

NIH Public Access

Author Manuscript

Published in final edited form as: J Mol Biol. 2006 June 9; 359(3): 624–645. doi:10.1016/j.jmb.2006.03.050.

Crystal Structures of Beryllium Fluoride-Free and Beryllium Fluoride-Bound CheY in Complex with the Conserved C-Terminal Peptide of CheZ Reveal Dual Binding Modes Specific to **CheY Conformation**

Jayita Guhaniyogi^{1,2}, Victoria L. Robinson^{1,2,3,‡}, and Ann M. Stock^{1,2,3,*} ¹Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA

²Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA 679 Hoes Lane, Piscataway, NJ 08854

³Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, NJ 08854, USA

Summary

Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its autodephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The latter involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (Che Z_C), an indispensable structural component of the functional CheZ protein. To understand how the CheZ_C helix, representing less than 1% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ₂₀₀₋₂₁₄) at resolutions ranging from 2.0 Å to 2.3 Å. These structures provide a detailed view of the CheZ_C peptide interaction both in the presence and absence of the phosphoryl analog, BeF₃⁻. Our studies reveal that two different modes of binding the $CheZ_{200-214}$ peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ_C helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.

Keywords

CheY; CheZ peptide; crystal structure; beryllium fluoride; dual binding mode

^{*}*Corresponding author*: stock@cabm.rutgers.edu. *Current address of Victoria L. Robinson: University of Connecticut, Molecular & Cell Biology, BSP 204, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125

Introduction

Chemotaxis enables motile eubacteria to regulate their swimming behavior in response to chemical gradients (reviewed in Bren *et al.*¹, Bourret and Stock² and Wadhams and Armitage³). In enteric species such as *Salmonella enterica* serovar Typhimurium and *Escherichia coli*, the key step in chemotaxis is the regulation of phosphorylation of the response regulator CheY in response to chemical signals in the environment. The steady-state level of phosphorylated CheY (P~CheY) determines the direction of flagellar rotation, which regulates the specific swimming behavior of the cell.

CheY is a switch molecule with multiple conformations subject to the phosphorylation state of a conserved active-site residue, ⁵⁷Asp (reviewed in Silversmith and Bourret⁴, Robinson *et al.*⁵ and Cho *et al.*⁶). The phosphorylated form of CheY is short-lived ($T_{1/2} \sim 10^{-1}$ sec), owing to both auto-dephosphorylation by CheY as well as dephosphorylation by CheZ, a P~CheY-specific phosphatase. Dephosphorylation of CheY by CheZ requires two interactions: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of P~CheY with the small *C*-terminal helix of CheZ (CheZ_C helix).

Blat and Eisenbach⁷, first identified the *C*-terminal region of CheZ as the locus of this tethering interaction. Schuster *et al.*⁸ showed that addition of the CheZ_C peptide (CheZ₁₉₆₋₂₁₄) in solution enhances the phosphorylation kinetics of CheY but has no effect on its dephosphorylation. Subsequently, Zhou *et al.*⁹ reported the 2.9 Å crystal structure of CheY, activated with the phosphoryl analog, BeF₃⁻, and bound to CheZ₁₋₂₁₄, which presented a view of the CheZ-bound active site and addressed the structural explanation for the mechanism of CheZ-mediated dephosphorylation of CheY. The structure also provided a description of the CheY-CheZ tethering interaction, albeit limited due to apparent disorder of the region in the crystal.

The CheZ_C helix represents less than 1% of full-length (FL) CheZ (CheZ₁₋₂₁₄) and is an indispensable structural component of the functional CheZ protein. Its binding to P~CheY is essential for CheZ-mediated dephosphorylation of CheY.⁷ The high degree of sequence conservation of the CheZ_C region is consistent with this role (Figure 1). An examination of 39 CheZ proteins revealed that seven of the sixteen strictly conserved residues in the FL protein are localized within the 21 *C*-terminal residues. Six additional residues of the *C*-terminus are also highly conserved (Figure 1).

In order to understand how the small $CheZ_C$ helix specifically binds to CheY and to gain insight into the significance of the CheY-CheZ_C interaction in chemotaxis, we solved crystal structures of wild-type (WT) *S. enterica* CheY, in the presence of the phosphoryl analog, BeF_3^- complex¹⁰⁻¹² (CheY activated) as well as in the absence of BeF₃⁻ (CheY inactive), each in complex with a synthetic peptide corresponding to 15 residues of the *C*-terminus of *S. enterica* CheZ (CheZ₂₀₀₋₂₁₄). We determined the structures from two different crystal forms, F432 and P2₁2₁2, at resolutions ranging between 2.0 Å and 2.3 Å.

Comparisons with previously determined structures of inactive CheY (metal-free¹³ and metal-bound¹⁴) and BeF₃⁻-activated CheY, free¹⁵ and bound to CheZ₁₋₂₁₄⁹, revealed distinct differences in peptide binding correlating with differences in CheY conformation. Our crystal structures suggest that the mode of binding of the CheZ₂₀₀₋₂₁₄ peptide to activated CheY is different from its binding to inactive CheY. The conformation of CheY in the inactive CheY-CheZ₂₀₀₋₂₁₄ complex exhibits both inactive and active features. From these structural studies, we cannot completely rule out that lattice-packing interactions have led to the trapping of an intermediate state in this complex. However, the observed conformation is similar to the "meta-active" sub-state of CheY, first documented by

Simonovic and Volz.¹³ Therefore, the structures of the inactive CheY-CheZ₂₀₀₋₂₁₄ complex, reported here, suggest a possible functional role for the "meta-active" intermediate of CheY. These structures also argue against the previously postulated two-state model in which long-range conformational changes in CheY are obligatorily coupled.¹⁶

The different CheY-CheZ₂₀₀₋₂₁₄ structures illustrate the malleable nature of CheY-like signaling domains. They also suggest that the CheZ₂₀₀₋₂₁₄ peptide induces a greater change in CheY conformation upon binding to inactive CheY than upon binding to the activated form of CheY. This might provide an explanation for the phenomenon of peptide-induced acceleration of CheY phosphorylation.⁸ Our structural and mutational studies suggest that this coupling of CheY phosphorylation rate and peptide binding cannot be explained by differences in conformation, bulk and charge of side chains of individual conserved residues and instead involve global changes in the backbone conformation. Based on our observations, we have proposed dual modes of CheZ_C-CheY binding that may be relevant to the modulation of signaling in bacterial chemotaxis.

Results and Discussion

Crystal structures of BeF₃⁻-free and BeF₃⁻-bound CheY-CheZ₂₀₀₋₂₁₄ complexes from two different crystal forms

Co-crystals of *S. enterica* WT CheY and a synthetic peptide corresponding to *S. enterica* CheZ₂₀₀₋₂₁₄ were grown by the hanging drop vapor diffusion method, as described in Materials and Methods. Crystals of both inactive and activated CheY-CheZ₂₀₀₋₂₁₄ complexes were generated in the presence of the divalent cation, Mg^{2+} , which plays a catalytic role at the active site of CheY.¹⁴ BeF₃⁻, a phosphoryl analog that forms a non-covalent complex with the active-site ⁵⁷Asp, was used to stabilize the active conformation of CheY.¹⁰⁻¹² The BeF₃⁻ species was obtained by using appropriate ratios of BeCl₂ and NaF, as previously described.^{10,15} The *N*-terminus of the synthetic CheZ₂₀₀₋₂₁₄ peptide was protected by acetylation to ensure stability in solution, eliminating the charge on the α-amino group and reducing reactivity of the free *N*-terminus, which is prone to modification.

The CheY-CheZ₂₀₀₋₂₁₄ complex crystallized in two different space groups: the F-centered cubic F432 and the primitive orthorhombic P2₁2₁2. The F432 crystals were generated both in the presence as well as in the absence of BeCl₂ and NaF in three different buffer and pH conditions: Hepes (pH 7.5), Tris (pH 8.4) and CAPS (pH 10.5). To obtain the BeF₃⁻-bound F432 crystals, BeCl₂ and NaF were soaked into inactive F432 crystals of the CheY-CheZ₂₀₀₋₂₁₄ complex, as detailed in Materials and Methods. These crystals exhibited a range of crystal morphologies with well-defined edges including the most common cubic form (Figure 2(a)). Data from these crystals processed with one molecule per asymmetric unit and a Matthews coefficient of 5.1 Å³/Da, yielding a solvent content of 76%. The P2₁2₁2 crystals were grown in MES (pH 6.0), in the presence of BeCl₂ and NaF. Crystals of this form grew as needles with rough edges and with fissures running across a few (Figure 2(a)). These data processed with one molecule per asymmetric of 1.94 Å³/Da and a solvent content of only 36.6%, much lower than that of the F432 crystal form.

The molecular replacement program Phaser¹⁷ was used to obtain phases for the structures, using as a search molecule, a poly-alanine model of the BeF₃⁻-activated CheY structure¹⁵ (PDB Accession code – 1FQW) lacking the β 4- α 4 loop (residues 88-92). In most response regulator receiver domains, as is the case in CheY¹⁸, the β 4- α 4 loop is flexible¹⁹ and undergoes substantial change upon phosphorylation. Six structures in the F432 crystal form, corresponding to different crystallization conditions, and one structure in the P2₁2₁2 crystal form were solved. The statistics for data collection and those for refinement for all seven structures are summarized in Table 1. The structures were refined to resolutions ranging

from 2.0 Å to 2.3 Å. All seven final models include one molecule of CheY with residues 2 to 129 and one molecule of the CheZ₂₀₀₋₂₁₄ peptide. In case of some of the structures in the F432 crystal form, one to five *N*-terminal residues of the CheZ₂₀₀₋₂₁₄ peptide could not be included because of disorder, possibly arising from the solvent-exposed nature of the peptide in this crystal form. The structures were refined to R-factors ranging between 0.186 and 0.220 and R_{free} ranging between 0.207 and 0.246 with good chemical geometries, as listed in Table 1.

The $F_{\rm C}$ - $F_{\rm C}$ difference maps contoured at +3 σ for all activated models showed the presence of a BeF₃⁻ species and a Mg²⁺ ion exhibiting octahedral coordination geometry at the active site. Following refinement, BeF_3^- refined with 100% occupancy in all activated structures, except one. In the structure solved from an F432 crystal grown in Hepes (pH 7.5), which was soaked in BeCl₂ and NaF prior to data collection (see Materials and Methods), the occupancy for BeF₃⁻ refined to only 65%. The BeF₃⁻-free or inactive CheY-CheZ₂₀₀₋₂₁₄ complex was crystallized only in the F432 crystal form. At the active site of CheY in all these structures, a water molecule with tetrahedral geometry occupies the position of Mg²⁺. The lack of metal binding in this case, in spite of the presence of 7 mM MgCl₂ during crystallization, likely results from the high ionic strength of the crystallization solutions (see Materials and Methods). Low metal occupancy in the presence of high concentrations of ammonium sulfate has been previously observed.¹⁴ The adverse effect of high ionic strength on metal binding in the F432 crystal form is overcome in the presence of BeF_3^- , which provides additional ligands for coordination, as observed in the BeF3⁻-bound CheY-CheZ₂₀₀₋₂₁₄ structures solved from the F432 crystals (BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄). Additional small molecules included in the final models are summarized in Table 1.

CheY is a 129-residue doubly-wound α/β protein with a central sheet of five beta strands, surrounded by five alpha helices. The CheZ₂₀₀₋₂₁₄ peptide, in helical configuration, is bound to the α 4- β 5- α 5 face of the CheY molecule in all seven structures, reported in this manuscript, as is the CheZ_C helix in the CheY-CheZ₁₋₂₁₄ structure.⁹ The overall structures of all six models in the F432 crystal form are similar. Superpositions of the CheY molecules from the BeF₃⁻-bound and BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ complexes yield main chain root mean square deviations (r.m.s.d.) of 0.12 Å to 0.27 Å for CheY and 0.22 Å to 0.28 Å for CheZ₂₀₀₋₂₁₄. The CheY-CheZ₂₀₀₋₂₁₄ structures in the F432 crystal form (^{F432}YZ₂₀₀₋₂₁₄) differ from that in the P2₁₂₁2 crystal form (^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄) by main chain r.m.s.d. values ranging between 0.70 Å and 0.83 Å for CheY and between 0.46 Å and 0.60 Å for CheZ₂₀₀₋₂₁₄. The BeF₃⁻-free and BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ and the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structures are shown in Figure 2(b), Figure 2(d) and Figure 2(c), respectively.

Comparison of CheY-CheZ_C contacts – dual binding modes

An examination of the CheY-CheZ₂₀₀₋₂₁₄ interface in the $^{F432}YZ_{200-214}$ and the $^{P2(1)2(1)2}YZ_{200-214}$ structures revealed that the CheZ₂₀₀₋₂₁₄ helix in the two crystal forms is positioned on the $\alpha 4$ - $\beta 5$ - $\alpha 5$ face of CheY in two distinct orientations, as illustrated in Figure 3(a) and Figure 3(b). For ease of discussion, the orientation of the CheZ₂₀₀₋₂₁₄ helix observed in the $^{F432}YZ_{200-214}$ structures will be referred to as the F432 mode and that observed in the $^{P2(1)2(1)2}YZ_{200-214}$ structure, as the $^{P2(1)2(1)2}$ mode.

In both modes, there is some disorder to the termini of the CheZ₂₀₀₋₂₁₄ helix, but disorder occurs at opposite ends in the two modes. In the ^{F432}mode, the CheZ₂₀₀₋₂₁₄ helix (^{F432}Z₂₀₀₋₂₁₄) is parallel to the α 4 helix of CheY and the *N*-terminal region of the ^{F432}Z₂₀₀₋₂₁₄ helix is highly disordered and is exposed to solvent (Figure 3(a)). Undefined density in the F₀-F_C difference maps, precluding the placement of one to five *N*-terminal residues in the final models, and relatively higher B-factors of the *N*-terminal

region of CheZ₂₀₀₋₂₁₄ compared to the rest of CheZ₂₀₀₋₂₁₄ in the ^{F432}YZ₂₀₀₋₂₁₄ structures (Figure 3(c)) are consistent with this observation. At the *C*-terminus, the ^{F432}Z₂₀₀₋₂₁₄ peptide is anchored by the phenyl ring of the terminal residue, ²¹⁴Phe that hooks into a hydrophobic pocket on the α 4- β 5- α 5 face of the CheY protein. This pocket is created by the solvent-buried conformation of the side chain of ¹⁰⁶Tyr on the β 5 strand of CheY. ¹⁰⁶Tyr is one of the switch residues involved in conformational change that accompanies phosphorylation of CheY (reviewed in Robinson *et al.*⁵).

In the ^{P2(1)2(1)2}mode, the CheZ₂₀₀₋₂₁₄ helix (^{P2(1)2(1)2}Z₂₀₀₋₂₁₄) is parallel to the a5 helix of CheY (Figure 3(b)). The *N*-terminus of the ^{P2(1)2(1)2}Z₂₀₀₋₂₁₄ helix is ordered and is buried within the a4- β 5-a5 face while the *C*-terminus is disordered, consistent with the relatively higher B-factors of the *C*-terminal region of CheZ₂₀₀₋₂₁₄ compared to those of the rest of the peptide in the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structure (Figure 3(c)).

The high-resolution crystal structures of the CheY-CheZ₂₀₀₋₂₁₄ complexes provided the opportunity to analyze details of the protein-protein interactions between CheY and the CheZ₂₀₀₋₂₁₄ peptide. The two different interfaces involve similar types of interactions. However, different residues mediate the interactions in the two binding modes (Figure 3(d) and Table 2). Both interfaces are predominantly hydrophobic. In the two modes of binding, the hydrophobic interface is overlapping but it is flanked by distinct hydrogen bond and salt bridge contacts. Buried surface analyses revealed that the *C*-terminal residues, ²¹²Leu, ²¹³Gly and ²¹⁴Phe of the ^{F432}Z₂₀₀₋₂₁₄ peptide contribute to 30% of the surface buried at the ^{F432}YZ₂₀₀₋₂₁₄ interface. In contrast, contribution to buried surface at the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ interface is substantially higher from the ^{P2(1)2(1)2}Z₂₀₀₋₂₁₄ *N*-terminus than the *C*-terminus. The *C*-terminal residues, ²¹²Leu and ²¹⁴Phe contribute to only 17% of the buried surface at the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ interface.

Comparison of binding modes of the CheZ_C helices in the CheY-CheZ structures was initiated by structural superposition of the CheY molecules in the CheY complexes. Figure 4 depicts such a structural alignment of the three CheY-CheZ_C models $(^{F432}YZ_{200-214}, ^{P2(1)2(1)2}YZ_{200-214} \text{ and CheY-CheZ}_{1-214}^9)$. In the CheY-CheZ₁₋₂₁₄ structure, the CheY active site contacts the coiled coil region of CheZ and the α 4- β 5- α 5 face binds to the CheZ *C*-terminal tail, located at the end of a long flexible linker (CheZ₁₆₉₋₂₀₀) that is disordered and absent from the final model. Thus, the region of the CheY-CheZ₁₋₂₁₄ model with the *C*-terminus of CheZ contacting CheY is analogous to the models of CheY bound to a synthetic peptide corresponding to the 15 *C*-terminal residues of CheZ, described in this work.

It is apparent from Figure 4 that the orientation of the CheZ_C helix in CheY-CheZ₁₋₂₁₄ is similar to that in $^{P2(1)2(1)2}YZ_{200-214}$. In both these cases, the interacting CheZ_C helix is positioned at the α 4- β 5- α 5 face in the $^{P2(1)2(1)2}$ mode and is parallel to the α 5 helix of CheY, tilted by ~30° with respect to the axis of the CheZ_C helix in the F432 mode. Comparison of the details of the interacting residues in the three CheY-CheZ_C models ($^{F432}YZ_{200-214}$, $^{P2(1)2(1)2}YZ_{200-214}$ and CheY-CheZ₁₋₂₁₄) reveal that the specific hydrophobic interactions, hydrogen bonds and salt bridges observed for the $^{P2(1)2(1)2}$ mode in both the CheY-CheZ₁₋₂₁₄ and the $^{P2(1)2(1)2}YZ_{200-214}$ models are almost identical, but distinct from those observed for the F432 mode (Table 2).

Comparison of the crystal structures of CheY bound to $CheZ_{200-214}$ with previously published crystal structures of CheY bound to the *N*-terminal peptide of $FliM^{20,21}$, a component of the flagellar motor and to the P2 domain of the histidine kinase $CheA^{22-24}$ reveal that the binding interfaces of CheY with its binding partners are overlapping but not identical, a paradigm that was formerly pointed out in mutation²⁵ and NMR²⁶ studies.

Additionally, the residues involved in the CheY-CheZ₂₀₀₋₂₁₄ binding interface, as revealed in the CheY-CheZ₂₀₀₋₂₁₄ structures, reported here, were also implicated in previous studies.^{25,26} Two different protein interfaces have been previously observed in crystal structures of CheY bound to the P2 domain of CheA.²² This study provides the first evidence for dual modes of binding of CheY to CheZ.

Comparison of binding interfaces, model quality, experimental conditions and crystal lattice influences

An understanding of the functional significance of dual binding modes of CheY and CheZ, the F432 mode and the $^{P2(1)2(1)2}$ mode, necessitates a thorough comparison of all available crystal structures of CheY-CheZ_C complex (F432 YZ₂₀₀₋₂₁₄, $^{P2(1)2(1)2}$ YZ₂₀₀₋₂₁₄ and CheY-CheZ₁₋₂₁₄⁹). A detailed analysis of interface characteristics, structural model features, crystallization conditions and influences of the crystal lattice in these structures is presented in Table 3. For simplicity, the BeF₃⁻-free F432 YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Tris (pH 8.4) will be used as a representative of all six F432 YZ₂₀₀₋₂₁₄ models.

Analyses of buried surface at the CheY-CheZ_C interfaces revealed that the specific interactions in the ^{F432}mode provide ~790 Å² of buried surface area while those in ^{P2(1)2(1)2}mode contribute 1044 Å² and 680 Å² at the interfaces in the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ and CheY-CheZ₁₋₂₁₄ structures, respectively. The difference in buried surface between ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ and CheY-CheZ₁₋₂₁₄, in spite of an identical mode of binding, is due to the fact that two residues, ²⁰⁰Ala and ²¹⁴Phe in the CheZ_C region are absent from the CheY-CheZ₁₋₂₁₄ model due to disorder but are well-ordered in the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ model. The surface of CheY buried by the peptide in the two binding modes is largely overlapping but not identical. This contrast arises from the differences in the specific contacts, as discussed in the previous section and as detailed in Table 2. Together these moderately distinct interactions contribute to comparable buried surface areas.

The solvent-exposed face of the $CheZ_C$ helix is similar in both binding modes (data not shown). Difference in gap volume index, a measure of complementarity of interacting surfaces²⁷, is only moderate and this parameter does not strongly favor one binding mode over the other. Notably, all the residues in CheY that contact CheZ in either binding mode are strongly conserved among the proteobacters that synthesize CheZ (data not shown). Similarly, in the *C*-terminus of CheZ, most residues that contact CheY (Table 2) are completely conserved (Figure 1). This conservation supports the biological significance of the protein-protein interactions observed in both modes of binding.

The quality of the models of the CheY-CheZ₂₀₀₋₂₁₄ and CheY-CheZ₁₋₂₁₄ complexes differs substantially. The F_0 - F_c difference maps contoured at similar sigma levels reveal complete backbone and discernible side chain density for the CheY-CheZ₂₀₀₋₂₁₄ peptide models determined at ~2.0 Å from both crystal forms, F432 and P2₁2₁2, in contrast to limited backbone and a complete absence of side chain density for the CheY-CheZ₁₋₂₁₄ model determined at 2.9 Å resolution (data not shown). Both the F432YZ₂₀₀₋₂₁₄ and $P2(1)2(1)2YZ_{200-214}$ structures have substantially lower R_{free} values than the CheY-CheZ₁₋₂₁₄ structure, indicating better agreement of the CheY-CheZ₂₀₀₋₂₁₄ models to the measured data (Table 3). The average crystallographic B-factors of all the $CheZ_C$ atoms in the $^{F432}YZ_{200-214}$ and $^{P2(1)2(1)2}YZ_{200-214}$ structures are 38.8 Å² and 17.7 Å², respectively, while that in the CheY-CheZ₁₋₂₁₄ structure is 164.8 Å². The lower B-factors indicate a more defined spread of electron density, less dynamic mobility and less errors in model building for the structural models of the CheY-CheZ₂₀₀₋₂₁₄ peptide complex (Table 3). However, while the poor model quality of the CheY-CheZ₁₋₂₁₄ model raises questions regarding details of the CheY-CheZ_C interface in this structure, the F₀-F_c maps suggest no ambiguity in the orientation of the CheZ_C helix axis relative to the α 4- β 5- α 5 face of CheY.⁹ This is

further strengthened by the fact that contact analyses show that both the orientation and the specific interactions at the CheY-CheZ_C interface in the CheY-CheZ₁₋₂₁₄ structure are similar to those in $P^{2(1)2(1)2}YZ_{200-214}$, which exhibits better model characteristics.

The comparative analyses presented above indicate that neither of the two modes of binding of the CheZ₂₀₀₋₂₁₄ peptide to CheY appears to be an obviously better interface. Differences in experimental conditions (Table 3) are likely to have influenced the conformations observed, though none provides a readily discernable explanation for the different modes of binding. Crystals of the CheY-CheZ₁₋₂₁₄ complex were generated by co-crystallization of E. coli CheY and FL E. coli CheZ (CheZ₁₋₂₁₄) whereas crystals of CheY-CheZ₂₀₀₋₂₁₄ peptide complex, reported in this work, were generated by co-crystallization of *S. enterica* CheY and a synthetic peptide corresponding to the 15 C-terminal residues of S. enterica CheZ (CheZ₂₀₀₋₂₁₄). The C-terminal residues 200 to 214 in E. coli and S. enterica CheZ are identical (Figure 1) and the three minor amino acid differences between E. coli and S. enterica CheY proteins map outside the $\alpha 4-\beta 5-\alpha 5$ binding face. Likewise, contacts of CheY with the N-terminal regions of CheZ₁₋₂₁₄ occur near the CheY active site and do not appear to impart long-range perturbations to the α 4- β 5- α 5 binding face that interacts with the CheZ C-terminal peptide. In the F432YZ₂₀₀₋₂₁₄ structures solved from crystals grown in CAPS (pH 10.5), a CAPS buffer molecule interacts with both CheY and CheZ₂₀₀₋₂₁₄. However, the absence of this molecule in the structures of the complex solved from F432 crystals grown at different buffer and pH conditions suggests that the orientation of the CheZ₂₀₀₋₂₁₄ peptide in the ^{F432}mode is not influenced by the specific crystallization buffer.

Contributions of lattice contacts are more difficult to assess. In the F432 crystal lattice, each asymmetric unit is subject to three symmetry operations, one three-fold and two two-fold operators (Figure 5(a) and Figure 5(b)). The CheZ₂₀₀₋₂₁₄ peptide in this lattice is part of the 3-fold interface (Figure 5(a)). The CheZ₂₀₀₋₂₁₄ peptide makes nonspecific van der Waals interactions with parts of the α 2 helix of a symmetry-related CheY molecule with contact distances >3.5 Å, but there are no specific hydrogen bonds or salt bridges that appear to constrain the position of the peptide. On the other hand, the P2₁2₁2 crystal lattice is characterized by three mutually perpendicular two-fold symmetry operators, two of which are associated with 2₁ translational symmetry functions (Figure 5(c)). The CheZ₂₀₀₋₂₁₄ peptide in the P2₁2₁2 lattice is involved in a few specific electrostatic contacts in addition to nonspecific van der Waals interactions with the α 1 and α 2 helices of a CheY molecule in the neighbouring asymmetric unit.

Notably, the CheZ₂₀₀₋₂₁₄ peptide in both the F432 and the P2₁2₁2 lattices is positioned at interfaces of symmetry elements and contributes to 40% of the total buried surface due to lattice contacts (data not shown). Nonetheless, it is difficult to argue that the binding modes are solely a consequence of crystal packing. Although it cannot be ruled out that the peptide orientation in the F432 mode is influenced by the van der Waals interactions imposed by the cubic F432 lattice, analyses of the CheY-CheZ₂₀₀₋₂₁₄ interfaces in these structures suggest that the contact displays all the characteristics of bonafide biological interfaces. Furthermore, any assumption of bias imposed on the orientation of the peptide in the P2₁2₁2 lattice is undermined by the fact that the peptide orientation in the P2₁2₁2 lattice is identical to that in the CheY-CheZ₁₋₂₁₄ P4₃2₁2 lattice, in which the CheZ_C helix is not part of any crystal contacts.⁹

Comparison of CheY conformational states

CheY is a switch protein with different conformations dictating distinct signaling states (reviewed in Robinson *et al.*⁵ and Cho *et al.*⁶). The ability of CheY to signal in bacterial chemotaxis is regulated by its phosphorylation state. Phosphorylation at the active site stabilizes an active conformation, in which the α 4- β 5- α 5 signaling face of CheY, distant

from the active site, is altered relative to the inactive conformation. Structural changes promoted by phosphorylation are conserved in most bacterial response regulator receiver domains. Structural studies of *N*-terminal receiver domains activated by phosphorylation or BeF_3^- are the basis of the present understanding of these conserved changes and have defined signatures for the active conformation.^{15,18,28-35}

In activated CheY, one of the phosphoryl oxygens (or fluorines of BeF_3^{-}) serves as one of the six conserved ligands for the octahedrally coordinated divalent cation at the active site. Based on previous mutational and structural evidence, CheY activation is associated with three major changes: 1) displacement of the protein backbone of the conserved residue ⁸⁷Thr at the tip of the β 4 strand towards the active site, allowing a strong hydrogen bond interaction with the phosphoryl group (or BeF_3^{-}), 2) repositioning of the conserved residue ¹⁰⁹Lys on the β 5- α 5 loop, enabling a salt bridge interaction with the phosphoryl group (or BeF₃⁻) and ¹²Asp, one of the three conserved aspartate residues at the active site, and 3) rotameric conversion of the conserved aromatic switch residue 106 Tyr on the β 5 strand from a solvent-exposed to a solvent-buried conformation.^{15,16,18,36-39} According to previous dynamic studies and NMR analysis of inactive CheY-Mg²⁺, the β 4- α 4 loop in the inactive protein is flexible and the active-site interactions involving ⁸⁷Thr and ¹⁰⁹Lys, promoted by phosphorylation or binding of the BeF₃⁻ ligand, influence the protein backbone in the β 4- α 4 and the β 5- α 5 loop regions, respectively, thereby stabilizing the active conformation.^{15,18,40} Whether these structural changes occur in conjunction with, or as a consequence of, one another is not clear. Although a mechanism of activation in FixJ_N was suggested based on a molecular dynamics study, further experimental evidence for such a mechanism is lacking.19

The conformational states of CheY in the CheZ₂₀₀₋₂₁₄ peptide-bound complexes ($^{F432}YZ_{200-214}$ and $^{P2(1)2(1)2}YZ_{200-214}$) were compared with previously determined structures of the Mg²⁺-bound inactive state¹⁴ (PDB Accession code – 2CHE) and the BeF₃⁻-activated state¹⁵ (PDB Accession code – 1FQW). Least-squares superpositions of the main chain atoms of CheY molecules in the $^{F432}YZ_{200-214}$ and $^{P2(1)2(1)2}YZ_{200-214}$ structures with those of Mg²⁺-bound inactive and BeF₃⁻-activated CheY structures were performed. Side chain conformations of the conserved active-site (Figure 6(a) and Figure 6(c)) and switch residues (Figure 6(b) and Figure 6(d)) are illustrated in superpositions with inactive Mg²⁺-bound CheY (Figure 6(a) and Figure 6(b)) and with BeF₃⁻-activated CheY (Figure 6(c) and Figure 6(d)).

Following a least-squares superposition procedure, $\vec{\delta}_3$ analysis was performed to fully assess the extent of differences in the tertiary structures of the CheY-CheZ₂₀₀₋₂₁₄ complexes

and the previously determined structures of CheY (see Materials and Methods). $|\vec{\delta}_3|$ reflects the magnitude of a main chain displacement vector that is a measure of individual atomic displacement vectors with summations carried out over a short peptide of three contiguous residues in the protein.⁴¹ Concerted structural changes result in constructive addition of these vectors while uncorrelated differences lower the magnitude of these vectors. The magnitudes of displacement vectors *versus* CheY residue number upon least-squares superposition of backbone atoms of CheY molecules in the CheY-CheZ₂₀₀₋₂₁₄ peptide structures with those of inactive Mg²⁺-bound CheY and BeF₃⁻-activated CheY are shown in Figure 7. Using low r.m.s.d. values and small magnitudes of the displacement vectors as

indications of structural similarity, both the overall r.m.s.d. and $\vec{\delta}_3$ analyses suggest that CheY molecules in the BeF₃⁻-free F⁴³²YZ₂₀₀₋₂₁₄ structures are similar to inactive Mg²⁺-CheY while the CheY molecule in the BeF₃⁻-bound P²⁽¹⁾²⁽¹⁾²YZ₂₀₀₋₂₁₄ structure is similar to BeF₃⁻-activated CheY. Intriguingly, CheY molecules in the BeF₃⁻-bound F⁴³²YZ₂₀₀₋₂₁₄ structures are similar to inactive Mg²⁺-CheY, rather than to BeF₃⁻-activated CheY.

Partial occupancy of BeF₃⁻ in BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ could likely explain the absence of CheY activation in these structures, as is the case in the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Hepes (pH 7.5), where the BeF₃⁻ occupancy refined to only 65%. However, in the remaining two BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures, one solved from a crystal grown in CAPS (pH 10.5) and the other solved from a crystal grown in Tris (pH 8.4), the BeF₃⁻ species is fully occupied. To resolve this paradox, structural features at the active site and at the activation-sensitive α 4- β 5- α 5 face of CheY were compared in the CheY-CheZ₂₀₀₋₂₁₄ structures and the structures of the inactive metal-free apoCheY¹³ (PDB Accession code – 1JBE), inactive Mg²⁺-bound and BeF₃⁻-activated CheY (Table 4).

Comparison of active sites—Comparison of the active-site coordination geometry revealed that in both the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ and the BeF₃⁻- bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structures, the active site of CheY is occupied by an octahedrally coordinated Mg²⁺ with coordination geometry similar to that in BeF₃⁻-activated CheY (Figure 6(c) and Table 4). In the BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structure, the CheY active site is occupied by a tetrahedrally coordinated water molecule in place of the metal ion, similar to the active site of CheY in the inactive metal-free apoCheY structure (Table 4).

Examination of the contact geometries of the conserved residue ¹⁰⁹Lys showed that in the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures, in which the BeF₃⁻ ligand is fully occupied, the side chain of the conserved residue ¹⁰⁹Lys on the β 5- α 5 loop of CheY extends towards the active site and makes ionic interactions with BeF₃⁻ and ¹²Asp. This is similar to the conformation of ¹⁰⁹Lys in BeF₃⁻-activated CheY as well as in BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ (Figure 6(c)). In the BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structure, while the ¹⁰⁹Lys C_{α} position is similar to that in BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ (Figure 7) and the ¹⁰⁹Lys side chain also extends into the active site, ¹⁰⁹Lys is involved in a salt bridge interaction with the active-site ⁵⁷Asp residue, similar to that in inactive metal-free apoCheY (Table 4).

Comparison of ⁸⁷**Thr and** β **4-α4 loops**—Interpretation of differences in the conserved residue ⁸⁷Thr and the β 4-α4 loop is complex. In BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄, the position of ⁸⁷Thr is similar to that in the inactive Mg²⁺-bound structure, but the β 4-α4 loop is slightly displaced from the inactive position (Figure 6(a), Figure 6(b) and Table 4) while in the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structure, ⁸⁷Thr and the β 4-α4 loop are in the active conformation, as in BeF₃⁻-activated CheY (Figure 6(c), Figure 6(d) and Table 4). The differences in the corresponding $\overrightarrow{\delta}_3$ plots are consistent with these observations (Figure 7).

In the three different BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures, ⁸⁷Thr and the β 4- α 4 loop are found in different positions. In the structure solved from a crystal grown in Hepes (pH 7.5), in which BeF₃⁻ occupancy is partial, ⁸⁷Thr is in the inactive position, as in inactive Mg²⁺-CheY, while the β 4- α 4 loop is slightly displaced, as in BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄. In the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in CAPS (pH 10.5), ⁸⁷Thr is displaced towards the active site by only 0.3 Å and the β 4- α 4 loop is positioned intermediate to that in Mg²⁺-bound inactive and BeF₃⁻-activated CheY.

In the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Tris (pH 8.4), ⁸⁷Thr and the β 4- α 4 loop show two distinct positions, each with 50% occupancy. In one conformation, ⁸⁷Thr is similar to that in inactive Mg²⁺-CheY and the β 4- α 4 loop is slightly displaced, as in the BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structures and the BeF₃⁻- bound ^{F432}YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Hepes (pH 7.5). In the alternate conformation, the position of ⁸⁷Thr is identical to that in BeF₃⁻-activated CheY but the β 4- α 4 loop is placed intermediate to that in inactive Mg²⁺-bound CheY and BeF₃⁻-activated CheY (Figures 6(a), Figure 6(b) and Table 4).

Differences in the positions of ⁸⁷Thr and the β 4- α 4 loop observed in the BeF₃⁻bound ^{F432}YZ₂₀₀₋₂₁₄ structures are not likely to be related to differences in buffer and pH conditions during crystallization but rather to non-specific crystal to crystal variation in characteristics such as size and morphology that might influence diffusion rates of the BeF₃⁻ species, resulting in varying degrees of propagative change in ⁸⁷Thr and the β 4- α 4 loop.

Comparison of ¹⁰⁶Tyr—¹⁰⁶Tyr, the key aromatic switch residue in CheY is located on the β 5 strand that is part of the signaling surface.¹⁶ The rotameric conformation of ¹⁰⁶Tyr is highly correlated with the signaling state of the protein. The two rotamers have large differences in solvent accessibility of the bulky aromatic phenol group with the solventexposed position of ¹⁰⁶Tyr corresponding to the inactive signaling surface and the solventburied conformer to the active α 4- β 5- α 5 face. In all seven structures of the CheY-CheZ₂₀₀₋₂₁₄ complex from the two crystal forms, ¹⁰⁶Tyr is in the solvent-buried or active conformation irrespective of the presence of BeF₃⁻ and Mg²⁺ at the active site (Figure 6(b) and Figure 6(d) and Table 4). The solvent-exposed conformation of ¹⁰⁶Tyr is not competent to bind to the CheZ_C helix in either of the two orientations observed because of steric clashes. This has also been noted in the FliM_N-bound CheY structures.^{20,21}

Y-T coupling—Previous structural studies of CheY activation established that the solventburied conformation of ¹⁰⁶Tyr and the movement of ⁸⁷Thr towards the active site and the consequent repositioning of the β 4- α 4 loop are obligatorily coupled, a phenomenon termed "Y-T coupling".¹⁶ A molecular dynamics study of the FixJ receiver domain further suggested that during the mechanism of activation, the movement of the β 4- α 4 loop occurs prior to rotation of the aromatic switch residue (¹⁰¹Phe in FixJ), and the rearranged β 4- α 4 loop is stabilized by a hydrogen bond between the conserved Thr (⁸²Thr in FixJ) and the phosphoryl oxygen at the active site.¹⁹ Based on previous studies supporting "Y-T coupling", the solvent-buried "active" conformation of ¹⁰⁶Tyr is not compatible with the inactive conformation of ⁸⁷Thr and the β 4- α 4 loop because of steric hindrance imposed by the short distance (1.5 Å) between the hydroxyl oxygen of the solvent-buried ¹⁰⁶Tyr side chain and the C atom of the ⁸⁷Thr side chain.¹⁶

A direct consequence of "Y-T coupling" during CheY activation is the perturbation of the backbone of the β 4- α 4 loop. This is the case in the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structure as well as the previously determined BeF₃⁻-CheY structure.¹⁵ In this conformation, the solvent-buried rotamer of ¹⁰⁶Tyr is stabilized by a hydrogen bond between its side chain hydroxyl and the backbone amide NH of the repositioned Glu⁸⁹ of the β 4- α 4 loop (Table 4).

However, in all six ^{F432}YZ₂₀₀₋₂₁₄ structures, the solvent-buried conformation of ¹⁰⁶Tyr is not associated with the complete repositioning of the β 4- α 4 loop and ⁸⁷Thr, as detailed above. In this intermediate state, the side chain hydroxyl of ¹⁰⁶Tyr is stabilized by a water-mediated contact with the side chain hydroxyl of ⁸⁷Thr and the side chain amide NH of ⁹⁴Asn (Table 4). Two additional structures of CheY have been previously reported in which ¹⁰⁶Tyr is buried from solvent but ⁸⁷Thr and the β 4- α 4 loop are not repositioned.^{13,28} In all these cases as well as in the ^{F432}YZ₂₀₀₋₂₁₄ structures, reported here, the solvent-buried conformation of ¹⁰⁶Tyr does not impose steric clashes with ⁸⁷Thr because of moderate shifts in C_{α} positions (~0.3Å), ~10-20° rotation of the ⁸⁷Thr C-C_{α} bond as well as minor changes in ¹⁰⁶Tyr torsion angles (Table 4). These subtle changes position the ¹⁰⁶Tyr side chain OH group ~3.0 Å away from the side chain C_{γ} of ⁸⁷Thr, allowing such a conformation to exist. These observations provide evidence for plasticity and are contrary to a two-state hypothesis in which long-range conformational changes are obligatorily coupled.

Summary of CheY conformations—The comparisons described above allow categorizations of the CheY conformations in the different CheY-CheZ₂₀₀₋₂₁₄ structures. CheY in BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ has all the characteristic signatures of a fully activated receiver domain. CheY in the ^{F432}YZ₂₀₀₋₂₁₄ structures is not as easily categorized. In the BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structures, ⁸⁷Thr is in an inactive position, ¹⁰⁶Tyr is in an active conformation, albeit with small differences in $\chi 1$ from that of active CheY, while the

β4-α4 and the β5-α5 loops are slightly different from those in inactive CheY. The $\vec{\delta}_3$ analysis shows that the difference between the CheY conformations in the peptide-bound and peptide-free structures in the absence of BeF₃⁻ activation, i.e., between F432YZ₂₀₀₋₂₁₄ and Mg²⁺-CheY, is greater than the difference in CheY conformations in the peptide-bound and peptide-free structures in the presence of BeF₃⁻ activation, i.e., between P2(1)2(1)2YZ₂₀₀₋₂₁₄ and BeF₃⁻-CheY (Figure 7), suggesting that CheZ_C peptide binding to inactive CheY is associated with a greater change in CheY conformation than that associated with CheZ_C binding to fully activated CheY. The greater similarity of conformation signatures of CheY in the F432YZ₂₀₀₋₂₁₄ complex to those in the active state relative to those in the inactive state provides the basis for designating this CheY conformation as the "meta-active" state. Although not identical, this conformation of CheY closely resembles the "meta-active" state, first introduced by Simonovic and Volz¹³ (Figure 8).

In the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures, ⁸⁷Thr and the β 4- α 4 loop are in multiple positions while ¹⁰⁶Tyr is similar to the active conformation, albeit with small differences in χ 1 (Table 4). Conformational analysis revealed that CheY molecules in these structures have the signatures of a partially activated structure. The multiple conformations of CheY in the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures likely represent intermediates in the pathway from a "meta-active" to a fully active conformation. The lack of complete activation in these structures might result from restrictions imposed by lattice contacts although the regions of the CheY protein that define its conformational state are not directly associated with symmetry interfaces. Modeling the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structure in the F432 cell because of steric clashes with a symmetry-related CheY molecule (Figure 9). The idea that lattice contacts constrain the conformation of BeF₃⁻-bound CheY is further supported by relatively higher disorder in the CheZ₂₀₀₋₂₁₄ peptide (Figure 3(c)) as well as a higher degree of variation in the "meta-active" conformation of CheY in the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures.

Binding model

Two inferences can be drawn from analyses of the modes of $CheZ_{200-214}$ peptide binding and the conformational states of CheY in the structures of the CheY-CheZ₂₀₀₋₂₁₄ peptide complexes: 1) in the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ complex, in which CheY is in the fully activated conformation, the CheZ₂₀₀₋₂₁₄ peptide binds in the ^{P2(1)2(1)2}mode, and 2) in the ^{F432}YZ₂₀₀₋₂₁₄ complexes, in which CheY exists in the "meta-active" state, the CheZ₂₀₀₋₂₁₄ peptide binds in the ^{F432}mode. Based on the correlation between dual CheZ_C binding modes and the CheY conformational state, we propose that the CheZ₂₀₀₋₂₁₄ peptide binds to CheY in two different modes that are reflective of the activation state of the CheY protein. The 20-fold lower binding affinity of the CheZ_C peptide to inactive *versus* active CheY is likely to be reflective of the different modes of binding.²⁶ Whether a similar difference in K_d's for binding of the FliM_N peptide to active and inactive CheY might correspond to dual modes of binding is unknown as FliM_N-bound inactive CheY structures have not been reported. Superpositions of CheY molecules bound to the CheZ_C peptide in the two distinct orientations did not reveal any steric clashes that might explain why one conformation binds in one mode and not the other. Two surface pockets on the α 4- β 5- α 5 signaling face of CheY, one between α 4 and β 5 (α 4- β 5) and the other between β 5 and α 5 (β 5- α 5), were compared (see Materials and Methods). The volume (Table 4), hydrophobicity and electrostatic characteristics (data not shown) of the two pockets differ in different conformations of CheY.

In the fully activated protein, the $\alpha 4$ - $\beta 5$ pocket is smaller in volume and more hydrophobic than the $\beta 5$ - $\alpha 5$ pocket, which has a higher concentration of positively-charged residues, as in the BeF₃⁻-activated CheY and the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structures. In the inactive protein, the $\beta 5$ - $\alpha 5$ pocket is absent while the $\alpha 4$ - $\beta 5$ pocket is ~20-fold greater in volume, because of the solvent-exposed conformation of ¹⁰⁶Tyr coupled with the positions of the $\beta 4$ - $\alpha 4$ and $\beta 5$ - $\alpha 5$ loops, as in the CheY-Mg²⁺ structure. However, when ¹⁰⁶Tyr is buried with only small changes in the $\beta 4$ - $\alpha 4$ and $\beta 5$ - $\alpha 5$ loops, as in the "meta-active" state, the $\alpha 4$ - $\beta 5$ pocket disappears while part of the $\beta 5$ - $\alpha 5$ pocket exhibits a hydrophobic characteristic because of slightly altered torsions of the solvent-buried ¹⁰⁶Tyr residue, as in "meta-active" apoCheY and CheY in the ^{F432}YZ₂₀₀₋₂₁₄ structures. It is possible that these conformation-dependent differences in surface profiles of the $\alpha 4$ - $\beta 5$ - $\alpha 5$ face favor binding of the CheZ_C helix in different orientations.

Implications of CheZ binding to inactive CheY

CheZ binding to inactive CheY offers interesting scenarios for discussion although its physiological significance is yet to be established. Binding to inactive CheY might allow CheZ to present inactive CheY to CheA for phosphotransfer. Although the binding affinity of inactive CheY to CheA-P2 is two orders of magnitude higher than that for CheZ^{26,42}, the relative intracellular concentrations of chemotaxis proteins might allow for such a situation. A comprehensive quantitative determination of chemotaxis components in bacterial cells, reported by Li and Hazelbauer⁴³, suggests that 70% of unphosphorylated CheY molecules could exist in complex with P2 domains of CheA. It follows that the remaining 30% of unphosphorylated CheY might exist as soluble cytoplasmic protein, potentially available for binding to CheZ. Based on the calculations of Li and Hazelbauer, such a scenario would be possible only within the 44% of receptor signaling complexes that contain both CheA_L, proficient in phosphorylating CheY, and CheA_S, a shorter form of CheA that cannot transfer phosphoryl groups to CheY but localizes CheZ to the receptor complex.^{44,45}

Localization of the source (kinase CheA) and the sink (phosphatase CheZ) of phosphoryl groups for CheY to the same site in the cell (polar chemoreceptor patches) creates a uniform distribution of P~CheY throughout the cytoplasm, ensuring rapid responses to stimuli.^{46,47} It can be speculated that binding of unphosphorylated CheY to CheZ at the core signaling complex would result in an increase in the rate or number of futile cycles of phosphorylation and dephosphorylation of CheY, competing with the productive transfer of phosphoryl groups from CheA to CheY and CheB.

In a number of different response regulators, it has been reported that mutations or ligands that stabilize the active conformation increase rates of phosphorylation, suggesting that phosphorylation occurs preferentially in a sub-population that exists in an active state.^{13,18,30,48-50} A "meta-active" conformation of CheY in the BeF₃⁻-free $^{F432}YZ_{200-214}$ structures suggests that the CheZ₂₀₀₋₂₁₄ peptide binds preferentially to the "meta-active" sub-population of inactive CheY. This provides the evidence for the functional nature of the proposed "meta-active" state of the CheY protein. This might provide the structural explanation for the coupling of CheY phosphorylation and peptide binding⁸ and suggest a functional role for the "meta-active" state of CheY. It was shown that the CheZ_C and FliM_N

peptides cause a 10-fold increase and CheA-P2 causes a 6-fold decrease in the rate of phosphoryl transfer to CheY from small molecule phosphodonors.⁸ The observation that CheY exists in a "meta-active" state in the $^{F432}YZ_{200-214}$ complex, provides evidence that the increased rate phosphorylation upon peptide binding results from a shift in equilibrium towards a more active conformation.

It was previously shown that ⁸⁷Thr, ¹⁰⁹Lys and ¹⁰⁶Tyr, key conserved residues involved in the conformational switch are not important in the coupling of peptide binding to increased rates of phosphorylation.⁸ Two additional residues near the active site, ¹⁴Phe and ⁵⁹Asn, display completely different rotamer conformations in the CheZ₂₀₀₋₂₁₄ peptide-bound structures as compared to inactive and active CheY structures not bound to peptide (Figure 10(a) and Figure 10(b)). ⁵⁹Asn is highly conserved in all species within the proteobacter group and ¹⁴Phe is highly conserved in γ -proteobacteriaceae, Enterobacteriaceae and β proteobacteriaceae families (data not shown). ¹⁴Phe has been previously implicated in regulating the solvent accessibility of the active-site pocket in structures of CheY bound to CheA-P2.^{22,24} It has been reasoned that when CheY is bound to P2, the phenyl group of ¹⁴Phe is rotated away from the active site, increasing accessibility of the phosphohistidine. A similar configuration of ¹⁴Phe is observed in the CheZ_C peptide-bound structure but not in the FliM_N-bound structure. The change in rotamer conformation of ⁵⁹Asn is also observed in the FliM_N-bound^{20,21} as well as CheA-P2-bound²²⁻²⁴ structures of CheY proteins.

In order to assess the significance of the different rotameric conformations of ¹⁴Phe and ⁵⁹Asn in the acceleration of CheY phosphorylation upon CheZ_C binding, phosphorylation kinetics of CheY proteins containing alanine substitutions at ¹⁴Phe and ⁵⁹Asn (CheY¹⁴F \rightarrow A and CheY⁵⁹N \rightarrow A) were measured in the presence and absence of the CheZ₂₀₀₋₂₁₄ peptide by following changes in ⁵⁸Trp fluorescence (see Materials and Methods). Extending previous observations, we found that changes in charge, bulk and rotameric conformations of key residues have little effect on the enhancement of phosphorylation upon peptide binding (Figure 10(c)). Consistent with earlier results, the presence of the CheZ₂₀₀₋₂₁₄ peptide increased the phosphorylation rate of the WT protein by 10-fold.⁸ While both mutant proteins alone have phosphorylation rates 1.5- to 2-fold less than the WT protein, both mutant proteins exhibit 10-fold greater rates in the presence of CheZ₂₀₀₋₂₁₄ peptide, exactly similar to the WT protein.

Implications of dual binding modes

Structures of the CheY-CheZ₂₀₀₋₂₁₄ complexes indicate that CheY is a flexible molecule capable of accommodating dual modes of binding to the CheZ₂₀₀₋₂₁₄ peptide. Previous evidence of such flexibility in the α 4- β 5- α 5 face of CheY was found in crystal structures displaying two distinct modes of binding of this region to the P2 domain of the histidine kinase CheA.²² The physiological significance of each of the CheZ peptide binding modes remains to be determined. However, a distinct mode of binding of inactive CheY to CheZ offers interesting implications.

The consequence of CheY activation is the elevated binding affinity for CheZ and FliM and reduced binding affinity for CheA.^{26,42} Peptide-induced enhancement of CheY phosphorylation suggests that relay of information in the reverse direction is also possible.⁸ Reverse flow of signaling information has also been reported between effector and receiver domains of OmpR upon DNA binding.⁵¹ The different binding modes observed in the CheY-CheZ₂₀₀₋₂₁₄ structures may provide different mechanisms of information flow in the forward and reverse directions, allowing bacteria to fine-tune signaling along the two-way pathway of signal transduction to CheY.

Although the CheZ protein is not a canonical phosphatase, analogies can be made with 4amino-5-hydroxymethyl-2-methylpyrimidine (HMP) phosphate kinase, which catalyzes two independent ATP-dependent phosphotransfer reactions of the substrate, HMP, in which the product of the first reaction, HMP phosphate acts as the substrate for the second reaction.⁵² The HMP phosphate kinase is able to catalyze the two reactions by allowing two different binding modes for HMP phosphate, corresponding to its role as product or substrate. This mechanism is in some ways analogous to the two binding modes of the CheZ_C helix observed in the CheY-CheZ₂₀₀₋₂₁₄ structures where one mode corresponds to binding of the primary substrate of the CheZ protein, the activated form of CheY, and the other mode corresponds to binding of the secondary substrate for CheZ phosphatase for reverse flow of signaling information, the inactive or "meta-active" forms of CheY.

Conclusions

The high-resolution models of the CheZ₂₀₀₋₂₁₄ peptide bound to inactive and active CheY provide evidence for dual binding modes subject to the conformational state of the CheY protein. Our studies suggest that the CheZ₂₀₀₋₂₁₄ peptide binds to the "meta-active" sub-population of inactive CheY molecules. This provides a potential structural explanation for the reverse information flow from peptide binding to increased phosphotransfer at the active site. Our studies also provide evidence against the proposed obligatory "Y-T coupling", and indicate that repositioning of ⁸⁷Thr and the β 4- α 4 loop and the rotameric conversion of ¹⁰⁶Tyr need not be obligatorily coupled. The dual modes of binding displayed by our CheY-CheZ₂₀₀₋₂₁₄ complexes extend previous conclusions about the inherent malleability of CheY. Such plasticity allows for different binding modes of CheY partners, which may be relevant to the fine-tuning of signaling responses.

Materials and Methods

Materials

The CheZ₂₀₀₋₂₁₄ peptide, corresponding to the *C*-terminal 15 residues of *S. enterica* serovar Typhimurium CheZ, bearing the sequence ASQDQVDDLLDSLGF with the *N*-terminus protected by acetylation, was obtained from the peptide synthesis core facility of Massachusetts General Hospital (Boston, MA) as lyophilized powder. Oligonucleotides for site-directed mutagenesis, bearing sequences 5'-TTT TTG GTT GTG GAT GAC GCT TCG ACC ATG CGT CGT ATC-3' and 5'-GAT ACG ACG CAT GGT CGA AGC GTC ATC CAC AAC CAA AAA-3' for CheY¹⁴Phe→Ala mutagenesis and 5'-ATT ATC TCC GAC TGG GCC ATG CCG AAC CTG-3' and 5'-CAT GTT CGG CAT GGC CCA GTC GGA GAT AAT-3' for CheY⁵⁹Asn→Ala mutagenesis, were obtained from the DNA core facility of the University of Medicine and Dentistry of New Jersey (Piscataway, NJ). The ammonium salt of phosphoramidate was synthesized by the method of Sheridan *et al.*⁵³

Proteins

The *S. enterica* serovar Typhimurium WT *cheY* gene was previously cloned within a 0.8 kilobase SnaI-SmaI fragment in a pUC12-based CheY expression vector (pME124).^{54,55} Plasmids, pEF41 and pJG1, carrying the ¹⁴Phe \rightarrow Ala and ⁵⁹Asn \rightarrow Ala mutations, respectively, were constructed using the plasmid pME124 as template and respective oligonucleotides using the site-directed mutagenesis kit (Stratagene).

Protein expression and purification

The pME124 plasmids bearing WT and mutant *cheY* genes were transformed into HB101 cells.^{14,56} The WT and mutant CheY proteins were purified by a modification of previously described procedures.⁵⁷ The previously used ion-exchange and gel filtration columns were

substituted with a HiTrap Q Fast Flow column (GE Healthcare) and a Superdex 26/60 column (GE Healthcare) in fast performance liquid chromatography using an AKTA system (GE Healthcare). The purified protein was quantitated by measuring UV absorbance at 280 nm, using extinction coefficients calculated from amino acid composition.⁵⁸ The ε_{280} value in ml mg⁻¹ cm⁻¹ 280 calculated for WT CheY is 0.493, for CheY¹⁴F \rightarrow A is 0.496 and for CheY⁵⁹N \rightarrow A is 0.495.

Crystallization

Purified WT CheY protein was dialyzed into a buffer containing 50 mM Hepes and 7 mM $MgCl_2$ (pH 7.0) (buffer A) and concentrated to 25 mg/ml (1.8 mM) using a Centriprep-10 (Millipore). A 20 mM stock solution of CheZ₂₀₀₋₂₁₄ peptide was prepared in buffer A. Both purified protein and dissolved peptide were filtered through 0.22 µm-poresize cellulose acetate filters (Corning Costar).

For crystallization of the BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ complex, WT CheY in buffer A was mixed with the CheZ₂₀₀₋₂₁₄ peptide to a final concentration of 0.9 mM CheY and 3.6 mM CheZ₂₀₀₋₂₁₄. Crystals were grown by the hanging drop vapor diffusion method at room temperature by mixing equal volumes of the protein/peptide mixture and reservoir solutions. The BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ crystals grew to ~100 μ m × 100 μ m × 50 μ m in ~3 days in the presence of reservoir solutions containing 1.8 M to 2.3 M ammonium sulfate and 0.2 M lithium sulfate (precipitant A) in three different buffer and pH conditions: 0.1 M Hepes (pH 7.5) (buffer B), 0.1 M Tris (pH 8.4) (buffer C), and 0.1 M CAPS (pH 10.5) (buffer D). A few BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ crystals from each buffer and pH condition were incubated in gradually increasing concentrations of BeCl₂ and NaF in precipitant A to a final concentration of 5 mM BeCl₂ and 30 mM NaF, at least 4-5 hours prior to data collection to obtain BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ crystals into their respective reservoir solutions, supplemented with glycerol at a final concentration of 20% (v/v) at 5% steps, soaking for 1 min at every step. Crystals were placed in a 100 K nitrogen cryostream for data collection.

For crystallization of the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ complex, WT CheY in buffer C was activated with 5 mM BeCl₂ and 30 mM NaF, prior to mixing with the CheZ₂₀₀₋₂₁₄ peptide, dissolved in buffer C to a final concentration of 0.8 mM CheY and 1.2 mM CheZ₂₀₀₋₂₁₄. These crystals were also grown by the hanging drop vapor diffusion method at room temperature by mixing equal volumes of the protein/peptide mixture and the reservoir solution, containing 0.05 M sodium phosphate (monobasic) and 37.5% PEG-8000 (precipitant B) in 0.1 M MES (pH 6.0) (buffer E). These crystals at first grew as fuzzy needles in the absence of BeCl₂ and NaF at the high throughput crystallization lab at the Hauptman Woodward Medical Research Institute, Buffalo, NY and were subsequently optimized to grow in the presence of BeCl₂ and NaF to ~100 μ m × 10 μ m × 10 μ m by repeated microseeding procedures. For crypotection, the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ crystals were serially transferred into reservoir solution, containing PEG-400 and sucrose to a final concentration of 18% (w/v) PEG-400 at 4.5% steps and 2% (w/v) sucrose at 0.5% steps, soaked for 1 min at each step and frozen in a 100 K nitrogen cryostream for data collection.

Data collection and processing

Data were collected at beamline X4A at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. For the ^{F432}YZ₂₀₀₋₂₁₄ crystals, 100° of data with 0.5° oscillations and for the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ crystals, 200° of data with 1° oscillations were collected, processed with DENZO and SCALEPACK.⁵⁹ Data collection and processing statistics are listed in Table 1. All seven structures were solved using the molecular replacement program, Phaser.¹⁷ Following rigid-body refinement using Refmac 5.1.24⁶⁰, as part of the CCP4 suite of programs⁶¹, interative cycles of maximum likelihood and isotropic temperature factor and model building using O⁶² were performed, in which the data were extended gradually from 2.4 Å to the highest resolution shell until convergence. Water molecules were initially modeled using the ARP-WARP routine⁶³ and subsequently only waters and other small molecules with Fourier difference peaks greater than 3σ were included in the final models. Refinement statistics of the seven final models are listed in Table 1.

Quality of structural models

In Ramachandran plots, generated by the PROCHECK program⁶⁴, 91.3% to 94.4% of the residues occupy the most favored regions. Similar to all previously solved CheY structures, only ⁶²Asn is disallowed because of its location within a γ -turn.⁶⁵ The average B-factors for all atoms of the structures range between 10.9 Å² and 27.4 Å².

Structural analyses

Superpositions of atomic models were accomplished by a previously described least-squares based iterative superposition procedure⁴¹ that is similar to the "sievefit" program⁶⁶ to define a "static core" of main chain atoms for CheY molecules, achieved by omitting residues with atomic displacements greater than twice the r.m.s.d. value. "Sievefit" superpositions of CheY coordinates in the ^{F432}YZ₂₀₀₋₂₁₄ structures with those in apoCheY¹³, Mg²⁺-bound CheY¹⁴ and BeF₃⁻-activated CheY¹⁵ structures converged within 9 to 12, 3 to 6 and 20 to 35 cycles, respectively, yielding r.m.s. residuals of 0.33 to 0.36, 0.31 to 0.37 and 0.37 to 0.39 Å, respectively, defining a static core of 392 to 412, 456 to 476 and 364 to 400 main chain atoms, respectively. "Sievefit" superpositions of CheY coordinates in the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structures with those in Mg²⁺-bound CheY and BeF₃⁻-activated CheY structures with those in Mg²⁺-bound CheY and BeF₃⁻-activated CheY structures with those in Mg²⁺-bound CheY and BeF₃⁻-activated CheY structures converged within 25 and 6 cycles, yielding r.m.s. residuals of 0.29 and 0.26 Å, and defining a static core of 364 and 464 main chain atoms, respectively. Overall r.m.s.d. values were obtained using the r.m.s.d. calculation algorithm within CNS 1.1.⁶⁷

To estimate the extent of difference in tertiary structure in the superimposed CheY molecules, the magnitude of the main chain displacement vector, $\vec{\delta}_3$ was plotted *versus* residue number as in Kavanaugh *et al.*⁴¹ $|\vec{\delta}_n|$ is defined as,

$$|\vec{\delta}_n| = \delta_n = \frac{1}{4n} |\sum_{j=1}^{4n} \Delta \vec{r}_j|$$

where summation is over *n* contiguous residues and $\Delta \vec{r}_j$ denotes the atomic displacement vector corresponding to the jth main chain atom of the *n*-residue peptide. Summations were carried out over 3 contiguous residues.

CNS 1.1⁶⁷, iMOLTALK ver. 2.0⁶⁸ and the protein-protein interaction server (http:// www.biochem.ucl.ac.uk/bsm/PP/server/) were used for the peptide-CheY contact analyses and the WHATIF⁶⁹ web interface (http://swift.cmbi.kun.nl/WIWWWI/) was used for the lattice contact analyses. Buried surface areas were calculated using CNS 1.1⁶⁷ and cavity/ pocket searches and analyses were carried out using the CASTp v 1.1⁷⁰ server. Graphical representations were generated using Microsoft Excel 2004 version 111.11 (Microsoft Corporation). All structural figures were generated using Pymol.⁷¹

CheY phosphorylation kinetics

To investigate the role of the residues, ¹⁴Phe and ⁵⁹Asn on peptide-induced acceleration of phosphorylation, time courses of pre steady-state phosphotransfer from the small molecule phosphodonor ammonium phosphoramidate to WT CheY *versus* mutant CheY proteins (CheY¹⁴F \rightarrow A and CheY⁵⁹N \rightarrow A) were recorded by following the quenching of intrinsic fluorescence of ⁵⁸Trp as a probe of phosphorylation. Fluoresence measurements were carried out using an SLM-Aminco Series 2 luminescence spectrometer with a stopped-flow attachment, with an excitation wavelength of 295 nm and emission wavelength of 345 nm and 4 nm band passes for both. The dead time on the stopped-flow attachment was 4 msec. The pre steady-state CheY phosphorylation data were collected and analyzed as previously detailed⁸ using SIGMAPLOT 8.0 (Systat Software, Inc.).

Protein data bank accession numbers

The coordinates and structure factors have been deposited in the RCSB Protein Data Bank. The PDB ID codes for the BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structures solved from crystals grown in CAPS (pH 10.5), Tris (pH 8.4) and Hepes (pH 7.5) are 2FLK, 2FMI and 2FMF, respectively. The corresponding PDB ID codes for the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures solved from crystals grown in CAPS (pH 10.5), Tris (pH 8.4) and Hepes (pH 7.5) are 2FKA, 2FMH and 2FLW, respectively. The PDB ID code for the BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ structure is 2FMK.

Acknowledgments

We thank E. Fox and T. Wu for assistance with construction of expression vectors and protein purification, the beamline staff at X4A at the National Synchrotron Light Source at Brookhaven National Laboratory for technical assistance, Dr. L. Falzon for technical help in using the luminescence spectrometer and Dr. J. Kavanaugh for the sievefit and delta r.m.s.d. fortran codes. This work was supported by NIH grant 2R37GM47958. A.M.S. is an investigator of the Howard Hughes Medical Institute.

Abbreviations used

P~CheY	phosphorylated CheY
CheZ _C	C-terminal region of CheZ
FL	full-length
WT	wild-type
F432YZ200-214	the CheY-CheZ_{200-214} complex in the F432 crystal form
$P2(1)2(1)^2$ YZ ₂₀₀₋₂₁₄	the CheY-CheZ_{200-214} complex in the $P2_12_12$ crystal form
r.m.s.d.	root mean square deviation
F432mode	binding mode observed in the F432 crystal form
P2(1)2(1)2mode	binding mode observed in the $P2_12_12$ crystal form
F432Z200-214	the CheZ ₂₀₀₋₂₁₄ helix in the F432 crystal form
$P2(1)2(1)^2Z_{200-214}$	the CheZ ₂₀₀₋₂₁₄ helix in the $P2_12_12$ crystal form
HMP	4-amino-5-hydroxymethyl-2-methylpyrimidine

References

 Bren A, Eisenbach M. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol. 2000; 182:6865–6873. [PubMed: 11092844]

- Bourret RB, Stock AM. Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 2002; 277:9625–9628. [PubMed: 11779877]
- 3. Wadhams GH, Armitage JP. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 2004; 5:1024–1037. [PubMed: 15573139]
- Silversmith RE, Bourret RB. Throwing the switch in bacterial chemotaxis. Trends Microbiol. 1999; 7:16–22. [PubMed: 10068993]
- Robinson VL, Buckler DR, Stock AM. A tale of two components: a novel kinase and a regulatory switch. Nat. Struct. Biol. 2000; 7:628–633.
- Cho HS, Pelton JG, Yan D, Kustu S, Wemmer DE. Phosphoaspartates in bacterial signal transduction. Curr. Opin. Struct. Biol. 2001; 11:679–684. [PubMed: 11751048]
- 7. Blat Y, Eisenbach M. Conserved C-terminus of the phosphatase CheZ is a binding domain for the chemotactic response regulator CheY. Biochemistry. 1996; 35:5679–5683. [PubMed: 8639527]
- 8. Schuster M, Silversmith RE, Bourret RB. Conformational coupling in the chemotaxis response regulator CheY. Proc. Natl. Acad. Sci. USA. 2001; 98:6003–6008. [PubMed: 11353835]
- Zhao R, Collins EJ, Bourret RB, Silversmith RE. Structure and catalytic mechanism of the *E. coli* chemotaxis phosphatase CheZ. Nat. Struct. Biol. 2002; 9:570–575. [PubMed: 12080332]
- Yan D, Cho HS, Hastings CA, Igo MM, Lee SY, Pelton JG, Stewart V, Wemmer DE, Kustu S. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proc. Natl. Acad. Sci. USA. 1999; 96:14789–14794. [PubMed: 10611291]
- 11. Cho H, Wang W, Kim R, Yokota H, Damo S, Kim S-H, Wemmer DE, Kustu S, Yan D. BeF₃⁻ acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF₃⁻ complex with phosphoserine phosphatase. Proc. Natl. Acad. Sci. USA. 2001; 98:8525–8530. [PubMed: 11438683]
- Chabre M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogues in enzymology. Trends Biochem. Sci. 1990; 15:6–10. [PubMed: 2180149]
- Simonovic M, Volz K. A distinct meta-active conformation in the 1.1-Å resolution structure of wild-type apoCheY. J. Biol. Chem. 2001; 276:28637–28640. [PubMed: 11410584]
- Stock AM, Martinez-Hackert E, Rasmussen BF, West AH, Stock JB, Ringe D, Petsko GA. Structure of the Mg²⁺-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry. 1993; 32:13375–13380. [PubMed: 8257674]
- Lee SY, Cho HS, Pelton JG, Yan D, Berry EA, Wemmer DE. Crystal structure of activated CheY. J. Biol. Chem. 2001; 276:16425–16431. [PubMed: 11279165]
- Zhu X, Rebello J, Matsumura P, Volz K. Crystal structures of CheY mutants Y106W and T87I/ Y106W: CheY activation correlates with movement of residue 106. J. Biol. Chem. 1997; 272:5000–5006. [PubMed: 9030562]
- Storoni LC, McCoy AJ, Read RJ. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D. 2004; 60:432–438. [PubMed: 14993666]
- Cho HS, Lee SY, Yan D, Pan X, Parkinson JS, Kustu S, Wemmer DE, Pelton JG. NMR structure of activated CheY. J. Mol. Biol. 2000; 297:543–551. [PubMed: 10731410]
- Roche P, Mouawad L, Perahia D, Samama JP, Kahn D. Molecular dynamics of the FixJ receiver domain: movement of the β4-α4 loop correlates with the in and out flip of Phe101. Protein Sci. 2002; 11:2622–2630. [PubMed: 12381845]
- Lee S-Y, Cho HS, Pelton JG, Yan D, Henderson RK, King DS, Huang L-S, Kustu S, Berry EA, Wemmer DE. Crystal structure of an activated response regulator bound to its target. Nat. Struct. Biol. 2001; 8:52–56. [PubMed: 11135671]
- Dyer CM, Quillin ML, Campos A, Lu J, McEvoy MM, Hausrath AC, Westbrook EM, Matsumura P, Matthews BW, Dahlquist FW. Structure of the constitutively active double mutant CheY^{D13K} Y106W alone and in complex with a FliM peptide. J. Mol. Biol. 2004; 342:1325–1335. [PubMed: 15351654]
- McEvoy MM, Hausrath AC, Randolph GB, Remington SJ, Dahlquist FW. Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. Proc. Natl. Acad. Sci. USA. 1998; 95:7333–7338. [PubMed: 9636149]

- Welch M, Chinardet N, Mourey L, Birck C, Samama J-P. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat. Struct. Biol. 1998; 5:25–29. [PubMed: 9437425]
- Gouet P, Chinardet N, Welch M, Guillet V, Cabantous S, Birck C, Mourey L, Samama JP. Further insights into the mechanism of function of the response regulator CheY from crystallographic studies of the CheY-CheA₁₂₄₋₂₅₇ complex. Acta Crystallogr. D. 2001; 57:44–51. [PubMed: 11134926]
- Zhu X, Volz K, Matsumura P. The CheZ-binding surface of CheY overlaps the CheA- and FliMbinding surfaces. J. Biol. Chem. 1997; 272:23758–23764. [PubMed: 9295320]
- McEvoy MM, Bren A, Eisenbach M, Dahlquist FW. Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein FliM. J. Mol. Biol. 1999; 289:1423–1433. [PubMed: 10373376]
- Laskowski RA. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 1995; 13:323–330. [PubMed: 8603061]
- Halkides CJ, McEvoy MM, Casper E, Matsumura P, Volz K, Dahlquist FW. The 1.9 Å resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry. 2000; 39:5280–5286. [PubMed: 10819997]
- Birck C, Mourey L, Gouet P, Fabry B, Schumacher J, Rousseau P, Kahn D, Samama J-P. Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure Fold. Des. 1999; 7:1505–1515. [PubMed: 10647181]
- Kern D, Volkman BF, Luginbuhl P, Nohaile MJ, Kustu S, Wemmer DE. Structure of a transiently phosphorylated switch in bacterial signal transduction. Nature. 1999; 40:894–898. [PubMed: 10622255]
- Lewis RJ, Brannigan JA, Muchová K, Barák I, Wilkinson AJ. Phosphorylated aspartate in the structure of a response regulator protein. J. Mol. Biol. 1999; 294:9–15. [PubMed: 10556024]
- Bachhawat P, Swapna GV, Montelione GT, Stock AM. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure. 2005; 13:1353–1363. [PubMed: 16154092]
- 33. Toro-Roman A, Mack TR, Stock AM. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the α 4- β 5- α 5 face. J. Mol. Biol. 2005; 349:11–26. [PubMed: 15876365]
- Nixon BT, Yennawar HP, Doucleff M, Pelton JG, Wemmer DE, Krueger S, Kondrashkina E. SAS solution structures of the apo and Mg²⁺/BeF₃⁻-bound receiver domain of DctD from *Sinorhizobium meliloti*. Biochemistry. 2005; 44:13962–13969. [PubMed: 16229485]
- 35. Toro-Roman A, Wu T, Stock AM. A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci. 2005; 14:3077–3088. [PubMed: 16322582]
- Lowry DF, Roth AF, Rupert PB, Dahlquist FW, Moy FJ, Domaille PJ, Matsumura P. Signal transduction in chemotaxis: a propagating conformation change upon phosphorylation of CheY. J. Biol. Chem. 1994; 269:26358–26362. [PubMed: 7929354]
- Ganguli S, Wang H, Matsumura P, Volz K. Uncoupled phosphorylation and activation in bacterial chemotaxis: the 2.1-Å structure of a threonine to isoleucine mutant at position 87 of CheY. J. Biol. Chem. 1995; 270:1–8. [PubMed: 7814360]
- Bellsolell L, Cronet P, Majolero M, Serrano L, Coll M. The three-dimensional structure of two mutants of the signal transduction protein CheY suggest its molecular activation mechanism. J. Mol. Biol. 1996; 257:116–128. [PubMed: 8632450]
- Appleby JL, Bourret RB. Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet. J. Bacteriol. 1998; 180:3563–3569. [PubMed: 9657998]
- 40. Moy FJ, Lowry DF, Matsumura P, Dahlquist FW, Krywko JE, Domaille PJ. Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three- and four-dimensional heteronuclear (¹³C, ¹⁵N) NMR spectroscopy. Biochemistry. 1994; 33:10731–10742. [PubMed: 8075074]

- 41. Kavanaugh JS, Weydert JA, Rogers PH, Arnone A. High-resolution crystal structures of human hemoglobin with mutations at tryptophan 37β: structural basis for a high-affinity T-state. Biochemistry. 1998; 37:4358–4373. [PubMed: 9521756]
- 42. Li J, Swanson RV, Simon MI, Weis RM. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry. 1995; 34:14626–14636. [PubMed: 7578071]
- Li M, Hazelbauer GL. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 2004; 186:3687–3694. [PubMed: 15175281]
- Wang H, Matsumura P. Characterization of the CheA_s/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY-phosphate. Mol. Microbiol. 1996; 19:695–703. [PubMed: 8820640]
- 45. Cantwell BJ, Draheim RR, Weart RB, Nguyen C, Stewart RC, Manson MD. CheZ phosphatase localizes to chemoreceptor patches via CheA-short. J. Bacteriol. 2003; 185:2354–2361. [PubMed: 12644507]
- 46. Vaknin A, Berg HC. Single-cell FRET imaging of phosphatase activity in the *Escherichia coli* chemotaxis system. Proc. Natl. Acad. Sci. USA. 2004; 101:17072–17077. [PubMed: 15569922]
- 47. Lipkow K, Andrews SS, Bray D. Simulated diffusion of phosphorylated CheY through the cytoplasm of *Escherichia coli*. J. Bacteriol. 2005; 187:45–53. [PubMed: 15601687]
- Jiang M, Bourret RB, Simon MI, Volz K. Uncoupled phosphorylation and activation in bacterial chemotaxis: The 2.3 Å structure of an aspartate to lysine mutant at position 13 of CheY. J. Biol. Chem. 1997; 272:11850–11855. [PubMed: 9115243]
- 49. Feher VA, Cavanagh J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature. 1999; 400:289–293. [PubMed: 10421374]
- Volkman BF, Lipson D, Wemmer DE, Kern D. Two-state allosteric behavior in a single domain signaling protein. Science. 2001; 291:2429–2433. [PubMed: 11264542]
- Ames SK, Frankema N, Kenney LJ. C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from *Escherichia coli*. Proc. Natl. Acad. Sci. USA. 1999; 96:11792–11797. [PubMed: 10518529]
- Cheng G, Bennett EM, Begley TP, Ealick SE. Crystal structure of 4-amino-5-hydroxymethyl-2methylpyrimidine phosphate kinase from *Salmonella typhimurium* at 2.3 A resolution. Structure. 2002; 10:225–235. [PubMed: 11839308]
- Sheridan RC, McCullough JF, Wakefield ZT. Phosphoramidic acid and its salts. Inorg. Synth. 1971; 13:23–26.
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983; 101:20–78. [PubMed: 6310323]
- 55. Stock AM, Mottonen JM, Stock JB, Schutt CE. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature. 1989; 337:745–749. [PubMed: 2645526]
- Bolivar F, Backman K. Plasmids of *Escherichia coli* as cloning vectors. Methods Enzymol. 1979; 68:245–267. [PubMed: 232214]
- Stock A, Koshland DE Jr. Stock J. Homologies between the *Salmonella typhimurium* CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc. Natl. Acad. Sci. USA. 1985; 82:7989–7993. [PubMed: 2999789]
- Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 1989; 182:319–326. [PubMed: 2610349]
- Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276:307–326.
- Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. 1997; 53:240–255. [PubMed: 15299926]
- 61. Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. 1994; 50:760–763. [PubMed: 15299374]
- Jones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A. 1991; 47:110–119. [PubMed: 2025413]

- Lamzin VS, Wilson KS. Automated refinement of protein models. Acta Crystallogr. D. 1993; 49:129–147. [PubMed: 15299554]
- 64. Laskowski RA, McArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993; 26:282–291.
- 65. Volz K, Matsumura P. Crystal structure of *Escherichia coli* CheY refined at 1.7 Å resolution. J. Biol. Chem. 1991; 266:15511–15519. [PubMed: 1869568]
- 66. Gerstein M, Chothia C. Analysis of protein loop closure: two types of hinges produce one motion in lactate dehydrogenase. J. Mol. Biol. 1991; 220:133–149. [PubMed: 2067013]
- 67. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D. 1998; 54:905–921. [PubMed: 9757107]
- Diemand AV, Scheib H. iMolTalk: an interactive, internet-based protein structure analysis server. Nucl. Acids Res. 2004; 32:W512–W516. [PubMed: 15215439]
- Vriend G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 1990; 8:52– 56. 29. [PubMed: 2268628]
- 70. Binkowski TA, Naghibzadeh S, Liang J. CASTp: Computed Atlas of Surface Topography of proteins. Nucl. Acids Res. 2003; 31:3352–3355. [PubMed: 12824325]
- 71. Delano, WL. The Pymol Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002.
- 72. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994; 22:4673–4680. [PubMed: 7984417]

NIH-PA Author Manuscript

195	200	205	210	214	
1		1		-	
-LRED	AVss	DEVDDL	SSL	GF	Vibrio parahaemolyticus (NP_798609)
-LRED	AVAS	DEVDDL		GF	Vibrio vulnificus (AAO10354)
-ERID	AVss	DEVDDL	LsSL	GF	Vibrio cholerae (AAF95210)
-ERED	AVAS	DVDDL	LASL	GF	Vibrio fischeri (YP_205215)
-KRED	VV sg	DVDDL	LssL	GF	Pseudomonas syringae (YP_236505)
-KRED	VV SG 📿	DVDDL	LssL	GF	Pseudomonas aeruginosa (NP_250148)
-KRED	VV SG 📿	DVDDL	LssL	GF	Pseudomonas putida (AAF67046)
-KRED	VV SG 📿	DVDDL	LssL	GF	Pseudomonas fluorescens (AAN03369)
-ERED	VMST Q	DVDDL	LssL	GF	Photobacterium profundum (YP_129154)
-TRSD	VV NG 📿	DVDDL	LsSL	GF	Anopheles gambiae (XP_306585)
-TRDD	VV SG 📿	DVDDL	LssL	GF	Microbulbifer degradans (ZP 00317172)
-QRDD	VV GG 📿	DEVDDL	LsSL	GF	Idiomarina loihiensis (YP_155504)
-LRQD	VV TG 🧕	DEVDDL	LssL	GF	Shewanella oneidensis (NP_718763)
-GKAD	VV SD 📿		LASL	GF	Ralstonia eutropha (ZP_00167926)
-GKAD	VV SD 📿	sovDDL	LASL	GF	Ralstonia metallidurans (ZP_00273620)
-GKTD	VV QD 📿	AQVDDL	LASL	GF	Burkholderia pseudomallei (YP_109895)
-GKSD	VV QD 📿	AQVDDL		GF	Burkholderia cepacia (ZP_00223113)
-GKTD	VV QD 📿	sovDDL		GF	Burkholderia fungorum (ZP_00279017)
-GRTD	vvqn <mark>Q</mark>	GEVDDL	LASL	GF	Rubrivivax gelatinosus (ZP_00244363)
-GRTD	vvvn <mark>9</mark>	EQVDDL	LDSL	GF	Dechloromonas aromatica (ZP_00149812)
-GKTD	🗸 🗸 🗸		LESL	GF	Chromobacterium violaceum (AAQ61110)
-GKAD	VV TS 📿	DOVDDL		GF	Bordetella parapertussis (NP_883775)
-GKAD	VV TS 👤	DOVDDL	AS	GF	Bordetella pertussis (NP_879822)
-GKAD	VV TS <mark></mark>	DOVDDL		GF	Bordetella bronchiseptica (NP_889091)
-HKSD	VV AD 🗸	sovDDL	DSL	GF	Thiobacillus denitrificans (ZP_00335257)
-GAAG	IVAN	DOVDDL	DSL	GF	Erwinia carotovora (YP_049796)
-SKAG	VV AS <mark>2</mark>	DOVDDI	DSL	GF	Salmonella enterica (P07800)
-SKAG	VV AS	DOVDDI	DS	GF	Escherichia coli (P07366)
-SKAG	VV AS <mark>9</mark>	DOVDDI	DSL	GF	Shigella flexneri (AAP17313)
-SKAG	VV AS <mark>2</mark>	DOVDDT	DSL	GF	Enterobacter cloacae (BAB15842)
-NGVG	VI AN 🗸	AQVDDL	DSL	GF	Photorhabdus luminescens (NP_929131)
-NGAG	VI AS	DOVDDT	DSL	GF	Yersinia enterocolitica (AAK40115)
-NVAG	VI AS Q	DOVDDT	DSL	GF	Yersinia pseudotuberculosis (YP_070910)
-NVAG	VIAS Q	DOVDDT	DSL	GF	Yersinia pestis (CAC90502)
-AAVD	VV AS Q	EOVDDT	DS	GF	Methylobacillus flagellatus (ZP_00350441)
-DPPD	V AG	EOVDDT	EST	GF	Ralstonia solanacearum (CAD14272)
GLDRH	AV-s	DADDL	SGL	GL	Xanthomonas axonopodis (NP_642257)
GLDRH	AV-s	DADDL	SG	GL	Xanthomonas oryzae (YP_201262)
GLDRH	AV-s	DADDL	SGL	GL	Xanthomonas campestris (NP_637269)

Figure 1.

Sequence conservation in $CheZ_C$. A $ClustalW^{72}$ sequence alignment of the *C*-terminal 21 residues of CheZ from 39 bacterial species is shown. Accession codes are indicated in parentheses. Sequence numbering, indicated on the first line, corresponds to *S. enterica* serovar Typhimurium CheZ. Hydrophobic residues are colored red, polar residues green, and acidic residues blue. The yellow box corresponds to completely conserved residues 202, 206 to 209 and 212 to 213. Strongly conserved residues are highlighted by gray boxes corresponding to hydrophobic residues, residues 198, 199, 205 and 214, a magenta box to the polar and charged residue, residue 204, and a cyan box to the less bulky residue, residue 211.

Figure 2.

Figure 2. Crystals and structures of CheY-CheZ₂₀₀₋₂₁₄ complex. (a) Crystal morphologies of $^{F432}YZ_{200-214}$ (top two panels) and $^{P2(1)2(1)2}YZ_{200-214}$ (bottom two panels). (b) Structure of BeF₃⁻-free $^{F432}YZ_{200-214}$ solved from a crystal grown in Tris (pH 8.4). (c) Structure of BeF₃⁻-bound $^{P2(1)2(1)2}YZ_{200-214}$. (d) Structure of BeF₃⁻-bound $^{F432}YZ_{200-214}$ solved from a crystal grown in Tris (pH 8.4). CheY molecules in the $^{F432}YZ_{200-214}$ structures ((b) and (d)) are shown in gray and that in the $^{P2(1)2(1)2}YZ_{200-214}$ structure ((c)) is shown in wheat. The CheZ₂₀₀₋₂₁₄ peptide molecules in BeF₃⁻-free $^{F432}YZ_{200-214}$ are shown in cyan ((b)), in BeF₃⁻-bound $^{P2(1)2(1)2}YZ_{200-214}$, in orange ((c)) and in BeF₃⁻-bound $^{F432}YZ_{200-214}$, in deep blue ((d)). Active-site water molecules are shown in deep red. Mg²⁺ ions are shown in blue ((d)). Active-site water molecules are shown in deep red, Mg^{2+} ions are shown in magenta and BeF₃⁻ complexes are shown in yellow and the side chains of key active-site and switch residues are depicted in ball and stick models.

Figure 3.

The CheZ₂₀₀₋₂₁₄ peptide-CheY interface. Ribbon representation of (a) the ^{F432}YZ₂₀₀₋₂₁₄ interface and (b) the ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ interface. The side chains of key contacting residues are illustrated as ball and stick models and hydrophobic contacts are shown as light green patches. (c) Relative B-factors of CheZ₂₀₀₋₂₁₄ in the CheY-CheZ₂₀₀₋₂₁₄ structures. The relative B-factor *versus* CheZ residue number plot in BeF₃--free ^{F432}YZ₂₀₀₋₂₁₄ is shown in cyan, that in BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ in deep blue and that in BeF₃⁻- bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ in orange. B_{residue} is the overall B-factor for each residue and B_{CheZ} is the overall B-factor for all atoms of CheZ₂₀₀₋₂₁₄ included in the final model. (d) Schematic representation of the CheY-CheZ₂₀₀₋₂₁₄ primary sequence in cyan and the ^{P2(1)2(1)2}Z₂₀₀₋₂₁₄ primary sequence in orange are shown on either side of the *C*-terminal half of CheY, represented in secondary structural elements. Participating residues are highlighted. Hydrophobic contacts are illustrated as solid grey lines, salt bridges as dashed black lines and hydrogen bonds as solid black lines. The BeF₃⁻-free and BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures solved from crystals grown in Tris (pH 8.4) are used as representatives of ^{F432}YZ₂₀₀₋₂₁₄ structures in this figure.

Figure 4.

Ribbon diagrams of CheY-CheZ_C structures upon superposition of CheY showing different orientations of CheZ_C. CheY molecules in $^{F432}YZ_{200-214}$, $^{P2(1)2(1)2}YZ_{200-214}$ and CheY-CheZ₁₋₂₁₄⁹ structures are shown in light gray and the respective CheZ_C helices are shown in cyan, orange and magenta, respectively. The BeF₃⁻-free $^{F432}YZ_{200-214}$ structure solved from a crystal grown in Tris (pH 8.4) is used in this figure as a representative of all six $^{F432}YZ_{200-214}$ structures.

Figure 5.

Symmetry-related molecules of CheY-CheZ₂₀₀₋₂₁₄ in the F432 lattice shown at the 3-fold axis (a) and at the 4-fold axis (b) and in the P2₁2₁2 crystal lattice (c). CheY molecules in the F432 lattice are shown in gray and those in the P2₁2₁2 lattice are shown in wheat. The CheZ₂₀₀₋₂₁₄ peptide molecules in the F432 lattice are shown in cyan and those in the P2₁2₁2 lattice are shown in orange. The BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Tris (pH 8.4) is used as a representative of all six ^{F432}YZ₂₀₀₋₂₁₄ structures in (a) and (b).

Figure 6.

Comparison of active-site and switch residues in the CheY-CheZ₂₀₀₋₂₁₄ complexes with those in inactive and active CheY. CheY molecules in BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ (key features shown in cyan), BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ (key features shown in deep blue) and BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ (key features shown in orange) are superposed on inactive Mg²⁺-bound CheY (2CHE)¹⁴ (key features shown in red) in (a) and (b) and on BeF₃⁻activated CheY (1FQW)¹⁵ (key features shown in green) in (c) and (d), focusing on the active site in (a) and (c), and on the activation-sensitive $\alpha 4\beta 4\alpha 5$ region in (b) and (d). The side chains of key active-site and switch residues are illustrated as ball and stick models. The Mg²⁺ ions (magenta), coordinating water molecules (deep red) and the BeF₃⁻complexes (yellow) at the active site in BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ are shown in (a) and those in BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ are shown in (c). The BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ and the "metaactive" conformer of the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ structures solved from crystals grown in Tris (pH 8.4) are used as representatives of ^{F432}YZ₂₀₀₋₂₁₄ structures in this figure.

Figure 7.

Comparison of the CheY backbone conformations in the CheY-CheZ₂₀₀₋₂₁₄ complexes with

those in inactive and active CheY. $\overrightarrow{\delta}_3$ plots are shown for main chain atoms of CheY in BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ (cyan), BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄ (deep blue) and BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ (orange) following "sieve-fit" superposition with inactive Mg²⁺-bound CheY (2CHE)¹⁴ (upper panel), resulting in overall r.m.s.d. values of 0.50 Å, 0.48 Å and 0.98 Å, respectively and with BeF₃⁻-activated CheY (1FQW)¹⁵ (lower panel), resulting in overall r.m.s.d. values of 0.80 Å, 0.77 Å and 0.35 Å, respectively. The BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ and the "meta-active" conformer of the BeF₃⁻-bound ^{F432}YZ₂₀₀₋₂₁₄

structures solved from crystals grown in Tris (pH 8.4) were used for $\vec{\delta}_3$ and r.m.s.d. calculations, shown here. Key active-site and switch residues are highlighted on the plots by square symbols. The secondary structure of CheY is plotted for reference.

Figure 8.

Comparison of the CheY conformation in $^{F432}YZ_{200-214}$ with "meta-active" apoCheY. The activation-sensitive $\alpha 4\beta 4\alpha 5$ region of CheY molecules in BeF₃⁻-free $^{F432}YZ_{200-214}$ (key features shown in cyan) and BeF₃⁻-bound $^{F432}YZ_{200-214}$ (key features shown in deep blue) are superposed on "meta-active" apoCheY (1JBE)¹³ (key features shown in magenta) with side chains of key switch residues depicted in ball and stick models.

Figure 9.

Incompatibility of the $^{P2(1)2(1)2}$ mode of CheZ₂₀₀₋₂₁₄ peptide binding in the F432 lattice. CheY molecules in $^{P2(1)2(1)2}$ YZ₂₀₀₋₂₁₄, (CheY shown in wheat and CheZ₂₀₀₋₂₁₄ shown in orange) are superimposed on the symmetry-related CheY molecules in F432 YZ₂₀₀₋₂₁₄ (CheY shown in gray and CheZ₂₀₀₋₂₁₄ shown in cyan) in the F432 lattice. The BeF₃⁻⁻ free F432 YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Tris (pH 8.4) is used as a representative of all F432 YZ₂₀₀₋₂₁₄ structures in this figure.

Figure 10.

Role of key residues in peptide-induced acceleration of CheY phoshorylation. (a) Active site features of CheY in BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ superimposed on inactive Mg²⁺-bound CheY. (b) Active site features of CheY in BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ superimposed on BeF₃⁻-activated CheY. Key features in BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ are shown in cyan, in BeF₃⁻-bound ^{P2(1)2(1)2}YZ₂₀₀₋₂₁₄ in orange, in inactive Mg²⁺-bound CheY in red and in BeF₃⁻-activated CheY in green. The Mg²⁺ ion (magenta), water molecules (deep red) and the BeF₃⁻species (yellow) at the active site are shown. The BeF₃⁻-free ^{F432}YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Tris (pH 8.4) is used as a representative of all ^{F432}YZ₂₀₀₋₂₁₄ structures in (a). (c) Role of ¹⁴Phe and ⁵⁹Asn. Rates of phosphotransfer to WT CheY, CheY¹⁴F→A and CheY⁵⁹N→A proteins from ammonium phosphoramidate in the presence (+) and absence (-) of the CheZ₂₀₀₋₂₁₄ peptide are shown as bars (see Materials and Methods). Each rate corresponds to an average from three independent experiments with standard errors indicated.

Table 1

Summary of data collection and refinement statistics

Lattice	F432	F432	F432	F432	F432	F432	P21212
BeF ₃ ⁻ (-/+)	+	+	+	-	-	-	+
рН	10.5	8.4	7.5	10.5	8.4	7.5	6.0
Data collection							
Wavelength (Å)	0.979	1.072	1.072	0.979	0.979	0.979	1.072
Cell a=	198.7	197.8	197.9	198.8	198.3	197.1	54.2
(Å) b=	198.7	197.8	197.9	198.8	198.3	197.1	54.2
c=	198.7	197.8	197.9	198.8	198.3	197.1	54.2
$\alpha = \beta = \gamma =$	90°	90°	90°	90°	90°	90°	90°
Resolution ^a (Å)	2.0	2.0	2.0	2.1	2.2	2.0	2.0
$R_{sym} b$	0.058/	0.068/	0.071/	0.100/	0.097/	0.078/	0.052/
	(0.236)	(0.377)	(0.261)	(0.358)	(0.331)	(0.251)	(0.080)
Completeness (%)	99.9 /	99.9/	96.9 /	99.9 /	99.7/	97.1/	99.4
	(99.5)	(100.0)	(98.5)	(98.7)	(100.0)	(97.0)	(99.3)
Ι/σΙ	34.9/	35.7/	35.5/	21.3/	22.8/	22.0/	38.6/
	(7.1)	(7.0)	(8.2)	(6.3)	(8.0)	(6.6)	(21.5)
Refinement							
Resolution ^a (Å)	2.0	2.0	2.0	2.1	2.3	2.0	2.0
$R_{working}$ ^C	0.210	0.220	0.212	0.197	0.193	0.200	0.186
$R_{free} d$	0.224	0.246	0.228	0.207	0.220	0.213	0.232
No. of reflections	20,589	20,593	20,015	17,947	13,445	19,511	7,864
No. of protein atoms	1058	1067	1090	1083	1090	1078	1097
Small molecules ^e							
Mg^{2+}	1	1	1	-	-	-	1
BeF_3^-	1	1	1	_	_	_	1
Water	81	53	89	80	87	86	90
CAPS	2	_	_	2	_	_	_
Tris	_	1	-	-	1	-	_
Sulfate	1	1	1	1	1	1	_
Glycerol	-	1	-	-	1	-	-
Acetyl group	-	-	-	-	-	-	1
r.m.s.d. values from id	eality						
Bond lengths (Å)	0.010	0.013	0.011	0.011	0.013	0.011	0.008
Bond angles (°)	1.250	1.281	1.220	1.184	1.217	1.409	1.116
B-value ^{f} (Å ²)	25.60	28.76	24.13	20.04	21.28	27.45	10.92

Values corresponding to highest resolution shells are shown in parentheses.

 a High resolution limits for data collection and refinement are indicated.

 $b\mathbf{R}_{sym} = \frac{\Sigma |\mathbf{I}_{obs} - \mathbf{I}_{avg}|}{\Sigma \mathbf{I}_{avg}}$, where I_{obs} = observed integrated intensity and I_{avg} = average integrated intensity from multiple measurements.

$${}_{c}\boldsymbol{R}_{\text{working}} = \frac{\sum ||\boldsymbol{F}_{obs}|_{(hkl)} - |\boldsymbol{F}_{calc}|_{(hkl)}|}{\sum |\boldsymbol{F}_{obs}|_{(hkl)}}, \text{ where } F_{obs} \text{ and } F_{calc} \text{ are the observed and calculated structure factor amplitudes for } hkl \text{ indices},$$

respectively.

 $d_{R_{free}}$ is identical to $R_{working}$ but is calculated from 10% of the reflections set aside as a disjoint set prior to refinement.

 e Number of small molecules in each case are indicated.

f Overall B-value includes all atoms in a given model.

NIH-PA Author Manuscript

Table 2

Comparison of CheZ_C peptide contacts with CheY

Hydrophobic interactions^a

CheY	CheZ _C	F432YZ ₂₀₀₋₂₁₄ C	$P2(1)2(1)^2 YZ_{200-214}$	CheY-CheZ ₁₋₂₁₄ 9
⁹⁵ Ile	²⁰⁰ Ala	-	^+d	_ <i>d</i>
⁹⁵ Ile	₂₀₈ Leu, ²⁰⁹ Leu	+	+	+
⁹⁵ Ile	²¹² Leu	+	_	_
⁹⁵ Ile	²⁰⁵ Val	+	+	+
⁹⁶ Ile	²⁰⁸ Leu	+	-	_
99Ala	²⁰⁹ Leu	-	+	+
99Ala	²¹² Leu	+	-	_
⁹⁹ Ala	²¹⁴ Phe	-	+	_ e
¹⁰⁶ Tyr	²⁰⁵ Val	-	+	+
¹⁰⁶ Tyr	²⁰⁹ Leu	+	-	_
¹⁰⁶ Tyr	²¹⁴ Phe	+	-	_
¹⁰⁸ Val	²⁰⁵ Val	-	+	+

Hydrogen bonds b

Che	Y	Chez	Z _C	F432YZ ₂₀₀₋₂₁₄ c	$P^{2(1)2(1)2}YZ_{200-214}$	CheY-CheZ ₁₋₂₁₄ 9
90Ala	0	²⁰⁰ Ala	N	-	2.80^{d}	_ <i>d</i>
¹⁰⁶ Tyr	0	²⁰² Gln	$N_{\epsilon 2}$	-	2.99	2.85
¹⁰⁸ Val	Ν	²⁰² Gln	$O_{\epsilon 1}$	-	3.02	2.42
¹¹⁹ Lys	$N_{\boldsymbol{\zeta}}$	²¹⁴ Phe	0	2.78 ^f	-	_ e

<u>Salt bridges</u> ^{b}								
Che	Y	Che	Z _C	F432YZ ₂₀₀₋₂₁₄ c	$^{P2(1)2(1)2}YZ_{200-214}$	CheY-CheZ ₁₋₂₁₄ 9		
¹¹⁹ Lys	Nς	²⁰⁶ Asp	$O_{\sigma 1}$	-	3.16	2.73		
¹¹⁹ Lys	$N_{\boldsymbol{\zeta}}$	²⁰⁶ Asp	$O_{\sigma 2}$	-	2.78	2.91		
¹¹⁹ Lys	$N_{\boldsymbol{\zeta}}$	²¹⁴ Phe	OXT	2.78^{f}	-	-		

^{*a*}Carbon-carbon distances in the hydrophobic interactions are within 4.0 Å.

^bHydrogen bonds and salt bridge contact distances are between 2.6 Å and 3.2 Å.

 c Values are given for the BeF3⁻-free F432YZ₂₀₀₋₂₁₄ structure solved from a crystal grown in Tris (pH 8.4). Contact distances differ marginally in the rest of the F432YZ₂₀₀₋₂₁₄ models.

 d It is not clear if the contacts involving ²⁰⁰Ala of CheZ, observed in the P2(1)²(1)²YZ₂₀₀₋₂₁₄ structure, is physiological or an artifact of acetylating the *N*-terminus of CheZ₂₀₀₋₂₁₄ peptide. The backbone NH group of ²⁰⁰Ala should still be available for hydrogen bond interaction if the chain is not truncated at this residue, as in CheZ₁₋₂₁₄. However, in contrast to the other contacting residues in both CheY and CheZ, only ²⁰⁰Ala is not conserved (Figure 1). The absence of this contact in the CheY-CheZ₁₋₂₁₄ structure is due to the absence of ²⁰⁰Ala from the final CheY-CheZ₁₋₂₁₄ model⁹.

 $^{e_{214}}$ Phe is not included in the final CheY-CheZ₁₋₂₁₄ model due to high disorder⁹.

fThe lone electron pair on the *C*-terminal carboxylate group of CheZ₂₀₀₋₂₁₄ should exist in resonance with the carbonyl group of the *C*-terminal residue ²¹⁴Phe. Hence, in all the ^{F432}YZ₂₀₀₋₂₁₄ structures, the salt bridge between the positively-charged ¹¹⁹Lys sidechain and the negatively-charged *C*-terminus of the peptide would predominate over the hydrogen bond between the ¹¹⁹Lys sidechain and the backbone carbonyl of ²¹⁴Phe of the CheZ₂₀₀₋₂₁₄ peptide.

Table 3

Comparison of interface characteristics, model quality, experimental conditions and crystal lattice characteristics

Models	F432YZ ₂₀₀₋₂₁₄ <i>a</i>	P2(1)2(1)2YZ200-214	CheY-CheZ ₁₋₂₁₄ 9
Binding modes	F432Mode	P2(1)2(1)2Mode	P2(1)2(1)2Mode
Interface characteristics			
Buried surface area (Å ²)	789.6 (762 - 821)	1044	677
H-bonds ^b	1	2	1
Salt bridges ^b	1	2	2
Hydrophobic contacts ^b	8	8	5
Gap volume index ^C	2.14 (1.39 – 2.16)	1.25	2.70
Model quality			
Resolution (Å)	2.3 (2.0 - 2.3)	2.0	2.9
R _{working}	0.193 (0.193 – 0.220)	0.186	0.279
R _{free}	0.220 (0.207 - 0.246)	0.232	0.298
CheZ _C B-values ^{d} (Å ²)	38.8 (29.5 - 46.0)	17.67	164.8
No. of $CheZ_C$ residues ^e	14 (10 – 14)	15	13
Experimental conditions			
CheZ FL/peptide f	peptide	peptide	FL
Crystallization conditions			
[Protein] (mM)g	0.9/ 3.6	0.8/ 1.2	0.264/ 0.264
Chemical conditions			
[BeCl ₂] (mM)	5.0	35.0	3.6
[NaF] (mM)	30.0	35.0	10.0
[MgCl ₂] (mM)	7.0	7.0	10.0
Buffer (0.1 M)	Hepes (pH 7.5)/ Tris (pH 8.4)/ CAPS (pH 10.5)	MES (pH 6.0)	Bicine (pH 8.5)
Precipitant	2 M ammonium	0.05 M sodium	0.2 M ammonium
	sulfate	phosphate	acetate
	(1.8 M – 2.3 M)	(monobasic)	30% isopropanol
	0.2M lithium sulfate	37.5% PEG-8000	
Cryoprotectant ^h	20% glycerol/	18% PEG-400 2% sucrose	50% sucrose
Temperature	25°C	25°C	4°C
Crystal lattice	F432	P21212	P4 ₃ 2 ₁ 2

^{*a*}Values are given for the BeF₃⁻-free $F432YZ_{200-214}$ structure solved from a crystal at Tris (pH 8.4). Range of values within parenthesis pertains to all six $F432YZ_{200-214}$ structures.

b Hydrogen bonds and salt bridges are enumerated as atom-atom contacts. Hydrophobic contacts are enumerated as residue-residue contacts.

 c Gap volume index is defined by the volume of gaps between two interacting molecules per Å² of interface accessible surface area.

 $d^{A}_{Average B-value indicates the averaged B-value for all modeled backbone and side-chain atoms of the CheZC region in a given model.$

eNumber of CheZ_C residues included in the models is given in each case.

 $f_{\rm CheZ}$ full-length (FL) protein or peptide is indicated in each case.

^gConcentrations of CheY/ CheZ₂₀₀₋₂₁₄ peptide are given for the CheY-CheZ₂₀₀₋₂₁₄ structures. Concentrations of CheY/ CheZ₁₋₂₁₄ protein are given for the CheY-CheZ₁₋₂₁₄ structure.

 $h_{\rm Final}$ concentrations of cryoprotectant solutions are given.

NIH-PA Author Manuscript

Table 4

Comparison of CheY conformational signatures and pockets on signaling surface

Models	F432	F432	P2(1)2(1)2	Aut d	Turne P	h f
	14.52 YZ _C (-) ^{<i>a</i>}	1 2	$YZ_{C}(+)^{c}$	Active	Inactive	Apo'
$\text{BeF}_{3}^{-}(+/-)$	-	+	+	+	-	-
M^{2+}/H_2O at active site ^g	H ₂ O	M ²⁺	M ²⁺	M ²⁺	M ²⁺	
H ₂ O						
Active-site features						
Coordination tetrahedral	tetrahedral	octahedral	octahedral	octahedral	octahedral	
No. of ligands 4	4	6	6	6	6	
M^{2+}/H_2O contact distances ^g (Å	.)					
57 Asp O _{σ}	2.6	2.0	2.0	2.2	2.1	
3.0						
⁵⁹ Asn CO	2.8	2.2	2.1	2.3	2.2	
2.8						
13 Asp O _{σ}	2.6	2.0	2.2	2.3	2.1	
2.8						
$H_2O \# (range)^h$	1 (>3.0)	2 (2.1 – 2.3)	2 (2.1 – 2.2)	2 (2.4)	3 (2.1 – 2.2)	
SO ₄ (2.8)						
BeF ₃ ⁻	n/a	2.2	2.0	2.1	n/a	
n/a						
BeF_3^- contact distances (Å)						
Be – 57 Asp O _{σ}	n/a	1.6	1.7	1.5	n/a	
n/a						
F ⁻ – ⁵⁹ Asn NH	n/a	2.9	2.9	3.0	n/a	
n/a						
F ⁻ – ⁵⁸ Trp NH	n/a	3.2	3.2	2.9	n/a	
n/a						
F ⁻ – ⁸⁸ Ala NH	n/a	4.2/ 3.2i	2.9	2.9	n/a	
n/a						
$F^{}^{109}Lys\ N_\zeta$	n/a	2.5	2.9	2.9	n/a	
n/a						
12 Asp O _{σ} – H ₂ O (Å)	2.9	2.7	2.6	2.6	2.2	
2.8						
109Lys N _{ζ} – ¹² Asp O _{σ} (Å)	4.5	3.1	2.8	2.8	6.2	
4.5						
Nature ^j	indirect	direct	direct	direct	none	
indirect						
$^{109}Lys\;N_{\zeta}-{}^{57}Asp\;O_{\sigma}({\rm \AA})$	2.8	3.3	3.3	3.3	5.0	

2.7						
⁵⁷ Asp χ1 (°)	-157	-177	-175	178	165	
-151						
¹⁰⁹ Lys χ4 (°)	-177	-176	173	172	37	
-165						
⁸⁷ Thr position						
$^{57}Asp~O_{\sigma}-{}^{87}Thr~O_{\gamma}~(\text{\AA})$	6.9	$6.9/4.2^{i}$	4.2	4.1	6.5	6.0
$F^{}^{87} Thr \ O_{\gamma}$	n/a	5.2/ 2.6 ⁱ	2.6	2.5	n/a	n/a
¹⁰⁶ Tyr features						
¹⁰⁶ Tyr OH	$^{87} Thr \ O_{\gamma}/$	$^{87} Thr \ O_{\gamma} /$	⁸⁹ Glu NH	⁸⁹ Glu NH	n/a	⁸⁷ Thr
O _γ /						
	$^{94}Asn \ N_{\sigma}$	$^{94}Asn \ N_{\sigma}$				⁹⁴ Asn
N_{σ}						
Nature ^j	indirect	indirect	direct	direct	n/a	
indirect						
¹⁰⁶ Tyr conformation	buried	buried	buried	buried	exposed	
dual						
φ (°)	-147	-152	-155	-145	-136	
-145						
Ψ (°)	-52	-54	-60	-57	-31	
-52						
χ ¹ (°)	-178	-178	-155	-164	31	
179/ 72 ^k						
χ ² (°)	-94	99	105	110	35	
-71						
Volume of a4-p4-a5 surface	e pockets (Å ³)					
α4-β5	-	-	12.0	15.7	285.0	_/
170.0 ^k						
β5-α.5	55.5	61.5	119.1	96.0	-	
35.0/ 40.0k						

^aValues are given for the BeF3⁻-free F432YZ200-214 structure solved from a crystal grown in Tris (pH 8.4).

^bValues are given for the BeF3⁻-bound F432YZ200-214 structure solved from a crystal grown in Tris (pH 8.4).

^cValues are given for the BeF3⁻-bound P2(1)2(1)2YZ₂₀₀₋₂₁₄ structure.

 $d_{\text{Values are given for BeF3}^{-}$ -activated CheY¹⁵.

 e Values are given for inactive Mg²⁺-bound CheY¹⁴

 $f_{\text{Values are given for apoCheY}13}$.

 $g_{M^{2+}}$ indicates a divalent cation

^hNumber of water molecules at the active site are indicated and the range of contact distances are given in parentheses.

iValues correspond to "A" conformer/ "B" conformer of BeF3⁻-bound F432YZ200-214 (pH 8.4).

 $j_{\text{Indirect contacts are water or solvent-mediated hydrogen bonds; direct contacts are direct hydrogen bonds.}$