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Abstract
A concatenation of findings from preclinical and clinical studies support a preeminent role for the
corticotropin-releasing factor (CRF) system in mediating the physiological response to external
stressors and in the pathophysiology of anxiety and depression. Recently, human genetic studies
have provided considerable support to several long-standing hypotheses of mood and anxiety
disorders, including the CRF hypothesis. These data, reviewed in this report, are congruent with
the hypothesis that this system is of paramount importance in mediating stress-related
psychopathology. More specifically variants in the gene encoding the CRF1 receptor interact with
adverse environmental factors to predict risk for stress-related psychiatric disorders. In depth
characterization of these variants will likely be important in furthering our understanding of the
long term consequences of adverse experience.
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Introduction
Soon after the isolation and chemical characterization of corticotrophin-releasing factor
(CRF) from ovine hypothalamus more than 25 years ago, the 41 amino acid containing
peptide was unequivocally established as the major physiological regulator of hypothalamic-
pituitary-adrenal (HPA) axis activity (1). It’s preeminent role in mediating stress-related
behaviors in rodents and primates was quickly demonstrated and hypothesized to be
important in the pathogenesis of mood and anxiety disorders (2–8). These early findings
were followed by a series of clinical studies and additional laboratory animal experiments
that support the hypothesis that alterations in central nervous system (CNS) CRF-containing
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circuits play an important role in the pathophysiology of anxiety and depression (see (9–11)
for review).

Because the CRF hypothesis of depression has previously been comprehensively reviewed
by our group and others, this monograph will only briefly summarize the CRF system which
contains 4 cloned ligands and 2 receptors, as well as major findings derived from animal and
human studies that relate this system to stress, anxiety and depression. Our main focus,
hitherto not comprehensively reviewed, is on recent developments in the human molecular
genetics of the CRF system, how these findings further support the CRF hypothesis of
depression and anxiety, and a discussion of future research directions.

The CRF system
Since the initial isolation of ovine CRF in 1981, 3 related ligands and 2 receptors have been
identified (Hauger et al 2003 for review (12)).

As noted above, CRF is a 41 amino-acid neuropeptide, expressed both peripherally (blood
vessels, skin, lung, testes, ovaries and placenta) as well as in the CNS -with highest
expression in the hypothalamus, amygdala, cerebrocortical areas and the septum (13, 14).
Urocortin 1, urocortin 2 (stresscopin-related peptide), and urocortin 3 (stresscopin) are CRF-
like neuropeptides (15–18). Human urocortin 1 shares approximately 45% homology to
human CRF. In the CNS, urocortin 1 is expressed most strongly in the Edinger-Westphal
nucleus and the hypothalamus (19, 20), but overall its expression is more widespread
peripherally, including in the pituitary, gastrointestinal tract, testes, cardiac myocytes,
thymus, spleen and kidney (13, 20, 21). Urocortin 2 and 3 are also expressed both in the
CNS and the periphery. Urocortin 2 is expressed in the magnocellular portion of the
hypothalamic paraventricular and arcuate nucleus, the locus coeruleus, brainstem and spinal
motor neurons; its expression pattern partially overlaps with that of CRF (17). Urocortin 3 is
concentrated in the median preoptic area, the rostral perifornical area, the bed nucleus of the
stria terminalis and the medial nucleus of the amygdala (16). Its expression pattern shows
little overlap with CRF expression. In the periphery, urocortin 2 has been found in the heart,
adrenal gland and peripheral blood cells whereas urocortin 3 has been localized in the
gastrointestinal tract, muscle, adrenal gland and skin (13, 22).

The available evidence suggests that these 4 peptide neurotransmitters bind to 2 identified
receptors, CRF1 and CRF2 (Hauger et al 2003 for review(12)). CRF and urocortin 1 both
bind with high affinity to the CRF1 receptor, whereas urocortin 1, 2 and 3 but not CRF, bind
with high affinity to the CRF2 receptor. Both CRF receptors are 7-transmembrane G-protein
coupled receptors (GPCRs) and share 70% sequence homology. Both receptors are present
in the CNS. CRF1 is expressed in high density in the cerebral cortex, cerebellum,
hippocampus, amygdala and pituitary; its peripheral expression is less robust and
concentrated to skin, ovaries and testes and the adrenal gland. The CRF2 receptor is also
expressed in the CNS, but largely restricted to subcortical areas, including the
hypothalamus, amygdala, bed nucleus of the stria terminalis and raphe nuclei, and in
peripheral tissues, such as the pituitary, heart, lungs, ovaries, testes and adrenal gland (14,
23–26).

One unique characteristic of this system is that the biological activity of all four peptides is
regulated by a CRF-binding protein (CRFBP), which is highly conserved in mammalian as
well as non-mammalian species (27–29). It is present in the circulation and the interstitial
spaces as a soluble 37 kDa glycoprotein that binds CRF and all urocortins with high affinity,
reduces their bioavailability and prevents their binding to CRF receptors (27). CRFBP is
highly expressed in a series of tissues, including brain, heart, intestines, lungs and placenta
(13, 30, 31). In the CNS, CRFBP is present in all CRF-related pathways and the pituitary.
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The CRFBP is partially colocalized with CRF, as well as CRF receptor expression, thereby
permitting its role in modulation of CRF neurotransmission (30).

The CRF system, stress, depression and anxiety
The CRF system and the stress response

The CRF system plays a multitude of physiological roles that are apparently related to
orchestrating the stress response at several different anatomical levels (see figure 1). In
addition to its well documented role as a hypothalamic hypophysiotropic factor that
stimulates pituitary ACTH synthesis and secretion and thereby controls the activity of the
HPA axis (1), CRF neurons also innervate the locus coeruleus, thus activating the other
major stress response axis, the CNS noradrenergic and sympathetic nervous systems (32).
The CRF system also locally regulates adrenal steroidogenesis and catecholamine synthesis
and release from the adrenal gland (33), again, dually influencing the HPA axis and
norepinephrine and epinephrine secretion. Furthermore, effects of CRF in limbic brain
regions have been associated with increased fear, alertness, decreased appetite and libido, all
functions relevant in the fight or flight response and dysregulated in depression and anxiety
disorders (9). These effects appear to be mediated mainly by the CRF1 receptor (10, 34, 35).
The role of the CRF2 receptor remains more obscure and likely context and brain region
dependent. Anxiolytic effects in a brain region-specific and stress level-dependent manner
have been described (35–44). Data from CRF2 receptor transgenic animals suggest an
inhibitory role on adrenocortical function (38, 45). Overall, it appears that the CRF1 receptor
is the principal receptor mediating the stress response, whereas the CRF2 receptor modulates
the effects of CRF1 signal transduction (10, 11, 46).

The CRF system and depression
Laboratory animal studies in which brain intracerebroventricular (icv) or brain region-
specific microinjections of CRF has been employed have revealed that CRF produces
behavioral responses reminiscent of major depression in humans, including increased
anxiety, reduced slow wave sleep, psychomotor alterations, anhedonia, decreased appetite
and libido (47, 48). These studies are complemented by results obtained in transgenic
animals either lacking or over-expressing CRF system ligands or receptors, as well as from
studies using selective CRF antagonists. This large database indicates that these behaviors
are mainly mediated by CRF1 receptor activation and modulated by CRF2 receptors (10,
49). Conditional CRF1 receptor knock-out mice and CRF overexpressing mice restricted to
forebrain areas have further demonstrated that these anxiety- and depression-related
phenotypes are specific to activation of the CRF1 receptor in limbic forebrain regions and
independent of actions on HPA axis activity (50, 51), though the latter endocrine effects of
CRF may indeed contribute to the depressive symptoms. While a negative effect of
glucocorticoid receptor activation on CRF expression has been described for the
hypothalamus, glucorticoids were shown to increase CRF expression in limbic areas,
including the amygdale and the lateral septum (52, 53). In support of the critical role on
limbic CRF transmission, recently increased CRF expression in the amygdala induced by
use of a lentiviral vector was shown to produce most of the behavioral effects that comprise
the depressive syndrome, as well as HPA-axis hyperactivity (54).

In humans, increased CSF CRF concentrations have been repeatedly observed in major
depression (8, 55, 56) and suicide victims (57). Moreover, treatment with either
electroconvulsive therapy (58) or antidepressants (59–61) reduces CSF CRF concentrations.
Notably, persistent elevations of CSF CRF concentration in symptomatically improved
depressed patients is associated with early relapse of depression (62).
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A series of postmortem studies have provided compelling evidence of increased CRF
neurotransmission in major depression and suicide. CRF expression (both mRNA and
peptide) is increase in the hypothalamus, cortical areas, pontine nuclei and the locus
coeruleus (63–66). This is paralleled by a down regulation of CRF1 but not CRF2, receptors
in cortical areas of suicide victims, all pointing to an overactive CRF/CRF1 receptor system
in depression (67, 68). In addition, CRFBP has been found to be down-regulated in the
amygdala of patients with bipolar disorder (69) and urocortin 1 expression is upregulated in
the Edinger-Westphal nuclei of suicide victims (70). The relevance of overactive limbic
CRF1 receptor transmission in depression is underlined by the fact that selective CRF1
receptor antagonists exert antidepressant effects at doses that do not influence baseline or
stimulated HPA axis activation (71, 72). It is important to note that, although not all studies
with CRF1 receptor antagonists are positive in major depression, lack of a CRF1 receptor
positron emission tomography (PET) ligand renders choice of dose problematic (73).

The CRF system and early trauma
Overactivity of the CRF/CRF1 receptor system also has been demonstrated to be one of the
long term neurobiological sequelae of early life trauma, a major risk factor for the
development of affective disorders (74, 75). In fact, both rodents and non-human primates
exposed to adverse experiences in early life exhibit evidence of hyperactivity of the CRF
system as adults. Bonnet macaques reared under stressful conditions exhibit higher CSF
CRF concentrations as adults than monkeys reared under non-stressful condition (76).
Similar neuroendocrine results have been obtained in Rhesus monkeys (77). In rodents early
life stress is associated with persistent alterations in the CRF system, including increased
CRF concentrations, increased CRF mRNA expression, and altered CRF receptor expression
and binding in the hypothalamus and limbic brain regions (78–80). This overactivity of the
CNS CRF system is paralleled by a hyper-reactive HPA axis response to stress in these
animals. These findings in laboratory animals are consistent with findings in humans where
early life trauma is a strong predictor of CSF CRF concentrations in adults (81–83) and is
associated with an enhanced stress response to standardized psychosocial stressors, such as
the Trier Social Stress Test (TSST). In addition in endocrine challenge tests, including the
CRF stimulation test and the combined dexamethasone suppression/CRF stimulation test
(84–87), patients with early life trauma exhibit evidence of marked HPA-axis hyperactivity.

The CRF system and anxiety disorders
Because of its anxiogenic effects in laboratory animals, the CRF system has also been
implicated in the pathophysiology of anxiety disorders (10, 88, 89). Increased CSF CRF
concentrations have been reported in PTSD (90–92), but studies in adults with panic
disorder and generalized anxiety disorder have failed to demonstrate such abnormalities
(93–95).

There is evidence from a series of animal studies that the CRF system is also highly relevant
to alcohol dependence (96), particularly during alcohol withdrawal (97), and depression and
anxiety disorders exhibit high rates of comorbidity with alcoholism. Indeed several studies
have revealed that acute alcohol withdrawal is associated with marked increases in CSF
CRF concentrations (98, 99). It is also worth noting that clinically effective benzodiazepine
anxiolytics such as alprazolam reduce CRF-ergic activity (100).

In summary, over 3 decades of research have implicated CRF circuits in the
pathophysiology of depression and certain anxiety disorders, particularly PTSD, as well as
in mediating the long term impact of early trauma. We refer the reader to a series of review
articles (10, 11, 46, 101) that comprehensively review the above topics in considerably more
detail. This review focuses on the human genetics of the CRF system and how recent
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advances in this area inform the field on the critical role of the CRF system in depression
and anxiety.

Human genetic studies
Susceptibility to depressive or anxiety disorders is now well established to be due to the
combined effect of genes and the environment, with heritability estimates for these disorders
ranging from about 30% to 40% (102–106). The CRF system, being highly responsive to the
environment, has been posited to serve as a key interface between environmental stressors
and the development of depression. In fact, differences in the function of the CRF system
due to genetic variation may lead to differences in an individual’s response to stressful
events and may regulate an individual’s vulnerability to stress-related psychiatric disorders.

Table 1 lists the genes encoding all members of the CRF system with their human
chromosomal position.

Linkage studies
Before the sequencing of the human genome (107, 108), studies addressing the genetic basis
of affective and anxiety disorders mostly consisted of linkage studies, using large pedigrees
of families with multiple affected individuals. Most linkage studies have used short or
variable tandem repeats or microsatellite markers which often tag larger regions in the
chromosome, so that inference of linkage to a certain candidate gene from these studies
usually requires extensive follow-up fine-mapping. Nonetheless, if genetic variation in the
CRF system is related to increased vulnerability to depressive and anxiety disorders, one
might expect to find regions of linkage for these disorders in the neighborhood of the
chromosomal loci encoding these genes.

Although none of the recent meta-analyses of linkage scans for bipolar disorder provide
strong support for linkage to regions containing CRF system genes (109, 110), some
individual scans in major depressive or anxiety disorders (111, 112) have reported
suggestive evidence for linkage in some of these regions. Two meta-analyses of linkage
scans in bipolar disorder (109, 110) report linkage to the 8q region distal to the CRH gene.
The more recent study actually reports genome-wide significance for this locus when bipolar
II patients are included in the analysis (109). However, the signal in these studies (8q23) is
distal to the CRH gene, which is located in 8q13.1. Testing of a short tandem repeat marker
proximal to the CRH gene did not provide any evidence for linkage with bipolar disorder in
a smaller sample of 22 pedigrees (113). In contrast, two studies have reported suggestive
linkage (LOD < 2.0) for bipolar disorder in the chromosomal regions 8q13.2 and 8q13.3
including the CRH gene (114, 115), and a recent study has also shown linkage of a region
containing 8q13.1 to deficit symptoms in a cohort of families affected with schizophrenia,
schizoaffective disorder and bipolar disorder (116). Suggestive evidence for linkage to
bipolar disorder has also been reported for 3p21, containing UCN2 (117). Interestingly,
strong linkage (LOD 3.88) has been found of the combined phenotype of anxiety disorders
and early onset major depression with a large locus on chromosome 3 (3p12.3-q12.3)
overlapping with the previous locus (118). UCN3 is located centromeric to a linkage peak
for obsessive-compulsive disorders on 10p15.3 (119).

Overall, linkage studies provide some evidence for an involvement of the CRF system in the
genetics of depression and anxiety disorders, but the data are not compelling. However, such
approaches have significant limitations in the study of the genetics of complex disease
because they are usually underpowered to detect the smaller combined effects of multiple
genes as well as gene x environment interactions expected in these disorders (120). Lack of
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evidence from linkage studies can therefore not be extrapolated to an absence of genetic
effects of the CRF system in depression and anxiety.

Results from whole-genome association studies
For whole genome association studies, the markers of choice have been single nucleotide
polymorphisms (SNPs) because they are common genetic variations (single base exchanges)
and their genotyping is amenable to high-throughput methods (121, 122). Over 6.5 million
of these variants have been validated in humans so far (http://www.ncbi.nlm.nih.gov/
projects/SNP/snp_summary.cgi). In past years, data from the HapMap project, an
international consortium to catalogue human genetic variation (HapMap) (123) and other
publicly available resources have become available online (http://www.hapmap.org/, http://
genome.perlegen.com/, and others) to facilitate the selection of the most informative SNPs
to adequately cover the genetic variation in different populations. Most commercially
available SNP assays and whole-genome SNP arrays rely on these resources for SNP
selection.

Several whole-genome studies have been published for bipolar disorder (124–128) and two
for unipolar depression (129, 130) and none show reproducible association of SNPs within
CRF system loci in the samples for which association data is readily available online. In
fact, data from the GWAS for unipolar depression of the GAIN-study (130) show that within
200 kb 5’ and 3’ of the CRF-system genes, no association with a p-value smaller than 0.01 is
observed, except for one SNP about 40 kb proximal of UCN3 (p-value between 0.01 and
0.001). Results from whole-genome studies for anxiety disorders or gene x environment
interactions have not been published yet. It is however noteworthy that the arrays used in
these studies contained especially few SNPs within the CRH, UCN and UCN2 loci. The
Illumina hap550 v3 array for example with over 550,000 SNPs across the whole genome has
only 2 SNPs within 20kb surrounding the CRH gene (http://genome.ucsc.edu/). Overall the
genetic coverage of the used SNP arrays is not complete and especially weak for rarer
variants. Negative results in these studies may thus also be confounded by a lack of
coverage of the genetic variation in some of these loci.

Candidate gene approaches
In contrast to the genome wide approaches described above, candidate gene approaches have
the advantage of directly testing association of genetic variations within a gene or locus of
interest. This focused approach allows to answer specific hypotheses, including gene x gene
as well as gene x environment interaction analyses and to home in on the actual functional
variant. Candidate gene approaches have investigated a number of different genetic
polymorphisms, including putatively functional variable tandem repeats and insertion-
deletion. In the absence of a know functional variant, researchers often rely on a selection of
marker variants to tag a genetic site making use of information on the linkage disequilibrium
structure of the investigated chromosomal region (131).

In the following section we will describe the genetic structure of the genes encoding the
various components of the CRF system, as well as evidence for functional polymorphisms
within the genes of interest and results from candidate gene association studies.

The CRH locus
While the official name of the peptide is corticotropin releasing factor (CRF), is it also often
referred to as corticotrophin releasing hormone (CRH) and CRH is also the official gene
symbol for the locus encoding CRF.
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Genetic architecture—CRH is a short gene, spanning about 2 kb with 2 exons located on
the long arm of chromosome 8. It encodes the 196 amino acid long CRF precursor which is
then processed to the 41 amino acid long CRF.

In the HapMap project, 12 SNPs have been genotyped within the CRH locus (+− 1.5 kb), of
which most are either non-polymorphic or rare. Shimmin et al (2007) (132) have
comprehensively re-sequenced this locus in over 200 individuals of Mexican-, European-
and African American descent and have detected 37 SNPs, one insertion-deletion
polymorphism and a microsatellite marker in the same region. At the time of publication,
only 23% of these variants were listed in dbSNP, the most comprehensive database
cataloguing these polymorphisms. This would indicate that current SNP databases and thus
commercially available genotyping assays and arrays, vastly under-represent the genetic
variation in this locus. Negative association results may therefore also be related to the fact
that none of the potentially relevant markers have been genotyped in previous association
studies.

Functional polymorphisms—A set of 4 polymorphisms (SNPs) in the 5’ regulatory
region of the CRH locus up to 4000 bps upstream of the transcription initiation site have
been described and appear to be associated with differential transcription of the gene product
using reporter gene assays (133–135). One of these polymorphisms, rs5030876 appears to
alter binding of activating transcription factor 6 to the putative promoter region (135, 136),
thus providing a potential molecular mechanism for differences in gene transcription.
Rosmond et al (2001) tested one of these putatively functional promoter variants (rs503875)
for its effects on baseline and dexamethasone-suppressed saliva cortisol measures. This T/G
SNP is rare in European populations (8–10% carrying the G allele), but more frequent in
Africans (close to 40% carrying at least one G allele) (Hapmap and (133)). In a Swedish
sample of 284 men, no effects of the SNP on diurnal saliva cortisol variation or
dexamethasone suppression (0.5 mg) were observed. However, its rare allele showed a
significant interaction with a functional SNP (ThtIII1) in the glucocorticoid receptor (GR).
Only the combination of the rarer CRH promoter variant and the allele of the GR
polymorphism previously associated with higher diurnal cortisol secretion was also
associated with higher salivary cortisol levels in this study (137). The sample size (N = 12)
in the combined genotype group that carried the effect was, however, very small. With the
exception of another small study that linked the CRH locus to a congenital isolated ACTH
deficiency in one family with two affected and two non-affected siblings (138), we are not
aware of any other studies relating genetic variation in the CRH locus to endocrine
measures. Recently, a functional variant in the promoter of the CRH gene of Rhesus
monkeys has been reported that disrupts a glucocorticoid response element (GRE). This
functional variant was associated with lower CSF CRH concentrations as well as more
exploratory and bold behavior as infants and adolescents (139).

Association studies—A handful of studies have investigated the association of the CRH
locus to anxiety-related phenotypes. Smoller et al (2003, 2005) have investigated the
phenotype of behavioral inhibition in children of parents with anxiety disorders and found
association with a repeat polymorphisms about 20kb 3’ of the gene (140) and 3 SNPs
located just 3’ as well as 5’ of CRH (141, 142). Two of these SNPs were also tested for
association with panic disorder in a case-control study in adults, but no significant
associations were observed (143). Finally, the synonymous coding SNP rs6159 (amino acid
position 96 Gly/Gly), associated with behavioral inhibition (142) as well as two SNPs 5’ of
the CRH genes were neither associated with major depression nor with response to
antidepressant treatment in a German sample (144). Wasserman et al (2008) also reported
negative results for an association of 2 CRH SNPs with suicide attempt (145).
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Even though some interesting functional SNPs regulating CRH expression have been
identified, so far no definitive conclusions can be reached on the involvement of genetic
variation within the CRH locus in anxiety- and depression-related phenotypes due to the
limited sample sizes in these studies and the small number of studies overall. However,
putatively important gene x environment interactions have not yet been investigated for this
gene.

Urocortins and CRHBP
Genetic architecture and functional variants—The genes encoding the
preproproteins for the three urocortins are located on different chromosomes and each has 2
exons. The CRHBP locus, encoding CRFBP, is located on chromosome 5 and contains 7
exons. Public databases also indicate two additional exons 3’ of the gene and an alternate
isoform skipping exon 7 and containing these 2 3’ exons. We are currently not aware of any
validated functional variants in these genes, but putative functional variants such as non-
synonymous coding SNPs and other variants potentially influencing transcription or splicing
regulation are predicted in silico.

Association studies—To our knowledge, except for negative associations with response
to citalopram treatment in major depression (146) no psychiatric genetic association studies
have specifically investigated the urocortin gene variants. An initial positive study on the
association of CRHBP SNPs with recurrent unipolar depression (147) could not be verified
in an enlarged sample of the same cohort and did not replicate in a second independent
sample (148). The same group has also reported a lack of association of these variants with
bipolar disorder (149). Enoch et al., 2008 report the association of variants within a CRHBP
haplotype block with anxiety disorders in Plains Indians and alcohol use disorders in
Caucasians. The same haplotypes were also associated with alpha power as measured by
resting EEG in these individuals (150). These results may suggest that CRHBP variants
could play a role in anxiety and addiction by moderating arousal states. A recent study from
our group showed an ethnicity-specific association of a CRHBP SNP with response to
citalopram treatment in the STAR*D cohort (146). This study investigated the association of
polymorphisms within all CRF system genes discussed in this article and response to
antidepressant treatment. The only association withstanding correction for multiple testing
was with a SNP located 3’ of the CRHBP gene, rs10473984. In the African American and
Hispanic subset of STAR*D patients, the T allele of rs10473984 was associated with poorer
treatment outcome. This allele was also associated overall higher plasma ACTH levels,
suggesting functional effects of this variant on CRHBP levels and thereby CRF signalling at
the pituitary level. Finally, the association with poorer treatment outcome was most
pronounced in individuals with anxious depression, supporting the role of this system in
anxiety-related behaviors (146).

The CRF receptor genes
In the following, we will present data for the two CRF receptor genes, and begin with the
gene encoding the CRF2 receptor (CRHR2), for which fewer studies are available, followed
by the more intensely studied CRF1 receptor gene (CRHR1).

The CRHR2 locus
Genetic architecture—The CRHR2 locus contains 15 exons with three different
promoter sites and 3 different first exons (151) encoding the CRF2alpha, CRF2 beta and
CRF2gamma isoforms (152–154). These three isoforms differ in the initial part of the N-
terminal ligand binding domain, but otherwise the receptor structure is the same, starting
with the common second exon and they do not appear to differ in their ligand binding profile
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(152, 153). The CRF2alpha is the predominant isoform in human brain and its expression is
responsive to glucocorticoids (155).

Association studies—For variants within the CRHR2 locus, positive associations have
been reported. Tochigi et al (156) reported an association of an intronic SNP in CRHR2 with
the personality trait openness on the NEO personality inventory in Japanese individuals.
DeLuca et al (157) identified a three microsatellite marker haplotype that was associated
with the severity of suicidal behavior, but not suicide attempts per se in families with bipolar
disorder. Another intronic SNP (not in the same haplotype block as the one reported by
Tochigi et al (158) was also associated with response to citalopram treatment in a Spanish
cohort. Negative associations of CRHR2 variants with unipolar, bipolar and panic disorder
as well as antidepressant treatment response have also been published (143, 146, 159, 160),
painting a controversial picture of the association of variants in this gene with depression
and anxiety-related phenotypes.

The CRHR1 locus
Genetic architecture—The CRHR1 gene spans 51 kb on the long arm of chromosome 17
(see figure 2). Its 13 exons encode the 415 amino acid CRF1 receptor for which 8 splice
variants have been reported (161–163). CRF1alpha is the main isoform, containing all 13
exons. CRF1beta has 29 amino acids inserted into the first intracellular loop (encoded by an
additional exon without any homologous sequence in mouse). CRF1c has 40 amino acids
deleted from the N-terminus (lacking exon 3) and CRF1d results from a skipping of exon 12
and thus a 14 amino acid deletion from the 7th transmembrane domain. CRF1e lacks exons 3
and 4 - coding for the N-terminus, CRF1f lacks exon 11 and CRF1g lacks exon 10 and part
of exons 9 and 11. CRF1h has a cryptic exon inserted between exons 4 and 5. All receptor
variants result in either altered/impaired binding affinity or signal transduction. In addition,
CRF1h, in which the cryptic exon generates a translation terminator in exon 4, only has a
functional CRF binding domain but no transmembrane domains. CRF1e and CRF1h are
soluble isoforms and might serve in an analogous function to the CRFBP. In fact in in vitro
systems, the presence of CRF1e decreases and CRF1h increases CRF1alpha activation (162).
CRF receptors isoform CRF1alpha is expressed in both the central nervous system and the
periphery. CRF1e through CRF1h have been discovered in the skin and CRF1beta – 1h in the
myometrium (161, 164, 165). The lack of isoform-specific antibodies has made it difficult to
test in which tissues the receptor isoform proteins are actually expressed. So far, no report
has described how genetic variation might influence this alternative splicing, but
polymorphisms altering the ratio of the different isoforms are likely to have a strong impact
on CRF1 signaling.

An interesting feature of the chromosomal region containing the CRHR1 locus on
chromosome 17q21.31 is the presence of a 900 kb inversion polymorphism (166). This
polymorphism is rare in African and Asian populations, but more frequent in populations of
European descent. It is associated with a higher number of off-springs in female carriers and
thus under positive selection. Due to an increased potential for misalignment during meiosis
in heterozygous carriers of this polymorphism, there is an increased risk for deletion and
duplications of this locus. Indeed, this inversion polymorphism has been associated with the
occurrence of a microdeletion syndrome of this region encompassing the CRHR1 and
microtubule-associated protein tau (MAPT) genes (167–171). The clinical features of this
syndrome include a marked hypotonia, dysmorphic features and moderate mental
retardation. One report describes friendly and amiable behavior in these patients (167). A
duplication of this region has been reported in one female patient (172) in whom hirsutism
and sleep disturbances were noted besides mental retardation and dysmorphic features. No
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reports about the effects of this polymorphism on endocrine regulation or a more in-depth
psychiatric characterization have been published to our knowledge.

Functional polymorphisms—No data on polymorphisms that change CRHR1 gene
function have yet been published. In silico analysis of potentially functional SNPs indicates
that several SNPs within this locus might have an impact on gene function (http://
fastsnp.ibms.sinica.edu.tw). It is noteworthy that for rs12936511, a synonymous coding SNP
in exon 2 (Pro/Pro at amino acid position 20), the presence of the rare allele (minor allele
frequency less than 10%) results in the loss of an exonic splice enhancer element and could
lead to altered splicing regulation. Two missense mutations in exons 3 and 4 (rs41280114
and rs16940655) result in conservative amino acid exchanges (amino acid position 60 - Val/
Ala and amino acid position 96 -His/Arg, respectively) and likely do not have a major
impact on protein function.

Association studies—Several association studies with CRHR1 polymorphisms have
been published and center around anxiety, depression, response to antidepressant drugs and
gene x environment interactions.

Keck et al 2008 (143) have reported an association of CRHR1 polymorphisms with panic
disorder. In this study, the authors report nominally significant associations of CRHR1 SNPs
in two independent German panic disorder samples. The strongest results were, however, the
combined effects of rs878886 in CRHR1 and rs28632197 in AVPR1B, encoding the
vasopressin 1B receptor. A two-SNP model showed significant associations with panic
disorder in both samples separately and the combined sample of 359 cases and 794 controls.
Both SNPs are of potential functional relevance because rs878886 is located in the 3’
untranslated region of the CRHR1 gene and rs28632197 leads to an arginine to histidine
amino acid exchange at position 364 of AVPR1B which is located in the intracellular C-
terminal domain of the receptor, likely involved in G-protein coupling. These genetic data
support the large body of evidence demonstrating interactions of the vasopressin and CRF
systems in anxiety (48). Another family-based study failed to find association of four
polymorphisms in the CRHR1 locus with panic disorder. However, fewer CRHR1 and no
AVPR1B polymorphisms were tested in this study (173).

Four studies in ethnically different samples have investigated associations of CRHR1 SNPs
with response to antidepressant treatment in major depression (146, 158, 174, 175). Licinio
et al (174) initially reported an association of a 3 SNP haplotype within CRHR1 with
response to fluoxetine or desipramine in Mexican-Americans and this has been replicated in
a Chinese population (175). Interestingly, both studies reported that the effects of this
CRHR1 haplotype were most pronounced in patients with anxious depression. Nominally
significant associations with response to citalopram of a SNP within the putative CRHR1
promoter region were also observed in the STAR*D sample (146). Papiol et al (158) found
that another intronic SNP (rs110402) was not associated with response to citalopram
treatment in 159 Spanish patients, but was correlated with an earlier age at onset for major
depression. A significant case-control association of CRHR1 SNPs with major depression
was only reported by Liu et al (176).

Another set of studies have examined gene x environment interactions of CRHR1 SNPs and
stressful events on different psychiatric phenotypes. Wasserman et al (145) have
investigated over 500 family trios of male suicide attempters and found that the rarer T-
allele of the intronic CRHR1 SNP rs4792887 is overtransmitted in these families. This
overtransmission was restricted to individuals with less stressful life events. Because the
vast majority of suicide attempters were also depressed, these data suggest an interaction of
CRHR1 polymorphisms with stressful life events on suicide attempts in depression. Our
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group (177) demonstrated a strong interaction of CRHR1 SNPs with child abuse predicting
adult depressive symptoms in an inner city African-American sample of over 400
individuals. We reported protective effects of two 3-SNP CRHR1 haplotypes, whereby
individuals with high levels of child abuse and individuals homozygous for the protective
haplotypes had significantly less current depressive symptoms than abused individuals
carrying other haplotype combinations. In fact the latter groups’ scores on the Beck
Depression Inventory were similar to the non-abused group, in which the SNPs had no
effects on depressive symptom severity. This result was supported by similar findings in a
sample of mostly Caucasian women described in the same report. All three SNPs were
intronic and one of the two associated haplotypes contained rs479887 for which interaction
with life events and suicide attempts had previously been reported (178). These early trauma
x CRHR1 interactions on depression have been replicated and extended in independent
studies. Polanczyk et al (2009) report a replication of the interaction on past-year and
recurrent major depression using the same 3-SNP haplotype in a female cohort
retrospectively assessed for childhood maltreatment (179). The interaction was, however,
not observed in the prospective Dunedin cohort and the authors argue that this might be due
to differences in the assessment of childhood trauma. Furthermore, two reports corroborate
the putative functional role of these same variants using data from an endocrine challenge
test, the combined dexamethasone/CRF test. Here the protective alleles are associated with a
lower cortisol response in this test, either in interaction with early life events (180) or as a
main genetic effect (181). The CRHR1 x environment interaction on depression and HPA-
axis regulation are further strengthened by the fact that the effects seem to replicate across
different ethnicities. As mentioned above, gene x gene interactions are likely important in
the genetics of depression and anxiety. Ressler et al (2009) have reported a significant gene
x gene x environment interaction, with these CRHR1 polymorphisms interacting with the
serotonin transporter linked polymorphic region (5-HTTLPR) and child abuse to predict
adult depression (182).

Blomeyer et al (2007) (183) described the interaction of another CRHR1 tagging
polymorphism (rs1876831) and negative life events on adolescent alcohol consumption. In
the presence of a large number of negative life events, individuals homozygous for the C
allele of this SNP reported about twice as much life time heavy drinking as well as drinks
per occasion than carriers of the T allele. This difference was not seen in the presence of a
low number of life events. These findings have been extended to young adults, where this
tagging SNP and stressful life events interact to predict progression of heavy alcohol use in
young adulthood (184). The interaction of genetic variation of CRF system genes and
stressful life events on alcohol consumption is further supported by data from rhesus
macaques. A functional promoter polymorphisms in the CRH gene interacts with prior stress
exposure to predict voluntary alcohol consumption in these animals (185).

In humans, further fine-mapping and re-sequencing will be needed to identify the putative
functional variants responsible for these gene x environment interactions and whether the
SNPs interacting with life events to predict alcoholism, suicide attempts or depression in
fact represent distinct functional loci. Overall, these recent human genetic data strongly
support a role for the CRF1 receptor in depression and anxiety, most likely by moderating
the effects of early trauma or life events in general.

Conclusions and future directions
Even though the majority of human genetic studies investigating genes encoding the CRF
system are limited by small sample sizes or insufficiently dense coverage, the sum of these
findings, especially those related to variants within CRHR1, support the concatenation of
preclinical and clinical data implicating the CRF system in the pathophysiology of
depression and anxiety. Together with the serotonergic and neurotrophic system (111), the
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CRF system thus represents an example of how human genetic studies can contribute to
specific pathophysiologic hypotheses in depression and anxiety.

It has to be noted though that the presented genetic association studies, including data in
GWAS are only powered to detect associations with common genetic variants. Rare,
functional variants in these genes may, however, also have a relevant impact for these
disorders. Next generation sequencing methods will allow to catalogue and compare all
sequence variation in these loci and to identify, rare but functionally relevant
polymorphisms, including copy number variations.

In addition to expanding genetic association studies of this system in larger samples with
sufficiently dense genetic markers as well as re-sequencing, the next generation of CRF-
related genetic studies should focus on system genetics, analyzing the impact of the whole
system including ligands, receptors as well as other genes upstream and downstream of this
signaling pathway. There is already evidence for the association of genetic variants in genes
intricately tied to the CRF system with depression and anxiety, such as the glucocorticoid
receptor gene (186) and the gene encoding the glucocorticoid receptor co-chaperone FKBP5
(187) for example.

Because of their critical role in stress regulation, it is unlikely that detrimental variants in
single genes within the CRF system will be common in the population. More likely, the sum
of genetic variations with discrete functional effects in a number of genes within this system
will impact stress axis regulation and susceptibility to stress-related psychiatric disorders.
Similar to the number of studies now investigating the 5-HTTLPR and the BDNF Val66Met
polymorphism (111), gene x gene x environment interactions of CRHR1 variants with this
polymorphism have been reported (182). It will now be important to identify and
characterize the putative functional variants in CRHR1 and their interaction with the other
genes. From the above presented data it appears that loci within this gene moderate the
impact of life stress on the development of psychiatric disorders. Stratifying individuals by
the protective vs. susceptibility variants of these loci in neuroimaging and endocrine studies
for example might yield a better understanding of the long term impact of trauma on
neuronal circuitry and hormone systems, and more specifically which compensatory
mechanisms are involved in the development of stress-related psychiatric disorders. The
characterization of these variants may also be a tool to dissect possible epigenetic impacts of
trauma on the CRF system. As described above, early life adversity has been shown to result
in persistent effects on CRF neurotransmission and HPA axis regulation (in fact in an animal
model of early prenatal stress, methylation of the CRH gene locus correlates with longterm
changes in gene expression (188)). Genetic variations within the CRHR1 locus appear to
moderate this impact, possibly by enhancing or preventing epigenetic changes within this
gene. In fact, early adversity and thus stress have been shown to lead to epigenetic changes,
including difference in the methylation status of HPA-axis genes (189). One possibility
would be that these putative variants could alter the epigenetic impact of stress, e.g. the
methylation of CpG islands by changing a CG sequence. Indeed, a single SNP abolishing
one CpG can be associated with global differences in methylation of the whole surrounding
CpG island (190).

Despite some controversial results, the initial series of human genetics studies support the
importance of this system in mediating stress-related psychopathology. In depth
characterization of these variants could represent an important tool in elucidating the long
term consequences of early life adverse experience.
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Figure 1. The actions of CRF at different levels of the stress response
1- CRF nerve terminal in the median eminence release CRF into the hypothalamo-
hypophyseal portal system and stimulate ACTH release from the anterior pituitary.
2- CRF directly stimulates cortisol and cathecholamine synthesis from the adrenal gland
3- CRF stimulates noradrenergic neurons in the locus coeruleus
4- CRF mediates a series of behaviors through actions on cortical and limbic brain regions.
5- CRF transcription is negatively regulated by glucocorticoids in the hypothalamus, but
positive regulation has been reported in limbic brain regions.
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Figure 2. The genetic organization of the CRHR1 gene encoding CRF1
All representations have been derived from www.hapmap.org. The top panel shows the
position of the CRHR1 gene on chromosome 17 (yellow). The second panel shows the 2
mega bases (MB) surrounding the CRHR1 gene (highlighted in yellow) with the position of
the neighboring genes (red) and the position of the inversion polymorphism (light blue). The
next panel shows the position of the exons and introns of the CRHR1 gene, with the 5’ end
of the gene on the left. Below are the SNPs available for this gene in the HapMap project
with the linkage disequilibrium (LD) structure for the Caucasian CEU population, as most
studies on the genetic of CRF system genes have been performed in Caucasians. LD is
represented with the r-squared measure with black squares connecting SNPs in complete LD
(r-squared = 1) and white squares connecting SNPs with no LD (s-squared = 0). Shades of
grey represent r-squared values between 0 and 1.
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White dots denote the position of SNPs interacting with child abuse to predict adult
depressive symptoms (177, 179) or cortisol response in the combined dexamethasone/CRF
test (180, 181). The light blue dot denotes the SNPs interacting with life events to predict
suicide attempts (145). Red dots denote SNPs predicting response to antidepressants in
patients with anxious depression (174, 175). The orange dot denotes the SNP interacting
with life stress to predict heavy drinking (183, 184) and the yellow dot denotes the SNP
associated with panic disorders together with a SNP in AVPR1B (143).
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