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Summary

In this paper, we study panel count data with informative observation times. We assume
nonparametric and semiparametric proportional rate models for the underlying event process,
where the form of the baseline rate function is left unspecified and a subject-specific frailty
variable inflates or deflates the rate function multiplicatively. The proposed models allow the
event processes and observation times to be correlated through their connections with the
unobserved frailty; moreover, the distributions of both the frailty variable and observation times
are considered as nuisance parameters. The baseline rate function and the regression parameters
are estimated by maximising a conditional likelihood function of observed event counts and
solving estimation equations. Large-sample properties of the proposed estimators are studied.
Numerical studies demonstrate that the proposed estimation procedures perform well for moderate
sample sizes. An application to a bladder tumour study is presented.
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1. Introduction

In longitudinal studies of serial events such as repeated tumour occurrences or graft rejection
episodes the cumulative number of these events experienced by each subject may be
observed only at several distinct and random observation times, specific to each subject.
Data of this type are commonly referred to as panel count data; see Thall & Lachin (1988)
and Balshaw & Dean (2002). Statistical methodology for panel count data has developed
slowly. Sun & Kalbfleisch (1995) derived a one-sample nonparametric maximum
pseudolikelihood estimator of the rate function for the serial event process. Wellner &
Zhang (2000) studied the asymptotics of the nonparametric maximum pseudolikelihood
estimator and showed that it is less efficient than the nonparametric maximum likelihood
estimator through some simulation studies. For semiparametric modelling, the derivation of
the semiparametric maximum likelihood estimator is computationally intensive, and Zhang
(2002) proposed an inference procedure based on a semiparametric pseudolikelihood
function. Wellner et al. (2004) compared the large-sample properties of the semiparametric
maximum pseudolikelihood estimator with the semiparametric maximum likelihood
estimator, and showed that the former can be very inefficient when the distribution of the
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number of observation times is heavy-tailed. Sun & Wei (2000) formulated estimation
equations for regression parameters in the semiparametric proportional rate models.
However, the Sun—-Wei estimator is inefficient as it ignores correlations among event counts
in the estimation equations, and its validity relies heavily on correct modelling of the
observation pattern.

Most proposed statistical models for panel count data assume that the observation times are
independent of the serial events, conditioning on observed covariates such as treatment
assignments. However, such an assumption can be violated in many applications. No
existing method can handle panel count data with informative observation times. Motivated
by Wang et al. (2001), we study nonparametric and semiparametric models that allow
observation times to be correlated with the event process, where the correlation is induced
by a frailty variable. Estimation procedures that require no parametric assumption about the
distributions of the frailty variable and the observation time process are proposed for
nonparametric and semiparametric models.

2. Notation and models

Model 1

Model 2

This paper focuses on statistical inference for the rate function for the underlying event
process in a fixed time interval [0, z]. Let M denote the number of serial events that have
occurred at or before time £ and assume that observations on a subject are collected at K
random time points 0<A< ... <fx<t, where Kis a random variable that takes positive integer
values and y'= #x is the last observation time, i.e. the censoring time. Let /= M#)—-M-1)
be the number of serial events in the time interval (#-1, ] and m = M) the total number of
events observed in [0, z]. We denote the observed data by D={4, b, ..., Ik, K, y, my, nb,
.er, My, M}

We consider the following nonparametric model for the event process M:).

Let Zbe a nonnegative latent variable with £(2)=1, so that, given Z=z, M) isa
nonhomogeneous Poisson process with intensity function

Atlz)=zA0(t), te€[0,7],

where Ap(2) is an unspecified function. Given Z, the event process M) is independent of K
and the random observation times {#, ..., i}

Define the function Ao(l)=f;/lo(u)du. Model 1 implies that the cumulative rate function of
the event process in the disease population is given by £ 2) Ag(H=Ag(d). Under Model 1, the
event process M) and the observation times {4, ..., fk} are correlated through the frailty
variable Z Unlike most frailty models in the literature, Model 1 makes no parametric
assumption about the distribution of 2.

Let xbe a px1 vector of covariates. When the effects of x on the rate function of the event
process are of interest, a semiparametric extension of Model 1 for the event process M(:) is
given below.

There exists a nonnegative latent variable Zwith £(Zx)=1 so that, conditioning on xand
Z=z, M) is a nonhomogeneous Poisson process with intensity function
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Atlx, 2)=z¢" Bao(e), 1€ 10,71,

where Bis a px1 vector of parameters and Aq(2) is unspecified. Moreover, given xand z, the
event process M) is independent of the number of observation time points, K; and the
observation times {4, ..., fx}.

In our formulation the distribution of the frailty variables and the conditional distribution of
the observation times given the frailty can be arbitrary and are left unspecified.

3. The estimators and their asymptotic properties

3-1. Estimation procedure for model 1

We use subscript 7 for a subject, =1, ..., n. Let z;be the individual frailty value, k;the
number of observation times and #;the jth observation time for the th subject, where /=1,

., kjand 0=fp< ... <t . Let y;denote the last observation time point, that is, y/=Zj,. Let
Njbe the underlying individual counting process and let m;= N{;)—N{tj-1) be the number
of serial events in the time interval (-1, £;]. Finally, let /7;= My;) be the total number of
events occurring during follow-up. For ease of notation we use /mj;and /m;to represent both
random variables and realisations. We denote the observed data of the th subject by D={t,
tp, - bk Kiy Vil Miy, M, ..., Mg, mi, for =1, 2, ..., n,and assume that Dy, ..., Dyare
independent and identically distributed copies of D.

Model 1 implies that, given /m;and y;, the m;event times are order statistics of independent
and identically distributed random variables with density function z;A¢(9)/z;Ao(y;). The
likelihood of the event times is proportional to the truncation likelihood given in Wang et al.
(2001). If we further condition on {#; /=1, ..., k3}, the conditional likelihood function can be
derived by integrating out the probability density function of the order statistics. Assuming
that Ag(z) is bounded, we define the shape function for the event process A(:) on [0, 7] as
HH=Ao(B/Ao(7), for 7. Thus Fdefines a proper cumulative distribution function on [0, 7]
with A z)=1. The conditional likelihood function, conditioning on z; &j, m;and {#; /=1, ...,

K}, is

n_ ki mi;  nk m;
: Ao(tlj) AO(tzj 1) i , F(tl]) F(tl] 1) i
Qo { Ao0) } , 1_[{ Fon } e

i=1 j=1 i=1 j=1

Interestingly, no information from the frailty variable Zis required to form (1). Note that, if
ki
jzlmijzl, the right-hand side of (1) is exactly the likelihood function of a set of
independent interval censored and right-truncated data. Therefore, the estimation of A in
(1) can be implemented by the self-consistency algorithm proposed by Turnbull (1976).

Turnbull’s self-consistency algorithm is equivalent to the Expectation-Maximisation
algorithm. When applied to the conditional likelihood function Q, the E-step and M-step

have simple closed solutions as described below. Let 0 = fy<tj<... <f; < 7 be the ordered
and distinct observation times from {#; k>1, 1</&<n, 1 < j<kj}. For 1< /<L, define

L
pk=F(1))—F(t;_,). We maximise Q subject to the constraint Zk:lp/Fl. Define aj=1 if
[t 18] C [tijor, 1] and 0 otherwise. Additionally, we define b;=1 if r; < y; and O otherwise.

Given the estimates p Y (k=1,...,L)in the Ah iteration, the E-step is to compute
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ki (O] (O]
d(l):znlzmii{ aijicpy, +(1_bik)pk }
k . I ([’
Ticiasnpy T b))

=1 j=1 ihP),

L H_z0 . L . .
where thlbz‘hl’ﬁzéﬁ} ') in the #n iteration. Given the updated 4", in the M-step we

(I+1)

) L
update the estimate of p, with 2 =d/ thldz). Note that ¢! is the expected number of

. L . Lo n ()N .
events in the time interval [ ;_,, #] and Zh=1d2)=zi:1ml'/ﬂ)(yi) is the projected total
number of serial events in the time interval [0, z]. Finally, the estimate of A is updated

=75 PPN () .
with £ (’)—Zths,dh . We alternate between the E-step and M-step until convergence to
obtain the estimate F,of ~.

The cumulative rate function Ag(J) is related to ~through the equation Ag()= AHAy(7),
where Ag(7) is interpreted as the expected number of serial events occurring in the time
interval [0, z]. If we condition on z;and y;, m;has the expected value E(m}z;, ) = ziho(V)
= ZiAY)Ao(7). Thus we have E{m;Ay) 1 }=Aq(7), since A 2)=1; that is, the ratio of /7;to
A, projects the number of events in [0, z]. If we substitute ~#with £,, an estimator of

Ao(2) is given by Kn(T)=n_IZ?:1mi/F 2(¥1). Hence Ag(#) can be estimated by
ALD=FAYA A D).

Let # be the class of functions defined by

F={F:[0,1] - [0, 1]|F is nondecreasing, F(0)=0and F(r)=1}.

Then the Ly(v) metric don # is defined as
K
d*(F\, F2)=[IF1(t)~F2(0)dv(1)=E (E [ zl{Fl(m—Fz(t,)}le])
I=
where

o k
v(t):Zpr(K:k)Zpr(ti j < tlK=k).
k=1

=

The strong consistency property of Ay is stated in Theorem 1 with the following conditions.

Condition 1. There exists an integer Ay<oo such that the number of observation times,
K, satisfies pr(K < k) = 1 and pr(K>1)>0.

Condition 2. The cumulative rate function Ag satisfies Ag(z)<M for some M€ (0, 00).
k
Condition 3. The random function MO:Z jzlmjlog(mj) satisfies £[Mp]<oo.

Condition 4. There exists a ;>0 such that pr(Y'=z;)=1 and Ag(z1)=C*for some C*>0.
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Theorem 1— We assume that Conditions 1-4 hold. Define ty=sup{t: pr(Y'=0)>0}. Then,
for every t such that t<tp, dAplpo 4, Aoljo,g)—0 almost surely when n— oo.

Since the estimation of Ag shares similarities with the estimation of a distribution function
under random interval censoring and truncation, the convergence rate of A ,(#) is expected to
be nonregular, i.e. not of /7/2-convergence rate. For the purpose of systematically studying
the convergence rate of A {(#, we consider the following technical conditions.

Condition’5. There exists a constant 7>0 such that adjacent observation times are
separated by 7, thatis ~f-1=2nfor =1, 2, ..., K

Condition 6. The baseline cumulative rate function Ag€ C[0, 7] and there exists a
constant >0 such that Ay(z) > y for t€ [0, 1.

Condition 7. For any a=0x(1), there exists a constant C**such that £(Ze*9)<C**for j
=0, 1, 2.

Theorem 2— We assume that Condlitions 1-7 hola, and we suppress the indicator, 1o g, in
our expression by assuming that the metric d is defined with t<z,. Then we have that n'2
AR 5 A)=0f1).

The proofs of the theorems are sketched in the Appendix using modern empirical process
theory. We leave the study of the asymptotic distribution of A to future research.

Remark: Conditions 1-7 are sufficient, but may not all be necessary. In particular,
Condition 7 may be stronger than necessary, but it does hold for the Gamma frailty variable.

3:2. Estimation procedure for model 2

Under Model 2 the conditional likelihood for the th individual, given z;, x;, k; m;and
observation times {Z, ..., i}, is proportional to

ki (e BNt ) —zie P Aot | i (Fti)—F(tio1) )™
I_[{Zle i Ao( lj) zie"i” Ao( l]—l)} :1_[{ (l]) (l]—l)}
J=1 zi€" P No(yi) J=1 F(i)

where AH=Aq(8/Ag(7). Note that the unobserved frailty z;and the observed covariates x;
are cancelled out in the formula, yielding the same conditional likelihood function given by
(1) in § 3-1. Thus the baseline cumulative rate function can be estimated in the same way as
that in Model 1. Intuitively, if all subjects are under observation up to time zthe total
number of events of each subject contains all the information about 5. Note that

E{miF_l(Vi)|xi,yi,Zi}=ZiA0(T)€x‘l'ﬁ- Following £(zjx)=1 we have
EfmiF ™ (y)lxil=Ao(1)e#;

that is, the ratio of m;to H;) projects the number of events in [0, z]. We can derive the
inferential results for B based on a class of unbiased estimating equations given by
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n ’
Y il miF T )=t 7)=0, (g)
i=1

where x}=(1, x;)/, y=np), n=log Ag(z), and wjis a weight function depending on (x; 3,
Ag). If Ag is aknown function, the optimal weight is given by

2

e Y JELmiF (y)—e 7) ]

(Godambe, 1960). In practice, however, Fis 9stimated with a convergence rate of 773, and
hence the efficiency gain is unknown when £, is used to replace ~in the optimal weight
function.

We denote the solutions of (2), with Freplaced by £, by 7=, ﬁn) In the Appendix we
show that, under Conditions 1-4, | 8,~82—0 almost surely as 7—>00, where || represents the
usual Euclidean Lp-norm. Moreover, using the estimator obtained by solving (2), we
estimate the baseline cumulative rate function Ag()=HHAo(7) by A,,(t) F,,(t)e’7'7 The
estimator A , satisfies the following strong consistency property: 0(/\,,1[0 4 Nolp,g)—0
almost surely for all £[0, z,] as 7—0. The derivation of the asymptotic distribution of 5,
and A (9 is a challenging problem and is left for future research.

4. Simulations and data analysis

4.1. Monte Carlo simulations

Four sets of simulation studies with moderate, /=100, and large, /7=1000, sample sizes were
conducted to evaluate the performance of the proposed nonparametric and semiparametric
estimators. We used Ag(§=2¢for #£[0, 10] and conducted the simulations using 1000
replications. The first simulation study compared the efficiency of the proposed
nonparametric estimator to that of the nonparametric maximum likelihood estimator
(Wellner & Zhang, 2000) and the nonparametric maximum pseudolikelihood estimator (Sun
& Kalbfleisch, 1995) under the assumption of independent observation process. To be
specific, we set Z=1 and generated K from a discrete uniform distribution on {1, 2, ..., 6}.
The Kdistinct observation times 4, ..., ¢k were order statistics of independent and
identically distributed uniform random variables on [0, 10], and observation times were
rounded to the second decimal place. The second set of simulation studies examined the bias
in these three nonparametric estimators when the independence assumption is violated. Let
z~Ga(2, 1) For 221, K'was generated from a discrete uniform distribution on {1, 2, ..., 8}
and 4, ..., tx were order statistics of K'independent and identically distributed exponential
random variables with mean 2; for <1, K'was generated from a discrete uniform
distribution on {1, ..., 6} and &, ..., tx were order statistics of K'independent and identically
distributed uniform random variables on [0, 10]. Thus, subjects with z>1 have a higher event
rate and tend to be observed more frequently than patients with z<1.

Table 1 gives the Monte Carlo bias and standard error estimates of these three
nonparametric estimators at selected time points. Table 1(a) shows that the bias in these
three nonparametric estimators is very small when observation times are independent of the
event process. The proposed estimator A {4 is more efficient, with smaller Monte Carlo
standard errors, than the nonparametric maximum pseudolikelihood estimator, and is
slightly less efficient than the nonparametric maximum likelihood estimator. When the
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sample size is large, the proposed estimator is highly efficient relative to the nonparametric
maximum pseudolikelihood estimator. In Table 1(b), where the pattern of observation is
correlated with the distribution of serial events, the nonparametric maximum likelihood
estimator and the nonparametric maximum pseudolikelihood estimator are substantially
biased, while the proposed estimator still gives valid results.

We evaluated the performance of the proposed semiparametric estimator in the last two sets
of simulation studies. The covariate x was generated from a Ber(0-5) random variable, and z
was from a Ga(2, 0-5) distribution. We set the cumulative intensity function to be ze*SAq(9)
with B=-1. In the third simulation study we compared the efficiency of the proposed
semiparametric estimator to that of the Sun—Wei estimator under the assumption that the
observation time process is a nonhomogeneous Poisson process with cumulative intensity
function given by log(1+25e*2. Thus, the observation pattern depends only on observed
covariates but not on the subject’s risk of serial events. The proposed semiparametric
estimation procedure, with unit weights, w=1, in the estimating equations (2), and the Sun—
Wei estimator, with and without assuming that the observation process follows a
proportional rate model, were applied to each simulated dataset. Table 2 gives the Monte
Carlo bias and standard error of the estimated S, and Table 3 gives estimates of Ag(?) at
selected time points using the proposed semiparametric method. As shown in Table 2, both
estimators have small biases; moreover, the proposed semiparametric estimator outperforms
the Sun—-Wei estimators in that it gives smaller Monte Carlo standard errors.

The last simulation study examined the validity of the two semiparametric estimators in a
setting where both the event process and the observation pattern are correlated with z. For
x=1and z>1, Kwas generated from a discrete uniform distribution on {1, 2, ..., 8} and 4,
..., txwere order statistics of Kindependent and identically distributed exponential random
variables with mean 2; otherwise, K'was generated from a discrete uniform distribution on
{1, ...,6}and 4, ..., txwere order statistics of Kindependent and identically distributed
uniform random variables on [0, 10]. Tables 4 and 5 show that bias in the proposed
estimator is almost ignorable, while the Sun-Wei estimators yield substantial bias in
estimating regression parameters.

4.2. Data analysis

We used a subset of data from the bladder tumour study conducted by the Veterans
Administration Cooperative Urological Research Group (Byar, 1980) to illustrate the
proposed methods. All the recruited patients had superficial bladder tumours before entering
the study, and were randomly allocated into one of the three treatment groups; namely
placebo, thiotepa and pyridoxine. Many patients experienced multiple tumour occurrences
after enrolment, and new tumours were removed at follow-up clinic visits. We set =30
months and compared the thiotepa group with the placebo group in tumour occurrence rate
during the first 30 months.

Figure 1(a) shows the estimated cumulative rate function for placebo and thiotepa groups
using the proposed nonparametric method, the nonparametric maximum likelihood estimator
and the nonparametric maximum pseudolikelihood estimator. Patients treated with thiotepa
had a lower tumour occurrence rate, indicating the effectiveness of thiotepa in the first 30
months. Next, we applied the proposed semiparametric method and the Sun—-Wei estimators
to the bladder tumour data, with x an indicator of whether or not a patient was in the thiotepa
group. With the proposed method, the estimate of the regression coefficient of the treatment
indicator is —0-62 with a bootstrap standard error of 0-43, yielding an estimated tumour
occurrence rate in the thiotepa group of 0-54=¢7962 times that of the placebo group during
the first 30 months of follow-up. The estimated baseline cumulative rate function with 95%
pointwise bootstrapped confidence interval at selected time points is given in Fig. 1(b). With
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the Sun—-Wei estimators, the estimated coefficient of the treatment indicator is —0-88 with a
bootstrap standard error of 0-41 under the assumption that the observation pattern is the
same for both treatment groups, and is —1-48 with a bootstrap standard error of 0-40 under
the assumption that the observation process follows a proportional rate model. The proposed
method estimates a smaller treatment effect in the tumour occurrence rate than do the Sun—
Wei estimators.

5. Final remarks

We have applied our method to data generated from other than the working Poisson process,
and concluded that the inferential results, not shown here, are still valid. Moreover, the
Poisson process assumption is not required in our proof for the strong consistency. This
indicates that the proposed methods have the same robustness property as those proposed by
Wellner & Zhang (2000) and Zhang (2002), namely that the validity of the proposed
methods does not depend on the underlying counting process conditioning on the frailty
variable under Model 1 or conditioning on the frailty variables and covariates under Model
2. We have also considered in our simulation studies scenarios where the scheduled visits
are fixed by design and the chance of missing a visit depends on the frailty z The results,
not shown, suggest that the proposed method gives valid results, while the nonparametric
maximum likelihood estimator and the nonparametric pseudolikelihood estimator are
substantially biased.

The standard asymptotic theory applies to the proposed method when the schedules of visits
are fixed by study design: instead of maximising a nonparametric conditional likelihood
with infinite-dimensional parameters, the proposed estimation procedure maximises a
conditional likelihood with finite number of parameters. This asymptotic normality with a
convergence rate of /72 is expected for the proposed estimators.

It is important to indicate that the proposed methodology relies on the assumption that the
effect of frailty on the intensity function is multiplicative. This assumption is widely used in
modelling clustered survival times, where a parametric assumption for the frailty
distribution is usually required for statistical inference. The estimation procedure proposed
in this paper does not rely on the frailty distribution and hence is more robust against
departure from the true frailty distribution. While the use of multiplicative frailty is crucial
to our methodology, the technique for checking the multiplicative assumption needs to be
developed in future research.
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Sketch proof of Theorem 1

We only state the main results for the proof of Theorem 1. Readers are referred to the
technical report available at http://www.bepress.com/jhubiostat/paper90 for details. The
proof of strong consistency of £, closely follows Wellner & Zhang (2000). Arguing as in the
proof of Theorem 4-2 in Wellner & Zhang (2000), we can show that 0(/3',71[0,{], CFl[o,5)— 0
almost surely for any ¢€ [0, o], where =sup{¢. pr(Y=5>0} and cis a fixed constant.

Now we prove that A (3 is a consistent estimator of Ag(# for ¢in [0, z,]. We write

—~ 1 v 1 1 I [ m _
An(T)_;AO(T):r—lZmi {%—CF(W)} _;Z {m—/\o(?’)} =I+II.

i=1 i=1

Let # denote the Borel sets in #. We define a new measure v, on ([ 71, 7], #«) by
Vvo(B)=EL[eg)- Obviously, v, is dominated by the measure v. For a 6,>0 with §,—~0 as 1
— oo, we define a class 7 ={ f. F()=MdD{gL(H-c1F1(d}, where gis nondecreasing and
nonnegative with positive lower bound in [z;, 7] and A(gl(o a3, ¢FL[0,tau7)<Sp FOr a
sufficiently large n,

! S mitg - F ()

i=1

n! Zmi{l?yfl()’i)—c_lF_l(yi)}‘ < sup
i=1 geF

< supIPf|+||Pn—P||y,
feF

where P, denotes the empirical measure and P denotes the probability measure.
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Under Condition 4 and applying Theorems 2:7-5 and 2-4-1 in van der Vaart & Wellner
(1996), we can show that # is a Glivenko—Cantelli class. Thus ||P,~A| = —0 almost surely.
Moreover,

;ugPﬂ:E[Ao(r)F(yi){g‘l(m—c'lF‘l(y,-)}u < ¢6,

for some ¢>0 following from the fact that v, is dominated by v and the Holder inequality.
This implies that I—0 almost surely. The quantity 11 converges to 0 almost surely because
E{myRy)}=Ao() and by the law of large numbers. Thus we show that A {7)-c1Aq(7)
converges to 0 almost surely. It is easy to see that A (A—Aq(H—0 almost surely for v~
almost-all #£[0, 7], and it follows from the dominated convergence theroem, with
dominating functions Ag( ) since vis a finite measure, that 0(&,,1[0,,], Aoglpo,4)—0 almost
surely for any #€[0, ©].

Sketch proof of Theorem 2

We apply Theorem 3:2:5 of van der Vaart & Wellner (1996) to derive the rate of
convergence. To do so, we verify that the conditions of that theorem hold in our problem
with Conditions 1-7.

k
We rewrite ‘I(A?D)zzjzlm.il(’g{/\ * (1)=A % (-1} \where A*(B)=N(BIAQ) for 1,2, ...,
k. We define

k
M(A)=Pq(A;D)=E {ZAAO(I_;)IOgAA * (tj)} , (A1)
j=1
where AAo(5)=Ao(f)=Ao(Z-1) and AAX(D)=A*(5)=A*(t-1).
First, we show that performing Taylor expansion on the right-hand side of (A1) along with
k
Conditions 5 and 6 yields M(A0)-M(A) = CE[Zj:1{A(fj)—/\ﬂ(fj)}zlzc‘lz(/\’ No) for any A

in a neighbourhood of Ag. Here Crepresents a generic constant.

Next, we consider a class -““={q(A,; D)—-q(Ag; D) . d(A, Ag)<6} for some &0 and &=0(1).
For any ~q(A; D)-g(Ao, D)E #, using Conditions 1 and 7, we can obtain || f||5 < C6,
where ||| 5 is the Bernstein norm defined as || 7||p 5={2A(é-1-| f[}*/2. Hence, by Lemma
3-4-3 of van der Vaart & Wellner (1996),

EP||\/n(P,,—P)HM§ < CJy(6, s,

2nli2

o)

where 7[](6, s, |12 g) is the bracketing integral of the class of functions -#: and is defined
by
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T, s, ||'HP.B):]§{1+10gN[1(87 Ms, H'HRB)}”Zde.

Finally, using Conditions 5-7, we can argue that the e-bracketing number of class -#: with
Bernstein norm is controlled by V%, that is AVfy(e, “, |Illp.8) = O('/%). Hence

J1i(6, A5,

{l,,) < CLol1+log(1/2) 2de < C [oa™2de < €62,

This implies that the function ¢,(6), which is critical for the rate of convergence based on
Theorem 3.2:5 of van der Vaart & Wellner (1996), is given by

_s51/2 s'/? _s1/2, 5-1,,.1/2
@n(0)=0 1+—62 7 0 /“+0 /n”.
n

It can be easily verified that p,{&)/8 is a decreasing function of sand 3¢, (7 13)=2112, s0
that M3a(A ,, Ag)=0O41) because of Theorem 3-2:5 of van der Vaart & Wellner (1996). %

Consistency of ﬁn

The consistency of £, under Model 2 can be established by arguing in the same way as

described above, except for replacing z;with z,-exp(x:.ﬁ). We now examine the consistency of
4, obtained by solving the estimating function (2). The consistency property of the
estimator obtained from the alternative estimating function can be proven using a similar
argument. Define the function U (7)=n_12?:lwixf {miF,(v)~" =€ 7} 1t can be shown that
the function U converges to 0 almost surely when evaluated at y=(log{Aq(2)/c}, B "
Furthermore, it is easy to see that the derivative of Uevaluated at (log{Ao(2)/}, B ) “is

negative definite. Applying Taylor expansion to {{y), one can show that the solution of (2),

tbat is 37:@,3’”)1, converges to y=(log{Ao(2)/c}, B ) “almost surely. Thus we prove that
B, converges to Salmost surely.

Based on the above sketch proof, 7, converges to log{ Ao(z)/c} almost surely. Along with
the fact that d(F,1j0,4, ¢Fljo,4)—> 0 almost surely for any £[0, 7], it can be shown that
A AL, g Aolpo,g)=AFrlpo,4€™" Aoljo,4)—0 for any £€[0, z,].
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Fig. 1.

Bladder tumour study. (2) Nonparametric estimation of cumulative rate function by
treatment group; (b) Semiparametric estimation of baseline cumulative rate function with
pointwise bootstrap 95% confidence intervals.
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