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Abstract
Visual tracking using active contours is usually set in a static framework. The active contour
tracks the object of interest in a given frame of an image sequence. A subsequent prediction step
ensures good initial placement for the next frame. This approach is unnatural; the curve evolution
gets decoupled from the actual dynamics of the objects to be tracked. True dynamical approaches
exist, all being marker particle based and thus prone to the shortcomings of such particle-based
implementations. In particular, topological changes are not handled naturally in this framework.
The now classical level set approach is tailored for evolutions of manifolds of codimension one.
However, dynamic curve evolution is at least a codimension two problem. We propose an
efficient, level set based approach for dynamic curve evolution, which addresses the artificial
separation of segmentation and prediction while retaining all the desirable properties of the level
set formulation. It is based on a new energy minimization functional which, for the first time, puts
dynamics into the geodesic active contour framework.

Index Terms
Dynamic active contours; geodesic active contours; level set methods; visual tracking

I. Introduction
Object tracking can be accomplished in many ways including by mechanical, acoustical,
magnetic, inertial, or optical sensing, and by radio and microwaves, to mention a few. The
ideal tracker should be “tiny, self-contained, complete, accurate, fast, immune to occlusions,
robust, tenacious, wireless, and cheap” [1], [2]. As of now such a tracker does not exist;
tradeoffs are necessary, and a method should be chosen based on the application in mind.
Optical sensing is unobtrusive and can be simplified by choosing a simple (possibly
prespecified) work environment, or by altering the appearance of the objects to be tracked
(e.g., by painting them, or by mounting light sources on them). The desired objects to be
tracked then become much easier to detect. However, in certain instances (e.g., for an
uncooperative object to be followed) this is not possible. Visual tracking is the task of
following the positions of possibly multiple objects based on the inputs of one or many
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cameras (the optical sensors). In the context of visual tracking, we can distinguish between
the two tasks of locating and following an object (e.g., for surveillance applications), and
influencing objects or our environment (e.g., controlling the movement of a plane, based on
visual input). The latter will most likely encompass the first (possibly resulting in nested
control loops). Both tasks can be accomplished by means of feedback mechanisms. In either
case we need a good estimate of object position. Once we have this estimation, we either
have fulfilled our task (e.g., for surveillance applications), or use this information to close a
control loop. This brings to mind a broad range of applications. Indeed, be it for medical or
military use, the need for visual tracking is ubiquitous.

Visual feedback control differs significantly from classical control. Sensors are imaging
devices (usually cameras) which deliver an abundance of information of which only a
fraction may be needed for a specific control task. The sensor output needs to be
preprocessed to extract the relevant information for the tracking problem, e.g., the position
of an object to be followed. Preprocessing usually encompasses noise-suppression (e.g.,
image smoothing) and segmentation to delineate objects from their background and from
each other. Segmentation has been an active field of study in various application areas, most
prominently in the medical sciences. Static segmentation problems are challenging.
Segmentation algorithms usually need to be adapted to the problem at hand. There is no
omnipotent segmentation algorithm. Visual tracking is a dynamic segmentation problem,
where segmentations change over time. Here, additional information (e.g., apparent image
motion) is available, but further degrees of freedom and thus difficulties are introduced, for
example related to processing speed in real-time applications. Visual tracking poses various
interesting questions to control theoreticians and engineers, among others:

• How can one properly deal with the unusual sensor signal, i.e., image information,
projections on the image plane, correspondences for stereo vision, etc.?

• How should uncertainties be modeled? In most cases only very simple motion and
system models are available. Delays may be significant in case of computationally
demanding tracking algorithms.

• How should robustness or tracking quality be quantified? For example, what is the
most suitable metric for the space of curves?

Humans and animals perform visual tracking tasks with ease every day: Following cars in
traffic, watching other people, following the lines of text in a document, etc. These mundane
tasks seem simple, but robust reliable algorithms and their computer implementation have
proven to be quite challenging [3]. We rely on a highly developed brain, assumptions about
the world acquired throughout a lifetime, and our eyes as visual sensors. The design of
algorithms which would make a machine behave and perceive similarly to humans in all
situations is a daunting task which is far from being solved. However, if we are only
interested in a specific application, the problem becomes more tractable. Visual tracking is a
relatively well defined problem when dealing with well defined environments.1

Applications for visual tracking are diverse. Some key areas of research include the
following.

• Vehicle guidance and control: See [4]–[9] for applications to autonomous driving.2

See Sinopoli et al. [10] and Sharp et al. [11] for visual tracking systems for the
navigation and the landing of an unmanned aerial vehicle, respectively.

1This is an overview of application areas for visual tracking. Due to the challenging nature of the general visual tracking problem,
task-specific algorithms are usually necessary. There is no “silver bullet” [1].
2Exemplary for these research efforts are the European Prometheus and the American PATH programs.
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• Surveillance and identification: See [12]–[14] for applications to target tracking
and biometric identification.

• Robotics/Manufacturing: See Corke [15] and Hutchinsion et al. [16] for discussions
on visual servo control which requires the visual tracking of objects/object features
as a preprocessing stage. Here visual tracking is used to increase the bandwidth and
accuracy of robots. We note that visual grasping falls into this category of tasks.

• User interfaces: See [17] for real-time fingertip tracking and gesture recognition,
and [3] for virtual environments.

• Video processing: See [18] for automated addition of virtual objects to a movie.

• Medical applications: See [19] for applications to vision guided surgery (surgical
instrument tracking) and [20] for medical image tracking.

A wide variety of algorithms for visual tracking exists, e.g., feature trackers, blob trackers,
contour/surface trackers. See [21]–[26], and the references therein. All of these have their
own advantages and disadvantages. The seminal paper of Kass et al. [27] spawned a huge
interest in the area of contour/surface tracking algorithms. This is the class of algorithms on
which we will focus in this paper.

II. Problem Statement, Motivation, and Scope
Typical geometric active contours [28]–[32] are static. However, variational formulations
many times appear to be dynamic because the resulting Euler–Lagrange equations are
solved by gradient descent, introducing an artificial time parameter. This time parameter
simply describes the evolution of the gradient descent. It will usually not be related to
physical time. A two step approach is typically used for visual tracking by static active
contours. First, the curve evolves on a static frame until convergence (or for a fixed number
of evolution steps). Second, the location of the curve in the next frame is predicted. In the
simplest case, this prediction is the current location. Better prediction results can be
achieved by using optical flow information, for example. In this two step approach, the
curve is not moving intrinsically, but instead is placed in the solution’s vicinity by an
external observer (the prediction algorithm). The curve is completely unaware of its state. In
contrast, Terzopoulos and Szeliski [33] or Peterfreund [34] view curve evolution from a
dynamical systems perspective; both methods are marker particle based and are fast, but
they may suffer from numerical problems (e.g., in the case of sharp corners [35]–[37]). In
the static case, level set methods are known to handle sharp corners, topological changes,
and to be numerically robust. In their standard form, they are restricted to codimension one
problems, and thus not suitable for dynamic curve evolution. Extensions of level set
methods to higher codimensions exist and a level set formulation for dynamic curve
evolution is desirable [38], [39]. We will present a straightforward level set based dynamic
curve evolution framework in this paper.

The results of this paper relate to dynamic snakes [33] as geodesic or conformal active
contours [30], [29] relate to the original snake formulation [27]. Here we are advocating a
different philosophy to dynamic curve evolution. Instead of discretizing evolution equations
upfront (early lumping), we keep the partial differential equations as long as possible (late
lumping [40]), resulting in a more natural and geometric formulation.

We demonstrate that we can attach information to a contour evolving in a level set
framework. This is related to the approach in [41] and is a crucial step toward more flexible
level set based approaches. Most level set based evolution equations in image processing are
static and/or do not possess state information. This can be a major drawback, e.g., if we want
to follow a contour portion over time.
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Error injection is a standard method from control theory to construct observers. All snakes
using an observer (e.g., Kalman filter-based or particle filter-based) use error injection.
Observers for marker particle based systems are finite dimensional. Our proposed approach
requires an observer for an infinite dimensional, nonlinear system. The existing theory for
such systems is still in its infancy; system theoretic results are available only in special
cases. We restrict ourselves to error injection resembling a nonlinear, infinite dimensional
observer if we are close enough to the basin of attraction of the object of interest. The
incorporation of the optical flow constraint is natural in this framework. Our formulation
restricts the propagation to the direction normal to the object direction; this is exactly
measured by the optical flow, in contrast to previous approaches [33] for dynamic snakes
which do not restrict the direction of movement. Thus, even though error injection is
classical, it is novel in this level set framework.

We now briefly summarize the contents of the remaining sections of this paper. Section III
gives a brief overview over existing methods for contour based visual tracking. Section IV
introduces the concept of static curve evolution and positions it in relation to classical image
processing. Section V reviews the fundamentals of parameterized dynamic curve evolution.
Section VI introduces geometric dynamic curve evolution and discusses the evolution
equations. The level set formulation for normal geometric dynamic curve evolution is given
in Section VII. Sections VIII and X deal with error injection into the evolution equations and
occlusion detection, respectively. Simulation results obtained on real image sequences are
presented in Section XI. Section XII discusses our results and future work. We also include
some appendices with the derivations of the key formulas.

III. Alternative Contour-Based Tracking Methodologies
The literature on tracking is vast. To give a complete overview on tracking methodologies is
beyond the scope of this paper. We limit ourselves to a brief overview of the (what we
think) closest approaches, i.e., contour based tracking methodologies, highlighting their
differences.3

A possible classification for contour based trackers is based on

• the motion model: finite dimensional (parametric) or infinite dimensional;

• the curve model: finite dimensional, or infinite dimensional;

• the solution method: optimization, or integration in time;

• the type of curve influence terms (boundary, area, statistics, etc.).

Most visual tracking approaches employ finite dimensional motion models and finite
dimensional curve evolution models. If the curve change over time is only described by the
motion model (the motion group), i.e., if there is no change of the curve shape and
consequently no curve evolution model, curve based trackers can easily be cast as finite
dimensional observation problems. Approaches include all flavors of the Kalman filter
(“classical” Kalman filter, extended Kalman filter, unscented Kalman filter or sigma point
filter), probability data association filters, and particle filters [42]. Finite-dimensional motion
groups are usually chosen to be translation, translation plus rotation, or the affine
transformation group.

Extending these finite dimensional filtering methods to elastic deformations is generally not
straightforward, since the evolution equations or observations tend to be nonlinear. One

3In what follows we refer to contour based visual tracking based methods, even if we only write visual tracking.
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approach is to parameterize the curve shape. This can for example be done by Fourier
modes, principal component analysis, or in the simplest possible case by a piecewise linear
approximation of the boundary (a particle-based method). In the latter dynamic case [33],
[34], [43], the boundary is represented by a prespecified number of points plus their
associated velocities. Increasing the degrees of freedom has the disadvantage of increasing
the computational complexity. This is particularly true for particle filtering approaches,
which can only handle a moderate number of states without becoming computationally
intractable. Also, parameterizing a curve shape (independent of the type of parameterization
used) introduces a strong shape bias: i.e., the shape is assumed to lie in a certain
(prespecified) class. This may be desired in case of an object with clearly defined shape, but
may be unwanted if objects are allowed to deform completely elastically.

Moving away from finite dimensional to infinite-dimensional curve representations results
in great flexibility, but comes at the cost of less theoretical insight. Nonlinear infinite-
dimensional curve evolution equations require nonlinear infinite-dimensional observers
which are (unlike observers for linear systems) understood only for special system classes.

Infinite-dimensional curve descriptions have been used in combination with the trivial
motion model [27] (i.e., no dynamic motion is assumed, all shape changes are purely static),
in combination with finite dimensional motion models [44]–[47], as well as in combination
with infinite-dimensional motion models [48], [49]. Since finite-dimensional motion models
cannot account for arbitrary elastic deformations they are frequently combined with an
elastic update step: this is called deformotion in [45] and employed for tracking purposes in
conjunction with a simple observer structure in [47] and in a particle-filtering framework in
[44]. Particle-filtering [42] has been very popular in the computer vision community, but is
usually restricted to low-dimensional state spaces to keep the computational cost reasonable.
In [42], an affine motion model is used, there is no elastic deformation of the curve. Rathi et
al. [44] extend the particle-filtering approach to include elastic curve deformation in the
observer update step. However, the state space is not truly infinite-dimensional, in particular
there is no infinite-dimensional motion model.

Approaches using infinite-dimensional motion models for visual tracking usually employ
some form of passive advection, e.g., the curve gets pushed forward through an external
vector field for example established through an optical flow computation [48] or through a
motion segmentation step [49].

In this paper, we are interested in adding dynamics to the curve evolution itself, so that it is
no longer passively advected, but possesses an intrinsic velocity associated with every point
on the curve. The approach taken is to construct an infinite-dimensional dynamically
evolving curve based on the ideas by Terzopoulos [33]. It is a dynamical systems viewpoint
which does not require static optimization steps as in many other approaches.

IV. Static Curve Evolution
Image processing in the line of traditional signal processing is concerned with low-level
vision tasks: e.g., performing image denoising, edge detection, deconvolutions, etc. In this
setting images are treated as multidimensional signals, and there are usually no high-level
assumptions regarding the image content (e.g., looking specifically to find an object of
specific texture, etc.). On the other side of the spectrum is high-level vision (high-level
reasoning) which tries to address the latter problem of what is represented in an image. The
image is to be decomposed into meaningful subparts (the process of segmentation; e.g.,
foreground, background, uniform regions) which are subsequently analyzed (e.g., which
types of objects do the segmented regions correspond to). Creating such a high-level vision
system is a tremendously hard task, far from being solved. Tasks that are straightforward for
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humans turn out to be strikingly difficult in the algorithmic setting of computers, requiring
assumptions about and simplifications of the vision problem to be approached. There is no
segmentation algorithm that works for all cases. A popular simplification is to assume that
objects in an image are separated from their background, for example by intensity edges,
variations in image statistics, color, etc. Template matching is a common approach for
image segmentations of known objects. Unfortunately, while robust, template matching is
also inherently inflexible. If the image represents anything not accounted for in the template
(e.g., an additional protrusion in the shape of the object) the template will not be able to
capture it. Solid objects may be described by their interior, or (if only the shape outline is
sufficient) by their boundary curves. Boundary descriptions are the vantage point for
segmentations by curve evolution. The assumption here is that whatever object we are
looking to segment may be described by a closed curve representing its boundary. Kass et al.
[27] introduced what is known as the classical snake model for curve based segmentation.
The basic idea is to minimize an energy functional depending on image influences (i.e.,
attracting it to edges) and curve shape. Given a parameterized curve in the plane of the form

: S1 × [0, θ) ↦ ℝ2, where (p, θ) = [x(p, θ), y(p, θ)]T ∈ C2,1, p ∈ [0, 1] is the

parameterization, , (0, θ) = (1, θ) (i.e., the curve is closed), and θ is an artificial
time, the energy

(1)

is minimized, where w1(p) and w2(p) are parameterization dependent design parameters
(usually set constant) and g ≥ 0 is some potential function (with the desired location of 
forming a potential well). A common choice for the potential function is

where x =[x, y]T denotes image position, I is the image intensity, r is a positive integer, and
G is a Gaussian. See Fig. 1 for an illustration of curve parameterization. In most
applications, the rigidity term is disregarded (i.e., w2(p) ≡ 0). The energy (1) is independent
of time. It is a static optimization problem, which may be solved by means of calculus of
variations. The corresponding Euler–Lagrange equation for the candidate minimizer of L( ,

, ) is

(2)

The right hand side of (2) can be interpreted as an infinite-dimensional gradient.
Consequently, moving into the negative gradient direction results in the gradient descent
solution scheme for (1)

(3)
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The solution of (1) is a tradeoff between the elasticity term (trying to shrink the curve
length), the rigidity term (favoring straight curve segments), and the image influence term
(trying to attract the curve for example to an intensity edge). The tradeoff implies that sharp
corners are usually not represented well (unless they are coded explicitly into the method).
Problematic with the original snake formulation is that it is not geometric, i.e., the
derivatives do not represent clear geometric quantities (e.g., normals and curvature) and the
solution depends on the somewhat arbitrary parameterization p. On the other hand, the
geodesic active contour [48], [30], another curve-based segmentation method, is completely
geometric. To understand the motivation behind the geodesic active contour it is instructive
to look at the length minimizing flow first, i.e., the curve evolution that minimizes

where s denotes arclength and l the length of the curve . The gradient descent scheme that
minimizes curve length is

(4)

where  denotes the unit-inward normal to  and κ =  ·  is the signed curvature.
Equation (4) is known as the geometric heat equation or the Euclidean curve shortening
flow. Gage and Hamilton [50] proved that a planar embedded convex curve converges to a
round point when evolving according to (4). (A round point is a point that, when the curve is
normalized in order to enclose an area equal to π, is equal to the unit disk.) Grayson [51]
proved that a planar embedded nonconvex curve converges to a convex one, and from there
to a round point from Gage and Hamilton result. Note that in spite of the local character of
the evolution, global properties are obtained, which is a very interesting feature of this
evolution. For other results related to the Euclidean shortening flow, see [50]–[55]. The
Euclidean curve shortening flow only depends on the curve shape. There is no image
influence term. The idea of geodesic active contours is to introduce a conformal factor g( )
(in analogy to the potential function introduced above) into the energy functional, to
minimize the weighted length4

(5)

The gradient flow corresponding to (5) is

(6)

Equation (6) only involves geometric terms, the curvature κ and the normal  and is
completely independent of parameterization. The term gκ  is the geometric analog to the
elasticity term (∂/∂p)(w1 ) of (3) and the gradient term ∇g gets replaced by its projection
onto . There is no correspondence to the rigidity term of the parametric snake, however
this term is frequently discarded due to its fourth-order derivative. See [56] and [57] for
more details. Many extensions to and variations of the active contour exist (e.g, adding an
inflationary term). For more information, see [57] and the references therein.

4Recently direction dependent conformal factors have been introduced, i.e., g( , ).
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Neither the snake (3) nor the geodesic active contour (6) are truly dynamic curve evolutions.
In both cases only the steady state solution on a static image is sought. In visual tracking,
objects move over time. Consequently tracking with closed curves implies estimating closed
curves moving in space and time. This is not readily described by the snake or the geodesic
active contour. Section V describes a dynamic extension to the parametric snake. However,
the objective of this paper is the dynamic extension of the geodesic active contour which
will be discussed in Section VI.

V. Parametrized Dynamic Curve Evolution
In this section, we review parameterized dynamic curve evolution [33]. We also introduce
the mathematical setup required to derive the geometric dynamic curve evolution equations
of Section VI.

We consider the evolution of closed curves of the form : S1 × [0, τ) ↦ ℝ2 in the plane,
where  = (p, t) and (0, t) = (1, t) [51], with t being the time, and p ∈ [0, 1] the curve’s
parametrization (see Fig. 1 for an illustration). The classical formulation for dynamic curve
evolution proposed by Terzopoulos and Szeliski [33] is derived by means of minimization of
the action integral

(7)

where the subscripts denote partial derivatives (e.g.,  is the curve’s velocity). The
Lagrangian, L = T − U, is the difference between the kinetic and the potential energy. The
potential energy of the curve is the energy of the snake (1)

The kinetic energy is

where μ corresponds to mass per unit length. The Lagrangian is then

(8)

Computing the first variation δ  of the action integral (7) and setting it to zero yields the
Euler–Lagrange equations for the candidate minimizer [58] in force balance form

(9)

Equation (9) depends on the parametrization p and is therefore not geometric (see Xu et al.
[56] for a discussion on the relationship between parametric and geometric active contours).
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Our proposed methodology (see Section VI) will be completely independent of
parametrization. It will be geometric.

VI. Geometric Dynamic Curve Evolution
In this section, we will present the geometric dynamic curve evolution equations, which
evolve according to physically motivated time. These evolution equations constitute a
geometric formulation of the parameterized dynamic approach reviewed in Section V in
analogy with the connection between parameterized and geometric curve evolution
described in Section IV. Minimizing (7) using the potential energy of the geodesic active
contour (5)

and the kinetic energy

results in the Lagrangian

(10)

Computing the first variation δL of the action integral (10) yields

(11)

which is geometric and a natural extension of the geodesic active contour approach [29],
[30] (see Appendix I for a derivation). Here  is the unit inward normal,  = ∂ /∂s the unit
tangent vector to the curve, κ =  ·  denotes curvature and s is the arclength parameter
[59].

We can consider the term (gκ − ∇g · )  in (11) as a force exerted by the image potential
g on the curve . Compare this to the evolution equation for geodesic active contours as
given in [57] and [60] (  = (gκ − ∇g · ) ). From a controls perspective, this can be
interpreted as a control law, based on g and its spatial gradient ∇g, which is designed to
move the curve closer to the bottom of the potential well formed by g.

Equation (11) describes a curve evolution that is only influenced by inertia terms and
information on the curve itself. To increase robustness the potential energy U can include
region-based terms (see, for example, [61]–[63]). This would change the evolution (11), but
such changes pose no problem to our proposed level set approach.

The state–space form of (11) is
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(12)

where x̄T = [x1, x2, x3, x4]T, x1 = x(s, t), x2 = y(s, t), x3 = xt(s, t), x4 = yt(s, t), and fi are
scalar functions in and x̄ its derivatives. The evolution describes the movement of a curve in
ℝ4, where the geometrical shape can be recovered by the simple projection

A. Interpretation of the Evolution Terms for the Geometric Dynamic Curve Evolution
To get an understanding of (11) it is fruitful to look at the effect of its individual terms. The
term

accelerates the curve  toward the potential well formed by g. Note that −∇g points toward
the potential well. The term

accelerates the curve  based on its smoothness properties and

(13)

represents a smoothing term for the tangential velocity. We can decompose the velocity
change  at every point on the curve  into its tangential and normal components as

We assume that the tangential and the normal components change approximately linearly
close to the point of interest. A Taylor series expansion (at arclength s0) yields

In order to appreciate the effect of the term (13), it is sufficient to consider the two
fundamental cases depicted in Figs. 2 and 3. The normal component (depicted in Fig. 2) is
irrelevant for the evolution, since  ·  = 0 in this case. The tangential component (depicted
in Fig. 3) will counteract tangential gradients of . The two cases correspond to a linearly
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and a parabolically increasing velocity  in the tangential direction. In both cases, the term
−μ(  · )  will counteract this tendency of tangentially diverging particles on the curve,
ideally smoothing out the tangential velocities over the curve .

The term

governs the transport of particles along the tangential direction. To understand what is
occurring locally, we assume we are looking at a locally linear piece of the curve and
decompose the velocity into

It is instructive to look at a triangular velocity shape  in the normal direction [as shown in
Fig. 4(a)] and in the tangential direction [as shown in Fig. 4(b)]. The triangular velocity
shape in the normal direction induces a tangential movement of particles on the curve. This
can be interpreted as a rubberband effect. Assume that the rubberband gets pulled at one
point. This will elongate the rubberband. Since the point at which it is pulled stays fixed (no
movement except for the displacement due to the pulling) particles next to it flow away from
it. The triangular velocity shape in the tangential direction also induces tangential motion of
the particles. However, this motion will counteract the initial tangential direction and will
thus also lead to a smoothing effect on the change of tangential velocity vector over
arclength.

B. Normal Geometric Dynamic Curve Evolution
To get a quantitative interpretation of the behavior of the curve evolution (11), it is
instructive to derive the corresponding evolution equations for the tangential and normal
velocity components of the curve.

We can write

(14)

where the parametrization p is independent of time and travels with its particle (i.e., every
particle corresponds to a specific value p for all times), and α and β correspond to the
tangential and the normal speed functions, respectively. By substituting (14) into (11) and
using results from [64] (see Appendix II) we obtain the two coupled partial differential
equations

(15)

Here, −(α2)s and −(αβ)s are the transport terms for the tangential and the normal velocity
along the contour, and gκ − ∇g ·  is the well known geodesic active contour image
influence term [30], [29]. In contrast to the static geodesic active contour, this term
influences the curve’s normal velocity rather than directly the curve’s position. It can be
interpreted as a force. Finally, the terms 2καβ and ((1/2)β2 − (3/2)α2)κ incorporate the
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dynamic elasticity effects of the curve. If we envision a rotating circle, we can interpret the
term ((1/2)β2 − (3/2)α2)κ as a rubberband (i.e., if we rotate the circle faster it will try to
expand, but at the same time it will try to contract due to its then increasing normal velocity;
oscillations can occur). If we restrict the movement of the curve to its normal direction (i.e.,
if we set α = 0) we obtain

(16)

This is a much simpler evolution equation. In our case it is identical to the full evolution
(15) if the initial tangential velocity is zero. The image term g only influences the normal
velocity evolution β. It does not create any additional tangential velocity. Thus, if α = 0 ∀s,
then α = 0 ∀s, t; the flow with α = 0 is contained in (11) as an invariant subsystem. The
restriction to curve movement in the normal direction is a design choice to simplify the
approach. See Section VI-C for an illustration of the influence of a tangential velocity
component.

If there is an initial tangential velocity, and/or if the image influence g contributes to the
normal velocity β and to the tangential velocity α, the normal evolution equation will not
necessarily be equivalent to the full evolution (15). We can always parametrize a curve such
that the tangential velocity term vanishes. Specifically, if we consider a reparameterization

where φ: ℝ × [0, T) ↦ ℝ, p = φ(q, t), φq > 0 then

The time evolution for C̄ can then be decomposed into

where

If we choose φ as
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we obtain

which is a curve evolution equation without a tangential component. For all times, t, the
curve  will move along its normal direction. However, the tangential velocity is still
present in the update equation for β̄. After some algebraic manipulations, we arrive at

(17)

which depends on the time derivative of the reparameterization function φ, which in turn
depends on the tangential component α. The left-hand side of (17) represents a transport
term along the curve, the speed of which depends on the time derivative of the
reparameterization function φ.

C. Special Solutions
To illustrate the behavior of (15) and (16), we study a simple circular example. Assume g =
μ = 1. Then ∇g = 0. Furthermore, assume that we evolve a circle with radius R and constant
initial velocities

Then the normal evolution reduces to

(18)

and the full evolution becomes

(19)

where we made use of the facts that (given the initial conditions for the circle)

and added an artificial friction term, with γα and γβ being the friction coefficients for the
tangential and the normal velocity, respectively. Since we are dealing with a circle with
constant initial velocity conditions, evolving on a uniform potential field g, we know that the
solution will be rotationally invariant (with respect to the origin of the circle). Thus we can
evolve R in (19) by using only its normal velocity.
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Fig. 5 shows the evolution of the radius, R, the tangential velocity α (if applicable), the
normal velocity β for a small initial value of α, a larger initial value of α, and with added
friction, respectively.

Fig. 5(a) shows the results for α0 = 0.1, β0 = 0, R0 = 100, γα = 0, γβ = 0. We see that while
in the normal evolution case the circle accelerates rapidly and disappears in finite time, this
is not the case when we do not neglect the tangential velocity: Then the circle oscillates. It
rotates faster if it becomes smaller and slower if it becomes larger. Due to the small initial
tangential velocity the radius evolution is initially similar in both cases. The oscillation
effect is more drastic with increased initial tangential velocity (α0 = 1). This can be seen in
Fig. 5(b). Fig. 5(c) shows the results with added friction (γα = γβ = 0.1). Both circles
disappear in finite time. The evolutions of the radius look similar in both cases. Due to the
large friction coefficients a large amount of energy gets dissipated; oscillations no longer
occur.

Equations (18) and (19) do not exhibit the same behavior. Depending on the initial value for

α, they will have fundamentally different solutions. For , and β0 = 0 in (19), the
solution is (geometrically) stationary, and the circle will keep its shape and rotate with
velocity α for all times. Also if α0 = 0, in this example case, both evolutions will be
identical.

VII. Level Set Formulation
There are different ways to implement the derived curve evolution equations (see, for
example, [38]); many numerical schemes exist. In this paper, we will restrict ourselves to
level set based curve representations. In contrast to the classical level set approach [65],
where the curve evolution speed is usually based on geometric properties of the curve or
induced by some external process, the level set approach developed in this paper attaches a
velocity field to the curve and evolves it dynamically. We distinguish between full and
partial level set implementations. In the full case, curves evolve in a space consistent with
the dimensionality of the problem. Geometric dynamic curve evolution would thus be
performed in ℝ4 in the simplest case (since we are looking at planar curves). The
codimensionality will increase if additional information is to be attached to the curve.
Normal geometric dynamic curve evolution would be at least a problem in ℝ3. If n is the
dimensionality of the problem the curve can for example be implicitly described by the zero
level set of an n-dimensional vector distance function or the intersection of n − 1
hypersurfaces [66]. Full level set approaches of this form are computationally expensive,
since the evolutions are performed in high dimensional spaces. Furthermore, it is not
obvious how to devise a methodology comparable to a narrow band scheme [67] in the case
of a representation based on intersecting hypersurfaces.

A partial level set approach uses a level set formulation for the propagation of an implicit
description of the curve itself (thus allowing for topological changes), but explicitly
propagates the velocity information associated with every point on the contour by means of
possibly multiple transport equations. This method has the advantage of computational
efficiency (a narrow band implementation is possible in this case, and the evolution is
performed in a low dimensional space) but sacrifices object separation: Tracked objects that
collide will be merged.

In what follows, we will restrict ourselves to a partial level set implementation of the normal
geometric dynamic curve evolution (i.e., α = 0 ∀s, t). We will investigate the full level set
implementation, including tangential velocities, in our future work.
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A. Partial Level Set Approach for the Normal Geometric Curve Evolution
The curve  is represented as the zero level set of the function

where x(t) = (x(t), y(t))T is a point in the image plane. We choose Φ to be a signed distance
function, i.e., ||∇Φ|| = 1, a.e., such that Φ > 0 outside the curve  and Φ < 0 inside the curve

. Since the evolution of the curve’s shape is independent of the tangential velocity, we can
write the level set evolution equation for an arbitrary velocity xt as

(20)

where

In our case xt = β̃ , where

(21)

is the spatial normal velocity at the point x. This simplifies (20) to

(22)

Substituting (21) into (16) and using the relation

yields

(23)

The left-hand side of (23) is the material derivative for the normal velocity. If we use
extension velocities, (23) simplifies to
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Since the extensions are normal to the contours, normal propagation of the level set function
will guarantee a constant velocity value along the propagation direction (up to numerical
errors). Specifically ∇β̃⊥∇Φ in this case and thus

For an alternative derivation,5 we change our Lagrangian, and extend it over a range of level
sets. For each time t and 0 ≤ r ≤ 1, let

Using the Lagrangian

we obtain the action integral

which is

(24)

where  is the one-dimensional Hausdorff measure and we applied the coarea formula [68].
This casts the minimization problem into minimization over an interval of level sets in a
fixed coordinate frame (x and y are time independent coordinates in the image plane). Using
(22), we express β̃ as

(25)

Substituting (25) into (24) yields

5This will yield directly the normal evolution equation, without the detour of deriving (15).
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which is the new Φ-dependent action integral to be minimized. Then, δ  = 0 if and only if

The curve evolution is thus governed by the equation system

(26)

Expanding (26) yields again

The equation system (26) constitutes a conservation law for the normal velocity β̃. The
propagation of the level set function Φ is described (as usual) by a Hamilton-Jacobi
equation.

VIII. Error Injection
A system governed by a time-independent Lagrangian (i.e., Lt ≡ 0) will preserve energy
[58], but this is not necessarily desirable. Indeed, envision a curve evolving on a static image
with an initial condition of zero normal velocity everywhere and with an initial position of
nonminimal potential energy. The curve will oscillate in its potential well indefinitely. One
solution to this problem is to dissipate energy [33], which can be accomplished by simply
adding a friction term to (26). However, to increase robustness it is desirable to be able to
dissipate and to add energy to the system in a directed way. A principled way to do this
would be to use an observer to drive the system state of the evolving curve to the object(s) to
be tracked. In our case this is not straightforward, since we are dealing with an infinite
dimensional nonlinear system. In order for the curve to approximate the dynamic behavior
of the tracked objects we use error injection. This guarantees convergence of the curve to the
desired object(s) if the curve is initially in the appropriate basin of attraction.

To perform error injection, we need an estimated position and velocity vector for every point
on the curve . Define the line through the point x(s) on the current curve as
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and the set of points in an interval (a, b) on the line as

Define

Our set of estimated contour point candidates Z is the set of potential edge points in L(f, t, s)

where G is a Gaussian, Bε(x) is the disk around x with radius ε, and I is the current image
intensity. Given some problem specific likelihood function m(z) the selected contour point is
the likelihood maximum

at position

It is sufficient to estimate normal velocity, since the curve evolution equation does not take
tangential velocity components into account. The estimation then can be performed
(assuming we have brightness constancy from image frame to image frame for a moving
image point) by means of the optical flow constraint without the need for regularization.
Note that we compute this estimate only on a few chosen points in Z. The optical flow
constraint is given as

where u = xt and v = yt are the velocities in the x and the y direction, respectively. We
restrict the velocities to the normal direction by setting

This yields
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and thus the desired velocity estimate

We define

We propose using the following observer-like dynamical system:

(27)

to dynamically blend the current curve  into the desired curve  (see Fig. 7). Here, KΦ and
Kβ are the error injection gains for Φ̂ and β̂, respectively. Any terms related to image
features are computed at the current location x of the contour. The error injection gains are
weighted by the likelihood m(xc) of the correspondence points as a measure of prediction
quality. The additional terms κγ and δβ̂ss with tunable weighting factors γ and δ are
introduced to allow for curve and velocity regularization if necessary, where

In case no correspondence point for a point on the zero level set of Φ̂ is found, the evolution
equation system (27) is replaced by

(28)

for this point.
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IX. Computational Complexity of the Algorithm
Level set methods increase the computational complexity of curve evolution approaches. In
the planar case, a one-dimensional curve is represented as the zero level set of a function
defined on the two-dimensional image plane, Ω. Level set methods are of interest
numerically (e.g., there is no fixed number of particles to represent a curve and topological
changes are handled naturally), however, the evolution of the level set function far away
from the zero level set is in general irrelevant and increases the computational complexity
without providing additional benefits. Thus, instead of updating a level set evolution
equation over all of Ω (which incurs an update cost of (n2), if Ω is represented on a square
domain with n2 discrete gridpoints) the computational domain Ωc is chosen to be a band
surrounding the zero level set up to a certain distance. This is the idea of the narrowband
method [69]. If the narrowband consists of N points, the computational complexity
consequently reduces from (n2) to (N). Frequently, the speed function β̂ is only defined
or sensible on or very close to the zero level set and needs to be extended to the whole
computational domain. This may be accomplished for example by the fast marching method
[70], [65], [71] with a computational complexity of (N log N) or with a fast sweeping
method [72] with a computational complexity of (N). The latter is extremely efficient for
many “simple” flow fields (i.e., flow fields that are spatially regular and do not change
direction frequently) that are encountered in practice (e.g., normal extensions as employed in
this paper), but may require a relatively large number of iterations for flow fields that (for an
individual particle stream line) fluctuate in direction.

For a narrowband implementation (with N points) of the tracking algorithm proposed in
Section VIII the computational complexity is thus (N) for every evolution step of

which includes the search for the feature points to determine Φ̄. Reinitialization of Φ̂ (which
has to be performed relatively infrequently if extension velocities for β̂ are used) is of (N)
or (N log N) (for a fast sweeping scheme and fast marching, respectively). The evolution
of

is again of complexity (N) for every evolution step, (N) or (N log N) for the velocity
extension, and (N) to find the feature points β̄;. The computational complexity to find the
values for a feature point Φ̄ and β̄ is constant, scales with the length of the line segment the
search is performed over, but gets multiplied by the number of points in the narrowband N.
The overall computational complexity of the algorithm is thus (N) when using a fast
sweeping method or (N log N) for the fast marching method. Only the redistancing and the
computation of the extension velocities cannot be easily parallelized. The proposed
algorithm is in principle of the same order of computational complexity as the standard
geodesic active contour (though admittedly with a larger computational cost per point,
especially if the feature point search is not parallelized) for which real time implementations
at standard camera frame rates exist.
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X. Occlusion Detection
An occlusion in the context of this paper is any image change that renders the object to be
tracked partially (partial occlusion) or completely (full occlusion) unobservable, e.g., when
an object moves in between the camera and the object to be tracked and thus covers up parts
or all of the latter. Tracking algorithms need to utilize shape information and/or (at least for
short-time partial occlusions) make use of the time history of the object being tracked (i.e.,
its dynamics) to be able to tolerate occlusions. Static segmentation methods that do not use
shape information will in general not be able to handle occlusions.

This section introduces a simple occlusion detection algorithm6 based on ideas in [73] to be
used in conjunction with the dynamic tracking algorithm proposed in Section VIII to handle
short-time partial occlusions.

The inside and the outside correspondence points are defined as (see Fig. 7)

The occlusion detection strategy is split into the following six subcases for every point on
the contour.

1. There is no correspondence point.

2. Only the correspondence point is present.

3. The point is moving outward, the correspondence point is present, but not its
outside correspondence point.

4. The point is moving inward, the correspondence point is present, but not its inside
correspondence point.

5. The point is moving outward, both the correspondence point and its outside
correspondence point are present.

6. The point is moving inward, both the correspondence point and its inside
correspondence point are present.

We define the following Gaussian conditional probabilities:

where tocc is the estimated time to occlusion, va is the velocity of the point ahead, overlined
symbols denote negated values (i.e.,  means not occluded), Pr(tocc|occ), Pr(va|occ) are the
probabilities of tocc and va given an occlusion, and  and  given there is
no occlusion, respectively. The corresponding standard deviations are σt, σv, σt̄, and σv̄; the

6More sophisticated, and less parametric, occlusion detection algorithms are conceivable; however, this is not the main focus of our
work, and the one proposed is sufficient to show that the dynamic geodesic active contour can handle occlusions when combined with
a suitable occlusion detection algorithm.

Niethammer et al. Page 21

IEEE Trans Automat Contr. Author manuscript; available in PMC 2013 May 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



means are μt, μv, μt̄, μv̄. To compute the values of tocc and va we make use of the currently
detected correspondence point xc, and its interior xi and exterior xo correspondence points.

The probability for an occlusion is given by Bayes’ formula as

We initialize Pr(occ) = 0 and  everywhere. The priors at time step n +1 are the
smoothed posteriors of time step n. In case 0), Pr(occ|va, tocc) = Pr(occ) (i.e., the probability
is left unchanged), in all other cases

To estimate the current rigid body motion, the following system:

is solved, where  = (n1, n2)T. We set μv̄ = −(ur, vr)T  and μv = 0.

The evolution equation is changed to

This is an interpolation between (27) and (28) based on the occlusion probability.
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XI. Simulation Results
The proposed tracking algorithm is tested on two real video sequences. Fig. 9 shows three
frames of a fish sequence and Fig. 10 shows three frames of a car sequence. In both cases
occlusions occur. For the fish sequence no occlusion detection is performed, to demonstrate
the behavior of the normal geometric curve evolution algorithm alone, on an image
sequence with a short-time partial occlusion. Define7

The used likelihood function for the fish sequence is

The function depends on the image intensity I, the potential function g, and the distance d to
the contour.

For the car sequence, we define

This is a measure of angle difference between edge orientation at correspondence points and
the normal of the curve. Ideally, both should be aligned. The likelihood for a contour point
candidate z ∈ Z is then computed as

and the occlusion detection of Section X is performed.

In both cases occlusions are handled. For the fish sequence the occlusion is dealt with
implicitly. The occluding fish moves over the tracked fish quickly, so that the inertia effects
keep the fish at a reasonable location. For comparison Fig. 11 shows the tracking of the fish
in six frames of the same fish sequence by means of a geodesic active contour. Here, the
motion model is static (i.e., the converged to location at frame n is the initial condition for
the curve evolution at frame n+1) and the tracking result at every frame represents the steady

7This is simply a monotonic function which increases like a sigmoid up to x = p1, linearly increases for x ∈ (p1, p2], linearly
decreases to zero for x ∈ (p2, p3] and is zero everywhere else. See Fig. 8 for an illustration.
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state of the geodesic active contour evolution (6). While the fish is tracked initially, the
tracking contour subsequently adheres to a second fish and finally looses track completely.

For the car example the occlusion (the lamp post) is treated explicitly by means of the
proposed occlusion detection algorithm. In both cases the likelihood functions do not
incorporate any type of prior movement information. Doing so would increase robustness,
but limit flexibility. Finally, since this active contour model is edge-based, the dynamic
active contour captures the sharp edge of the shadow in the car sequence. Presumably this
could be handled by including more global area-based terms or shape information in the
model.

XII. Conclusion and Future Work
In this paper, we proposed a new approach for visual tracking based on dynamic geodesic
active contours. This methodology incorporates state information (here, normal velocity, but
any other kind of state information can be treated in a similar way) with every particle on a
contour described by means of a level set function. It has the potential to deal with partial
occlusions.

Edge-based approaches trade off robustness for versatility. If strong, clear edge information
exists they are a very useful class of algorithms; however, in many cases more robust
techniques are required. Methods that incorporate area-based influence terms have proven to
be very efficient for certain applications. To add more robustness to our methodology, we
are currently working on a dynamic area based approach based on elasticity theory.

Our proposed algorithm searches for image features (i.e., likelihood maxima) along normal
lines of an evolving contour. Thus, the algorithm lies between purely edge-based and purely
area-based approaches. This ties in very well with the proposed occlusion detection
algorithm, but it places much importance in finding the “correct” correspondence points.
The main disadvantage of the occlusion detection algorithm is the large number of tunable
parameters it requires. Devising a less parametric occlusion algorithm would be beneficial.

We also do not claim that our algorithm is optimal for the specific image sequences
presented. Indeed, whenever possible, additional information should be introduced. If we
know we want to track a car, we should make use of the shape information we have. Not all
deformations will make sense in this case. Our main contribution lies in putting dynamic
curve evolution into a geometric framework and in demonstrating that we can transport any
kind of information along with a curve (e.g., marker particles, enabling us to follow the
movement of specific curve parts over time). This gives us increased flexibility and enables
fundamentally different curve behaviors than in the static (non-informed) case often used in
the computer vision community. Furthermore, applications for dynamic geodesic active
contours need not be restricted to tracking, e.g., applications in computer graphics are
conceivable (where the curve movement would then be physically motivated), not
necessarily involving an underlying real image (e.g., we could design artificial potential
fields enforcing a desired type of movement).

As geodesic active contours extend to geodesic active surfaces, dynamic geodesic active
contours can be extended to dynamic geodesic surfaces. Our main focus for future research
will be an extension toward area based dynamic evolutions.
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Appendix I. Geometric Dynamic Curve Evolution
Equation (11) is derived as follows: assume the curve  gets perturbed by ε  yielding the
curve

The action integral (7) becomes

(29)

We compute the Gâteaux variation by taking the derivative with respect to ε for ε = 0; see
the first equation shown at the bottom of the page. Assuming μ to be constant integration by
parts yields (29), as shown at the bottom of the page. The boundary terms occurring from
the integrations by parts drop out for closed curves. Then, (since (29) has to be fulfilled for
any )

(30)

where

To simplify (30), we use the following correspondences:
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Specifically, it follows that

Plugging everything in (30) results in

(31)

which is (11).

Appendix II. Coupled Normal and Tangential Evolution
The general version of the geometric dynamic curve evolution equation is given in (31)
where  is the unit inward normal and

We can always write

We choose the parameterization p such that it is independent of time. The parameterization
thus travels with its particle.

Let us derive the general (without prespecified special reparameterization φ) evolution
equations for α and β (see [64] for details on some of the equations used). Using an arbitrary
curve parameterization p (with (p, 0) = (p, 1),  = (p, t), and p ∈ [0, 1]) define

Arclength is then given by

Then
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We can also compute

From the previous expressions follows:

This yields

Some simple algebra results in

from (31), which can be written as

With

it follows that

(32)

This must be true for all . Equation (32) reduces to the following two coupled partial
differential equations:
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(33)
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Fig. 1.
Parameterized curve evolution. The parametrization travels with a particle. In general, the
parametrization will not stay uniformly spaced. The black disk and the asterisk indicate
particles attached to the curve; their assigned value for p will stay the same throughout the
evolution.
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Fig. 2.
Normal direction,  constant and linearly increasing.
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Fig. 3.
Tangential direction,  constant and linearly increasing.
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Fig. 4.
Behavior of the term −μ(  · ) . (a) Normal. (b) Tangential.
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Fig. 5.
Left column: Evolution of the radius for the normal velocity evolution (dashed line) and the
full velocity evolution (solid line). Middle column: Evolution of normal velocity (dashed
line) and tangential velocity (solid line) for the full velocity approach. Right column:
Evolution of normal velocity for the normal velocity evolution. (a) α0 = 0.1, β0 = 0, R0 =
100, γα = 0, γβ = 0. (b) α0 = 1, β0 = 0, R0 = 100, γα = 0, γβ = 0. (c) α0 = 1, β0 = 0, R0 =
100, γα = 0.1, γβ = 0.1.
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Fig. 6.
Feature search is performed in the normal direction to the curve. The search region is only
allowed to intersect the curve at its origin of search (i.e., s0, s1, s2, …).
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Fig. 7.
Correspondence point xc, inside correspondence point xi, and outside correspondence point
xo of the curve .  represents the contour of the object to be tracked.
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Fig. 8.
Illustration of the shape of the weighting function w(x) for the fish sequence.
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Fig. 9.
Three frames of a fish sequence. This is a color image. (a) Frame 0. (b) Frame 80. (c) Frame
90. (Color version available online at http://ieeexplore.ieee.org.)
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Fig. 10.
Three frames of a car sequence. This is a color image. (a) Frame 0. (b) Frame 14. (c) Frame
55. (Color version available online at http://ieeexplore.ieee.org.)
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Fig. 11.
Six frames of a fish sequence. Tracking using the geodesic active contour. (a) Frame 0. (b)
Frame 30. (c) Frame 45. (d) Frame 60. (e) Frame 75. (f) Frame 90.
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