
Generic theory for channel sinuosity
Eli D. Lazarus1 and José Antonio Constantine

Environmental Dynamics Laboratory, Earth Surface Processes Research Group, School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT,
United Kingdom

Edited by Susan W. Kieffer, University of Illinois at Urbana–Champaign, Urbana, IL, and approved March 29, 2013 (received for review August 14, 2012)

Sinuous patterns traced by fluid flows are a ubiquitous feature of
physical landscapes on Earth, Mars, the volcanic floodplains of the
Moon and Venus, and other planetary bodies. Typically discussed
as a consequence of migration processes in meandering rivers,
sinuosity is also expressed in channel types that show little or no
indication of meandering. Sinuosity is sometimes described as
“inherited” from a preexisting morphology, which still does not
explain where the inherited sinuosity came from. For a phenome-
non so universal as sinuosity, existing models of channelized flows
do not explain the occurrence of sinuosity in the full variety of
settings in which it manifests, or how sinuosity may originate.
Here we present a generic theory for sinuous flow patterns in
landscapes. Using observations from nature and a numerical
model of flow routing, we propose that flow resistance (repre-
senting landscape roughness attributable to topography or vege-
tation density) relative to surface slope exerts a fundamental
control on channel sinuosity that is effectively independent of in-
ternal flow dynamics. Resistance-dominated surfaces produce chan-
nels with higher sinuosity than those of slope-dominated surfaces
because increased resistance impedes downslope flow. Not limited
to rivers, the hypothesis we explore pertains to sinuosity as a geo-
morphic pattern. The explanation we propose is inclusive enough to
account for a wide variety of sinuous channel types in nature, and
can serve as an analytical tool for determining the sinuosity a land-
scape might support.

geopatterns | landscape controls | threadlike flows

Sinuous, threadlike flows are ubiquitous features of landscapes
on Earth and other planetary bodies (Fig. 1). Sinuosity is

typically discussed as a consequence of channel migration pro-
cesses in meandering rivers (1–9), where flow through a channel
with modifiable boundaries and a curved planform sets up in-
ternal flow instabilities that drive spatial patterns of bank erosion
and accretion, which change planform curvature. The physical
mechanisms by which a nearly straight channel evolves into a
freely meandering planform have been studied intensively and
with great success. Strath terraces and meander bend cutoffs are
evidence that even bedrock river channels can migrate, adjusting
their sinuosity over time (10, 11). Despite their prominence,
rivers with migrating meanders are a subset of the sinuous
channel types that exist: lunar and Venusian rilles (12, 13) are
sinuous, static patterns in lava channels; drainage channels in
tidal mudflats that show little or no morphologic evidence of
migration behavior can be characterized as quasi-static sinuous
patterns (14–16). Sinuosity in some channels is described has
having been “inherited” from a preexisting morphology (10,
14), but the nature of the antecedence tends to be unspecific
or unexplained.
If not all sinuous, threadlike flows evolve from effectively

straight initial planforms, then planform sinuosity as a geo-
morphic trait is not inherently contingent upon a capacity to
migrate. We present a generic theory for sinuosity in threadlike
flows (which here we refer to as channel sinuosity for simplicity).
We use an exploratory flow-routing model to show that changing
the variance of flow resistance in the landscape (e.g., represen-
tative of local topographic roughness or vegetation density) rel-
ative to mean landscape slope produces a range of sinuous
patterns with natural analogs. A surprising relationship between

sinuosity and floodplain roughness relative to valley slope for 20
rivers from around the globe yields an independent test of the
theory. We suggest that this ratio of flow-resistance variance (R)
to slope (S) exerts a primary landscape control on path sinuosity
(Ω) both in static and dynamic patterns of flow.

Numerical Model
Our model is a cellular topography in which flow finds a path of
least resistance across a planar domain of slope S superimposed
with random values between 0 and R (Fig. S1). Because slope
imposes a preferred flow direction, the model employs the rules
of a directed Brownian walk. Similar minimum-resistance simu-
lations have been applied previously to mathematical structures
and self-organization in natural fluvial systems and networks (17,
18), and have long-standing precedence in percolation theory
(19) and theoretical material physics (20).
The domain landscape is the plane

z= − S · x+ ðS ·LÞ; [1]

where z is domain elevation and L is the length of the domain in
the x direction (the plane extends in the y direction). Subtracting
random topographic perturbations with values 0–R adjusts the
elevation by

zi;j = − S · xi;j + ðS ·LÞ− ri;j; [2]

where ri,j is the perturbation at a given cell (i, j). The results we
present here are for a square domain of L = 100 with nonperi-
odic boundaries. (In terms of fluvial valleys, we are assuming that
the domain length and downvalley length are the same.) We vary
R and S at increments equal to 0.001 over the interval 0.001–0.1
to produce domains with R/S ratios between 0.01 and 100.
The flow path follows the local gradient between adjacent

cells, occupying whichever of its eight neighbors has the lowest
value. Length of the flow path (P) relative to the length of the
domain (L) yields the path sinuosity (Ω = P/L). When the ran-
dom perturbations are much smaller than the landscape gradient
(R << S), the flow path always occupies one of three right-hand
neighbor cells because their elevations are locally always the
lowest. Conversely, when the magnitude of R overwhelms down-
slope differences (R >> S), the flow becomes effectively un-
directed. Rather than always traveling downslope, the flow path
is as or more likely to occupy a lateral or rear-flanking neighbor
and trace a more excursive (sinuous) route.
Three numerical artifacts arise from this model design. First,

when R >> S, the lowest-neighbor rule can result in an arbitrary
configuration of neighbors that traps the flow path in an infinite
loop. To override this arbitrary trapping, flow-occupied cells are
temporarily assigned the unperturbed cell elevation (Eq. 1),
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constituting a local high that discourages but does not prevent
the path from recrossing itself. Recrossed cells are not double
counted in the path length. The second artifact derives from the
discretized cellular domain. A move to a cardinal neighbor adds
unit length equal to 1 to the flow path; a move to an ordinal
(diagonal) neighbor adds unit length equal to √2. Because flow
moves to the lowest-elevation neighbor even when differences
between downslope neighbors are infinitesimal, flow paths with
Ω = 1 only occur in the absence of topographic perturbations
(R = 0). Therefore, when 0 < R << S, the discretized domain
always produces sinuosities 1 < Ω < 1.4 (occupation only of
downslope, ordinal neighbors produces Ω = 1.4). At the other
extreme, when R >> S, path sinuosity loses physical significance
and becomes an undirected Brownian walk. Mathematically,
sinuosity can be infinitely large, but highly sinuous natural
channels, such as in rivers with freely migrating meanders, ex-
press Ω ∼ 3 (2, 21). We address this Brownian artifact of exag-
gerated sinuosity as follows. Once a flow path is complete, we
assign the flow-occupied cells elevations according to

zi;j = − S · xi;j + ðS ·LÞ−R; [3]

which ensures that the flow path contains the lowest local
elevations in the domain (Fig. S1). We rerun the flow-path sim-
ulation for 10 iterations, updating the domain each time, so that
the path adjusts to a minimum length for the specified conditions
(Fig. S2). Flow paths through slope-dominated domains (R/S << 1)
lock into their minimum sinuosity on the first iteration; highly
excursive planforms through resistance-dominated domains
(R/S >> 1) find less sinuous flow paths after a few iterations
(Fig. S2). This rule is functionally analogous to meander cutoff in
channels with migrating bends, but is not explicitly mechanistic.

Results
Ensemble results from over 40,000 flow-routing simulations (Fig.
2) show how path sinuosity (Ω) responds to changes in resistance
variance relative to slope (R/S). When slope exceeds the

resistance term (R/S < 1), paths find the lowest sinuosities
allowed by the model’s discretized domain (mean sinuosity for all
R/S < 1 is approximately Ω ∼ 1.28 ± 0.04). In the vicinity of R/S ∼
1, Ω begins to increase; with increasing values of R/S > 1, the
variance of Ω scales with mean Ω (Fig. S3A). Fourier analysis of
flow paths shows no preferred wavelength in the modeled
planforms (Fig. S3B). These characteristics reflect the model’s

Fig. 1. Sinuous channels in (A) intertidal mudflat channels near Seoul, South Korea; (B) river channels in bedrock southwest of Moab, Utah; (C) a migrating
reach of the Ellis River in Maine; (D) digital elevation model of submarine channels offshore of Rio Doce, Brazil; (E) relict fluvial channel patterns in the Aeolis
Planum on Mars; and (F) a lunar volcanic rille in the Vallis Schröteri. (See Table S1 for locations and image credits in this and other figures.)

Fig. 2. Semilog plot showing ensemble results of modeled sinuosity (Ω)
versus relative resistance (R/S). Shaded regions illustrate the range (maxima
to minima) of sinuosities produced by the model with (dark region) and
without (light region) the iteration rule to shorten supersinuous paths. Black
dots and gray dots show the mean sinuosities for both cases, respectively.
Inset shows in greater detail mean sinuosities generated with the iteration
rule. Additional statistical properties of the model are provided in Fig. S3.
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underlying Brownian mechanics, with the strength of resistance
(R) relative to slope (S) driving the transition between directed
and undirected random walks.
It is interesting to note that the upper range of planform sin-

uosities we generate with and without our iterated, minimum-
path procedure are consistent with results of other numerical
planform models whose channel patterns, with and without me-
ander cutoffs, derive from parameterization of in-channel flow
(3, 4, 22). However, unlike in other models, our flow paths are
static once formed. We do not route flow around contortions in
curvature (8, 9) or explicitly treat means by which channel ge-
ometries evolve (17, 23). Our simulations may be interpreted as
initial flow paths, perhaps most readily applicable to fixed flow
planforms like volcanic rilles. Initial planforms can also arise
anywhere initially unchannelized flow interacts with a mobile bed,
incising a sinuous planform as a function of valley slope and flow
resistance. Where planform patterns may be described as quasi-
static, an original sinuosity may persist as a kind of legacy effect
in planform evolution (10, 14, 24). In the special context of freely
migrating channels, these initial planforms may be transitory
patterns that hydraulic properties of in-channel flow subse-
quently rework.
Channels in intertidal mudflats offer an illustration. Sinuous

drainage channels can incise rapidly into a mudflat and persist
for decades with little discernible change (14–16). Allowing the
simplifying assumption that intertidal mudflats share broadly
similar material properties (e.g., fine-grained, cohesive sedi-
ment), then to the first approximation we can compare channel
paths in different mudflats on the basis of slope. For an arbitrary,
low fixed resistance R, our model generates channel planforms
on steep (R/S < 1; Fig. 3 A and B) and gentle slopes (R/S > 1;
Fig. 3 C and D) that resemble channels in comparable mudflats,
respectively. Likewise, simulations in which channel sinuosity
adjusts across a break in slope are substantiated by examples in
the field (25) (Fig. 3 E and F). For example, using a mean slope
of S ∼ 0.005 from A to A′ (25) and a sinuosity of Ω ∼ 1.9 mea-
sured from A to A′ in Fig. 3E, we can apply the relationship of Ω
to R/S in Fig. 2 to find an approximate value of R = 0.05. En-
tering these values for R and S into the model delivers a channel
with sinuosity Ω = 2.0 between A and A′ (Fig. 3F). Relative to
the steeper mean slope of S ∼ 0.04 between B and B′ (25), the
same resistance R = 0.05 predicts a sinuosity of Ω ∼ 1.3. From
Fig. 3E, sinuosity between B and B′ is approximately Ω ∼ 1.1; the
corresponding modeled sinuosity in Fig. 3F is Ω = 1:2.
Using the relationship in Fig. 2 to back out a value for R based

on measurements of S and Ω produces an intriguing comparison
but does not constitute an independent test of the data. For that,
we offer the following derivation. The relationship R/S is, in
essence, a surrogate form of the Froude number, which likewise
can be expressed in terms of slope and a parameter for flow
resistance. The standard formulation of the Froude number (F)
for open-channel flow is

F =
v
ffiffiffiffiffi
gh

p ; [4]

where v is cross-sectional mean flow velocity, g is acceleration
due to gravity (g = 9.81 m s−1), and h is uniform flow depth. We
can express v according to the Gauckler–Manning formula,

v=
1
n
h2=3S1=2; [5]

where S is slope and n is the empirically derived Gauckler–Manning
coefficient, or Manning’s n (s m−1/3). Substituting Eq. 5 into Eq. 4
yields an expression of the Froude number based on character-
istics of the floodplain, rather than the channel:

F =
S1=2h1=6

g1=2n
: [6]

We estimate the floodplain Froude numbers for 20 meandering
rivers around the world (Table S2), assuming steady, uniform
flow conditions and the same depth of inundation across each
floodplain (h = 1 m; h1/6 makes F relatively insensitive to this
simplification). Manning’s n has been calibrated for a variety of
floodplain settings. Because F is sensitive to chosen values of n,
we limit n to three possible values based on three generic, ob-
servable conditions of predominant floodplain vegetation (26):
grasses or row crops (n = 0.05); brush and some trees (n = 0.10);
or trees with dense understory (n = 0.15). Values for valley slope
(S) were obtained from the literature. The resulting data (Fig.
4A) suggest that valley slope relative to resistance—the prevail-
ing floodplain conditions S and n—explains ∼88% of the vari-
ability in planform sinuosity. These data fall neatly among the
ensemble minimum sinuosities generated by the model (Fig. 4B)
when the model data are inverted (expressed in terms of S/R) to
match the Froude number convention. Artificially high sinuosity

Fig. 3. Comparisons of channels in intertidal mudflats and simulated plan-
forms. (A) Low-sinuosity channels in an intertidal river bank and (B) a simu-
lated low-sinuosity channel (R = 0.005; S = 0.01; R/S = 0.5). (C) High-sinuosity
channels in an intertidal mudflat and (D) a simulated high-sinuosity channel
(R = 0.005; S = 0.001; R/S = 5). (E) Intertidal channels that cross a break in slope
(dotted line) from gentle (A–A′) to steep (B–B′), and (F) a simulated channel
over a slope break based on (E) (25), where S ∼ 0.005 between A and A′ and
S ∼ 0.04 between B and B′, using a resistance of R ∼ 0.05 derived from Fig. 2.
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in the model when R/S >> 1 (or, equivalently, when S/R << 1)
skews the mean sinuosity toward higher values, even with the
path-iteration rule; we therefore expect better observational
agreement with modeled sinuosity minima than with the means,
especially given the rarity with which natural freely migrating
meandering rivers exhibit Ω > 3.
Our abstraction of in-channel dynamics does not refute or

discount the importance of secondary flow mechanics. Rather,
the remnant of the initial planform may be statistical, retained
more in the morphometry of the evolved planform than pre-
served in its morphology. Where meander-migration theory
predicts a preferred meander wavelength for a channel, the
random-walk mechanism in our model produces a broad spec-
trum of wavelengths resembling brown noise (Fig. S3B). This is
consistent with empirical observations that not all rivers express
a dominant wavelength (27, 28). Our model delivers the initial
sinuosity of a new channel; that sinuosity may change with
modifications to the channel planform driven by dynamics of in-
channel flow. If resistance and slope set the initial planform

condition that subsequent meander-migration dynamics amend,
then the broad-spectrum properties of the initial planform mean
that there will always be perturbations present with the wave-
length (or wavelengths) that meander migration will tend to
amplify. Even without incorporating the dynamics of in-channel
flow that enable natural, single-thread fluvial systems to develop
characteristic meander wavelengths, our model offers an expla-
nation for the important implications of Fig. 4: that F is an im-
portant control on the long-term sinuosity that freely meandering
rivers attain. In this setting, the flow paths in our model are more
directly analogous to avulsions or overbank flows, extrachannel
departures for which the effects of variable flow resistance might
supersede in-channel dependencies, at least temporarily. The
correlation between Ω and F in Fig. 4 reflects in part the role of
overbank flows in modifying planform sinuosity. As in-channel
dynamics lengthen the channel, incising overbank flows shorten it
by finding new routes over the floodplain. Our model mechanics
thus come into play during two phases of planform evolution in
a freely meandering river channel: first during initial pattern for-
mation, and again when overbank flow forces new interaction with
the floodplain. Between these two phases, migration dynamics will
dominate channel planform behavior.
The floodplain Froude number may extend to adjustments in

channel sinuosity related to land-use changes that affect rough-
ness characteristics of the floodplain. Studies of land-use history
in the Pacific Northwest in the United States have linked de-
forestation in riparian corridors to morphological changes in
fluvial channels (29). Similarly, historical maps and descriptions
of the Sacramento River in California (30) indicate that before at
least 1874, the river followed the sinuous channel (Ω = 2.2)
shown in Fig. 5, and was flanked by natural riparian vegetation.
That vegetation was subsequently cleared and replanted in
orchards; by 1898, multiple incidents of meander cutoff had
straightened the channel to the path shown in white (Ω = 1.4).
Given the valley slope along this reach (S = 3.3 × 10−5) (31), the
cutoff-driven change in sinuosity may be explained as a function
of a change in resistance R, reflecting the transition from local
riparian vegetation to orchard plantations (30, 31). In terms of
our application of Manning’s n, this would represent a decrease
from n = 0.10–0.15 to n = 0.05 (Fig. S4).

Discussion
The resistance parameter R in our model is an abstraction of
physical flow impediments but is not strictly theoretical: for a
given surface, R might be determined from a high-resolution dig-
ital terrain map, such as a light detection and ranging (LIDAR)
survey or laser scan of a laboratory flume. Investigations of lunar
and Venusian rilles have suggested that rille sinuosity likely
depends on preexisting conditions of landscape topography and
slope (12, 13). Consider, as a conceptual example, the lunar

Fig. 4. (A) Sinuosity versus floodplain Froude number for 20 rivers around the
world. Details regarding these data and their sources are available in Table S2.
(B) Semilog plot of ensemblemeans (light gray dots) andminima (dark gray dots)
of modeled sinuosity versus S/R, in keeping with the Froude number convention
used in A and Eq. 6. Data from A are superimposed (large black dots).

Fig. 5. Land-use histories that change riparian vegetation density, thereby
changing floodplain resistance, may affect channel sinuosity. On this reach
of the Sacramento River (California), sinuosity decreased from Ω = 2.2 before
1874 (blue) to Ω = 1.4 by 1898 (white) after natural vegetation was replaced
with planted orchards. For historical and present river conditions relative to
data in Fig. 4B and Fig. S4.
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landscape in Fig. 1F. A high-resolution topographic map would
capture the subtle undulations in the surface underlying the rille.
Subtracting mean slope of that surface from the elevation data
leaves residuals that constitute the topographic variability; the
maximum absolute value of those residuals is R, the upper limit of
the range of topographic resistance 0–R. If mudflats are of in-
terest, then a sensitive resolution of microtopography would likely
allow a comparable analysis. LIDAR surveys of vegetated envi-
ronments typically separate laser “first return” from “last return”
as a way of distinguishing between the canopy and the ground (or
“bare earth”). Calculating R solely from last-return measurements
of topographic variability would neglect vegetation’s role in flow
resistance, but measuring vegetation-density distributions in the
first-return data as factors of floodplain resistance, beyond
informing a Manning’s n classification, could produce a more
comprehensive approximation of R. In a long-duration laboratory
flume experiment in which floodplain vegetation (such as alfalfa
sprouts) and the channel planform coevolve, R would change over
time as a function of vegetation growth, which repeated topo-
graphic laser scans of the flume apparatus could record.
Like Manning’s n, the friction factor in the Darcy–Weisbach

equation for head loss, or a drag force on woody riparian vege-
tation (11, 32), the resistance term R in our model is a flow-
resistance term. We reiterate that R, as we have applied it, does
not represent substrate erodibility. Substrate erodibility and bank
stability, which can be functions of material properties and vege-
tation root systems, are certainly essential to the mechanisms that
drive channelization and channel-migration behaviors. Positive
correlation between erodibility and channel sinuosity suggests rock
weakness is a primary control on sinuosity in bedrock rivers (7,
10). Recent laboratory attempts to isolate the conditions sufficient
for sustaining a meandering, sinuous channel have highlighted the
importance of increased bank strength relative to bed material,
where bank strength is a function of sediment cohesiveness, sta-
bilization by vegetation, or a combined effect (5, 6, 21). A channel-
planform model based on flow resistance does not replace these
elements, but can nevertheless inform investigations of planform
origins even in systems where erodibility is important. Collectively,
the sinuosities in our model derived from random walks con-
strained only by resistance and slope comprise a set of simplest-
case explanations, a template of null hypotheses that help isolate
and clarify more complicated, specific, or dynamic factors driving
planform evolution.
Although this theoretical template does not explicitly predict

the multichannel planforms (e.g., anastomosing, braided) that exist
in nature, individual channel threads within such planforms—
where individual threads can be differentiated—should share
a similar dependence on local resistance and slope. Convention-
ally, sinuosity is a metric exclusive to single-thread channels. For
example, it is unclear what would constitute a single-thread reach
of a braided channel during normal flow conditions. A simple
anastomosing pattern is perhaps a more manageable thought ex-
periment: where flow divides among several intertwined routes,
sinuosity for each determined “thread” could be calculated sepa-
rately; together, those sinuosities would represent the sinuosity
range the floodplain will support, as we use our model to suggest.

One practical application of relative resistance (R/S) could be
to inform how floodplains of artificially straightened rivers are
evaluated for restoring riparian ecosystems (33). Stream flow at
the local scale of a channel bend and sinuosity at the larger scale
of the river planform are both important to a river’s physical and
ecological dynamics: even as internal flows amend the channel at
a given bend, the overall planform sets the conditions for in-
stream flow (9) and, by extension, in-stream habitats. Channel
sinuosity will still reflect the characteristic resistance of the flood-
plain even in fluvial systems dominated by migration dynamics
(e.g., Fig. 4). If a channel needs a large R/S to be highly sinuous,
then even a channel engineered to be sinuous will tend to
straighten if the R/S ratio of its floodplain is suppressed or in-
herently low and if overbank flows are allowed to mobilize the
floodplain surface. Alternatively, increasing appropriate flood-
plain resistance might foster a channel more sinuous than extant
hydraulic geometry may predict. Narrow rivers in densely for-
ested regions, for example, appear to owe their channel patterns
to log jams and other woody debris obstructions (29); log jams
are thus an obstructive type of floodplain resistance that de-
forestation removes but reforesting can restore.

Conclusions
We demonstrate how two intrinsic properties of a floodplain or
landscape surface—slope (S) and resistance (R)—can exert
a first-order control on flow-path sinuosity. Paradoxical obser-
vations of static and dynamic flow patterns motivate our analysis:
explanations for sinuosity that hinge on migration dynamics do
not translate easily to static sinuous planforms; likewise, as others
have noted (21), vegetation-driven explanations for planform
sinuosity cannot extend to the same patterns in unvegetated
environments. Although erodibility exerts a principal control on
channelization and flow dynamics within a channel, flow resistance
is arguably a more general condition applicable to a greater variety
of single-thread flows. The resistance parameter R informs the
range of possible sinuosities a given landscape might support.
Independent of internal flow forces, R is potentially useful in re-
mote-sensing applications and anywhere in-channel data are
lacking or unobtainable. For example, determination of R might
inform requisite conditions for sustainable sinuosity in engineered
streams. The relationship we propose is an explication of sinuosity
generic enough to account for the ubiquity of sinuous channel
patterns in nature and not conflict with the various mechanistic
processes from which specific channel types can derive.

Methods
The numerical model was written in Matlab (version R2013a). The model
algorithm is described in full above. Schematic diagrams and figures of
model operations, as well as the data supporting our floodplain Froude
number calculations, are available in Supporting Information.
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