types, more samples under different conditions are
required to reconstruct a global network. How to best perturb the system to facilitate TRN
inference is an area that has not received much attention, but see Barrett and Palsson,107

Tegner et al.108 and Bonneau.109 This may be due to the limited knowledge on TRNs and
the fact that the optimal experiments depend on a good understanding of the true underlying
networks. In fact, even when a TF is perturbed, it is often not a trivial task to select the
optimal experimental condition to perturb this TF to observe the system’s responses.110

Essentially, all the methods proposed to date for TRN inference are statistical in nature
without invoking detailed mechanistic models for specific genes involved in a TRN.
However, with more research done and more knowledge accumulated, there is no question
that the field is moving towards a more detailed and mechanism-driven approach to
describing the system. For certain pathways, large differential equation systems have been
analyzed in the literature.111 One major limitation in analyzing such systems is that many of
the kinetic parameters are either unknown or known only to be within a wide range. The
system behaviour may be quite sensitive to the choice of these parameter values, and it is
often difficult to infer their values because there may be very limited amount of information
in gene expression data.78,112 Currently, there is still a large gap between statistical
(descriptive) and mathematical (mechanistic) approaches to systems modelling and analysis.
Although they can be considered complementary at this point, these two approaches will
certainly converge in the future, but much effort is needed to make this happen.

One factor that will help to achieve this goal is technology, which keeps evolving at a very
rapid pace. Although we have focused on microarray gene expression data, sequence-based
expression profiling will provide more comprehensive and accurate assessment of the
expression patterns for an organism under a given condition.113 Due to the nature of
sequencing data, the above discussed statistical methods need to be modified even if the
same general approach is pursued for TRN inference. In addition, we can obtain data at
ever-finer levels, e.g. cell-based assays, and monitor expression patterns both in space and
time.

Finally, given the many methods available for TRN inference, it is important to compare the
performance of these methods based on both simulated and real data.114 But very limited
studies have been done to date. Although it may well be that different methods suit different
systems and data types, it would be helpful to biologists if some general principles and
guidelines can emerge from such studies so that they can indeed take advantage of the
advances in statistical and computational methods instead of being inundated with different
approaches.
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