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An intriguing observation of photosynthetic light-harvesting sys-
tems is the N-fold symmetry of light-harvesting complex 2 (LH2) of
purple bacteria. We calculate the optimal rotational configuration of
N-fold rings on a hexagonal lattice and establish two related mech-
anisms for the promotion of maximum excitation energy transfer
(EET). (i) For certain fold numbers, there exist optimal basis cells
with rotational symmetry, extendable to the entire lattice for the
global optimization of the EET network. (ii) The type of basis cell can
reduce or remove the frustration of EET rates across the photosyn-
thetic network. We find that the existence of a basis cell and its type
are directly related to the number of matching points S between the
fold symmetry and the hexagonal lattice. The two complementary
mechanisms provide selection criteria for the fold number and iden-
tify groups of consecutive numbers. Remarkably, one such group
consists of the naturally occurring 8-, 9-, and 10-fold rings. By con-
sidering the inter-ring distance and EET rate, we demonstrate that
this group can achieve minimal rotational sensitivity in addition to
an optimal packing density, achieving robust and efficient EET. This
corroborates our findings i and ii and, through their direct relation
to S, suggests the design principle of matching the internal symme-
try with the lattice order.

Photosynthesis lies at the heart of all life on the planet. Exci-
tation energy created in a peripheral light-harvesting antenna

complex, upon absorption of a photon, is efficiently transferred via
an exciton mechanism, sometimes over hundreds of angstroms, to
a reaction center where charge separation takes place, creating
a transmembrane electrochemical potential difference that ulti-
mately drives the production of ATP. Light-harvesting antenna
complexes, whose primary function is to increase the effective cross-
section for photon absorption, while maintaining an efficient energy
transfer network, consist of well-ordered membrane-associated
arrays of light-absorbing pigments, namely chlorophyll or bacteri-
chlorophyll (BChl), embedded in a protein environment (1–4).
Perhaps the most intriguing aspect of light-harvesting systems

is the N-fold symmetry displayed by light-harvesting complex 2
(LH2) of purple nonsulfur bacteria. Fold symmetry occurs in
systems as diverse as carbon nanotubes, tubular dye aggregates,
and the mosaic virus protein, as well as in snow flakes, tori, and
nonperiodic tilings (5). In LH2, the N-fold symmetry arises from
the N repetitions of a basic heterodimer subunit consisting of two
transmembrane polypeptides, α and β, arranged in a circular
structure (6–8). Each αβ-heterodimer subunit noncovalently
binds one B800 BChl and two B850 BChls (Fig. 1A), so named
according to their respective room-temperature absorption
bands in the infrared region of the spectrum. In most bacterial
species, the αβ-heterodimer repeats eight or nine times to form
an octameric or nonameric ring structure (in Rhodopseudomonas
paulisterium 10-fold rings have also been observed). Since the
breakthrough of the first crystallizations of LH2 (9, 10), X-ray
crystallography has determined the nine- and eightfold structures
of Rhodopseudomonas acidophila and Rhodospirillum molischia-
num, respectively, to within a resolution of ∼ 2 Å. Subsequent,
equilibrium and nonequilibrium molecular dynamics simulations
of their subunit heterodimers have shown that the mean values
of separations between heterodimers are nearly fixed (11), so
that the heterodimer subunit is independent of fold number.

Consequently, a simple variation of the angle attained during
self-assembly between heterodimers can achieve a complete ring
of specific fold number N. This raises an important question,
as to the role of specific fold symmetry in the highly efficient
excitation energy transfer (EET) observed in light-harvesting
complexes.
However, another intriguing aspect, in addition to the fold

symmetry of the indvidual LH2 complexes, is the lattice structure
evident in their supramolecular organization (12–14). Recent
progress in atomic force microscopy (AFM), which allows direct
observation of the bacterial photosynthetic complexes on their
native membrane, has revealed that LH2 complexes occur in
well-ordered hexagonal domains (Fig. 1B) (15–17). This is es-
pecially evident in bacterial membranes grown under low light
intensity, where large LH2 domains, some hundreds of ang-
stroms wide, form a hexagonal lattice to increase absorption. Not
surprisingly, hexagonal order is the closest packing structure on
a two-dimensional surface. An important observation is that
well-ordered hexagonal domains occur for both octameric and
nonameric structures, suggesting that a close packing order is
preferable to a crystalline order. Understanding the symmetry
properties on the level of both the individual complex and the
supramolecular complex is necessary to form a complete picture
of efficient excitation energy transfer in the light-harvesting an-
tenna (18, 19) and has direct implications for the design of ef-
ficient synthetic devices (20–26).
In this work, we investigate the role of fold symmetry in pro-

moting excitation energy transfer in LH2 hexagonal domains, using
an N-fold model geometry of a B850 ring based on the αβ-heter-
odimer subunit of Rps. acidophila (outlined in SI Materials and
Methods, Fig. S1). Considering the effective Hamiltonian of the N-
fold geometry, and noting an important property of N-fold sym-
metric ring structures, namely the existence of N − 2 and N − 1
pairs of degenerate eigenstates for even and odd N (SI Materials
and Methods), we arrive at a simple metric for determining the
maximum excitation energy transfer rate between two B850 rings,
based on the multichromophoric Förster theory (Eq. 6). We first
discuss the issues of symmetry and frustration on a hexagonal lat-
tice and then explore the optimal rotational configuration ofN-fold
rings and establish two related fold symmetry mechanisms for the
promotion of maximum excitation energy transfer. Using these
mechanisms as selection criteria, we can identify groups of con-
secutive fold numbers. However, to understand why one consecu-
tive group may be preferable to another we require additional
considerations (the fold symmetry mechanisms effectively provide
a prescreening of fold numbers). In particular, supposing an opti-
mal packing density of heterodimers on the bacterial membrane,
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we demonstrate how the consecutive group of 8-, 9-, and 10-fold
rings appears preferable in nature by considering the inter-ring
distance, the EET rate, and rotational sensitivity.

Results
Symmetry and Frustration. Before considering the optimal rota-
tional configuration of LH2 rings of specific fold number, we first
illustrate two basic physical properties of general N-fold rings on
a hexagonal lattice, namely symmetry and frustration. The re-
lationship between the internal N-fold symmetry of the LH2 ring
and the external symmetry of an underlying hexagonal lattice can
be demonstrated as follows. For any fold number N, we may find
the number of matching points S with the hexagonal lattice by
simply counting the number of rotations under which the B850
ring remains invariant with respect to the underlying lattice, i.e.,
the number of times S that modð2πs′=6; 2π=NÞ= 0 is true with
s′= 1; 2; . . . ; 6 [or simply S= gcdð6;NÞ]. This is illustrated in Fig.
2A for the cases of six-, four-, and threefold rings that have
S= 6 ð08; 608; 1208; 1808; 2408; 3008Þ, S= 2 ð08; 1808Þ, and S= 3
ð08; 1208; 2408Þ matching points, respectively. The number of
matching points indicates the degree of symmetry throughout the
lattice of N-fold rings, with S= 6 indicating perfect matching
between the N-fold ring and the hexagonal lattice. This has direct
implications for the degree of dipole–dipole frustration through-
out the lattice as follows.

Consider three point dipoles placed at the vertices of an
equilateral triangle as in Fig. 2B. Upon maximizing the cou-
pling between the three dipoles as a function of their rotation
angles, one finds that the maximum coupling is not equal to the
sum of the three pairwise maximum couplings; i.e., jV j23dipoles ≠jV j212max + jV j223max + jV j231max (subscripts denote the pair of point
dipoles). This is known as dipole–dipole frustration and is
a consequence of the imposition of the underlying lattice struc-
ture. This frustration, however, can be reduced or removed by
introducing aggregates of dipoles in place of point dipoles. In
particular, as shown in Fig. 2 C and D, placing three- and sixfold
symmetric rings (with S= 3 and S= 6, respectively) at the vertices
reduces and removes the frustration, respectively. Thus, the
degree of dipole–dipole frustration on the hexagonal lattice
depends on the fold symmetry N via the number of matching
points S. As we shall see, this is exactly the case when one
considers the EET between rings placed on a hexagonal lattice,
so that the frustration of EET rates can be reduced or removed
as a function of N. Having briefly introduced the issues of sym-
metry mismatch and its implications for EET frustration, we now
consider the role of fold symmetry in optimizing EET for nine-
and eightfold LH2 rings.

Ninefold B850 Rings. Placing two identical ninefold rings at a cen-
ter-to-center distance of dc = 75 Å (corresponding to an inter-ring
distance of d= 21:8 Å), in Fig. 3A we plot the dependence of the
EET rate as measured by its effective dipolar coupling jJj212
(subscripts denote the pair of rings), given by Eq. 6 below, on the
rotation angles θ1 and θ2 of the two rings. The maximum EET rate
occurs at ðθ1; θ2Þ= ð138; 338Þ. Note that the mirror symmetry lines
(Fig. 3A, dashed lines), which pass through the maximum and
minimum, occur at θ1 = θ2 ± π=9 and that the dependence is 2π=9
periodic (compare Fig. 3B). Both observations are directly related
to the fold symmetry. In fact, a simple geometrical argument (SI
Materials and Methods, Fig. S2) can prove that the phase shift of
the mirror symmetry lines ϕN = θ1 − θ2 + 2πp=N, ðp∈ZÞ depends
only on the fold number as ϕN = π=N (N odd) and ϕN = 0
(N even) and is a general consequence of N-fold symmetry.
The optimal rotational configuration occurs when the EET

rate jJj212 is maximized and is shown in Fig. 3C. Interestingly, the
optimal configuration displays rotational and point symmetry
about and through the point O. Placing the centers of three
ninefold rings at the vertices of an equilateral triangle, we
maximize jJj23rings = jJj212 + jJj223 + jJj231 by rotating all three rings
about their centers. The optimal rotational configuration, for
which jJj23rings attains a maximum, is presented in Fig. 4A. We find
jJj212 = jJj223 = jJj231 = 462 cm−2. Furthermore, the optimal rotation
angles are all equal; i.e., θ1 = θ2 = θ3 = 48. Noting that the nine-
fold ring has S= 3 matching points, we see that the optimal
configuration in Fig. 4A has a rotational symmetry of order 3 with
respect to the central point O. Consequently, the three ninefold
rings constitute a triangle basis cell (Fig. 4A, dashed line) with the
central point O forming a Bravais lattice [all points O have po-
sition vectors of the form ~R= p~a+ q~b, ðp; q∈ZÞ, where ~a and ~b
are the primitive vectors shown in Fig. 4B].
We can use this result, namely the existence of a basis cell, to

extend the optimal rotational configuration to the entire hexago-
nal lattice as shown in Fig. 4B, where the lattice primitive cell is
a hexagon. As a result of the equal angles of the optimal rotational
configuration, the boundary rates of the basis cell (indicated by the
12 solid lines, joining the nearest centers) are all equal.

Eightfold B850 Rings. For two eightfold rings (Fig. S3) with
dc = 75 Å, the maximum coupling is jJj212max = 315:7cm−2 and
the dependence of jJj212 on θ1 and θ2 is 2π=8 periodic. Note that
the phase shift of the mirror symmetry line is ϕ8 = 0, because N
is even. Now, in contrast to the ninefold case, the optimal

Fig. 1. (A) Structure of nonameric LH2 from Rps. acidophila with a single
αβ-heterodimer subunit indicated. The transition dipoles (red arrows) are
drawn from the NB to ND atoms of each BChl. (B) High-resolution AFM image
of a low-light–adapted native membrane of Rhodospirillum photometricum,
showing the hexagonal lattice structure. Reproduced with permission from
Springer Science and Business Media (17).

1 nm

S 6 S 2 S 3

6 fold 3 fold4 fold

Reduced frustrationFrustration No frustration

A

B C

D

Fig. 2. (A) Number of matching points S (solid lines) for LH2 rings on
a hexagonal lattice (dashed lines) with six-, four-, and threefold symmetry.
Points and arrows represent the Mg atoms and accompanying transition
dipoles. (B) Frustration of point dipoles. (C and D) Introducing N-fold sym-
metric aggregates of point dipoles can (C) reduce the degree of or (D)
remove completely the dipole–dipole frustration.
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rotational configuration of three eightfold rings placed at the
vertices of a triangle occurs for all unequal angles, θ1 ≠ θ2 ≠ θ3.
Hence, we consider four rings placed at the vertices of an equilateral
rhombus and maximize jJj24rings = jJj212 + jJj223 + jJj231 + jJj214 + jJj242.
The optimal rotational configuration is presented in Fig. S4A.
We find a maximum EET rate for jJj212 = 315:7 cm−2, jJj223 =jJj214 = 314:74 cm−2, and jJj231 = jJj242 = 314:72 cm−2.
Maximum EET now occurs at angles θ1 = θ2 = 168 and

θ3 = θ4 = 398 so that, noting that the eightfold ring has S= 2
matching points, the optimal rotational configuration has a ro-
tational symmetry of order 2 with respect to its central point O,
which forms a Bravais lattice, where the basis cell is the equi-
lateral rhombus (Fig. S4B). The boundary rates for the rhombus
cell are given in Fig. S4B, Right. Unlike the ninefold case, where
all-equal angles gives rise to optimized transfer rates between
basis cells, the presence of two different angles within the
eightfold basis cell gives rise to a single nonoptimized transfer
rate between basis cells jJj243′ = jJj234′, where the prime denotes
a neighboring basis cell. As a result a degree of frustration in
transfer rates is introduced across the hexagonal lattice.

N-Fold B850 Rings. In an identical manner to that for the above
nine- and eightfold cases, we determine the basis cell for each fold
number N (the lowest fold number is N = 2, because N = 1 cor-
responds to a single heterodimer and has no fold symmetry). The
results are presented in Table 1. Comparing columns 2 and 4, one
finds that if an N-fold ring has two or more matching points S,
there exists an optimal basis cell, so that the EET of the infinite
hexagonal lattice can be optimized with respect to rotation. In the
case that an N-fold ring has only one matching point there exists
no basis cell, so that the infinite hexagonal lattice cannot be op-
timized. We thus establish a mechanism through which the fold
symmetry can promote maximum EET: the existence of an opti-
mal basis cell with rotational symmetry extendable to the entire
hexagonal lattice for global optimization of the energy transfer.
In addition to determining the existence of a basis cell, the

number of matching points also determines the type of basis cell.
Comparing columns 2 and 3, there is a direct relationship between

S and the triangle, rhombus, and single-ring basis cells. The type of
basis cell affects the degree of EET frustration between basis cells
throughout the lattice. This is especially apparent in the case of
9-fold symmetry, where the boundary rates of the basis cell are
optimized, so that the frustration of EET rates between basis cells
is completely removed. This is in contrast to the rhombus basis cell
of the 8-fold and 10-fold rings, where the presence of the non-
optimized boundary rate jJj243′ introduces a degree of EET frus-
tration between basis cells. In the case that no basis cell exists, e.g.,
7- and 11-fold rings, frustration exists throughout the entire lattice.
We thus identify a complementary mechanism for the promotion
of maximum EET: Frustration of EET rates between basis cells
can be reduced or removed across the entire lattice through the
type of optimal basis cell.
Using the above complementary mechanisms as selection

criteria for the fold number, from Table 1 we can identify groups
of consecutive fold numbers. Groups of consecutive fold num-
bers indicate robustness of the global optimization and minimal
frustration mechanisms to fold number. Remarkably, one such
consecutive group consists of the 8-, 9-, and 10-fold rings, which
naturally occur in purple bacteria. Other N-fold rings forming
consecutive groups are the 2-, 3-, and 4-fold rings and the 14-, 15-,
and 16-fold rings (implicit of the structure of LH1 rings). We next
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Fig. 3. (A) EET rate surface jJj212 between two ninefold B850 rings as
a function of θ1 and θ2. (B) Cross section of the surface in A for θ1 = 138. A
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B

Fig. 4. (A) Three ninefold B850 rings placed at the vertices of the triangle
basis cell (dashed line). For maximized jJj23rings, both the rates between each
pair and the angles of each ring are equal. Consequently the optimal rota-
tional configuration has rotational symmetry of order 3 with respect to O.
(B, Left) The primitive unit cell of the Bravais lattice (thick dashed line),
where ~a and ~b are the primitive vectors. (B, Right) Boundary rates (12 thick
solid lines) of the triangle basis cell.
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illustrate how the intermediate group of consecutive fold numbers
8, 9, and 10 may be considered preferable.

Packing Density and Rotational Sensitivity
To elucidate why 8-, 9-, and 10-fold symmetries appear prefer-
able in nature, we extend our considerations beyond EET (rel-
evant to the antenna network efficiency) to include the packing
density ρ (relevant to the absorption cross section). For LH2
rings, the packing density can be defined as ρ=NH=A, where NH
is the number of heterodimers contained in the primitive cell and
A is the area of the cell. For the hexagonal lattice the primitive
cell is a hexagon containing NH = 3N heterodimers with area
A= 3

ffiffiffi
3

p
  d2c=2. Thus, we have

ρ=
NH

A
=

2Nffiffiffi
3

p
  d2c

: [1]

In Fig. 5 we plot Eq. 1 (right axis, dashed line) as a function of
the fold number N for the fixed inter-ring distance of the 9-fold
rings d= dc − 2R= 21:8 �A, where the N-dependent radius R is

given in SI Materials and Methods (Eq. S1). Maintaining a fixed
inter-ring distance results in a diminishing density for large
fold symmetry. Alternatively, we can suppose the existence of
an optimal packing density of heterodimers on the native bacterial
membrane that achieves maximum absorption. To maintain this
optimal packing density, the fixed-structure heterodimer subunits
must self-assemble into a homogeneous N-fold ring system
with a varying inter-ring distance. We choose the optimal den-
sity to be ρ9 ≈ 1:8× 10−3  �A−2, whereon the center-to-center dis-
tance dc in terms of N becomes

dc =

ffiffiffiffiffiffiffiffiffiffiffi
2Nffiffiffi
3

p
ρ9

s
= 25 

ffiffiffiffi
N

p
: [2]

The inter-ring distance d= dc − 2R (left axis, solid line), where
dc is given by Eq. 2, is shown in Fig. 5. Maintaining the crite-
rion of an optimal packing density disallows large N-fold rings,
because LH2 rings of fold number greater than 14 result in an
inter-ring distance less than the physical minimum (Fig. 5,
dashed line) and exceed steric contact with neighboring rings.
In particular, the 14-, 15-, and 16-fold consecutive group is
not possible under optimal packing density. Note an initial
rise occurs in ρ and d because, for N ≤ 4, R∼ 21:8=2∼ 10 �A,
respectively.
The excitation energy transfer rates and diffusion constants

of the remaining consecutive groups 2-, 3-, and 4-fold and 8-, 9-,
and 10-fold differ significantly. To demonstrate this we calcu-
late the generalized Förster rate (Eq. 5), where we must now
include the spectral overlap integral (the spectral overlap dif-
fers for each fold number so that comparison of jJj2 alone
would be invalid). In Fig. 6 we plot the rotationally averaged
transfer rate k and the corresponding diffusion constant kd2c as
a function of the fold number N for the cases of fixed d and ρ.
In the latter (solid lines), both the transfer rate and the diffu-
sion constant increase as N increases. In the former (dashed
lines), the transfer rate k increases and then plateaus for large
N (due to absence of shortening inter-ring distance), whereas
the diffusion constant increases for all N. In both cases, it is
preferable to have rings of larger fold number, simply to in-
crease the absolute transfer rate and/or diffusion constant.
Thus, the 8-, 9-, and 10-fold consecutive group appears pref-
erable to the 2-, 3-, and 4-fold group.
Finally, we consider the rotational sensitivity of the energy trans-

fer between the LH2 rings (the rotational sensitivity is indicative of
the roughness of the energy landscape seen by the migrating
exciton). To this end we define the percentage difference ratio,
δ= ðjJj212max − jJj212minÞ=jJj2av, where jJj2av = ðjJj212max + jJj212minÞ=2.
In Fig. 7, the percentage difference ratio for EET between two
rings is shown as a function of the fold number N for fixed
density (solid line). As the fold number increases, the sensitivity
decreases to a minimum at N = 10, due to the increased aggre-
gation of the heterodimers (this is complementary to reducing
the degree of frustration). For larger fold numbers N ≥ 11, how-
ever, the effect of shortening inter-ring distance (solid line in Fig.
5) dominates increasing aggregation and the rotational sensitivity
increases so that the dependence of the EET rate on dipole
orientation is minimized around the 8-, 9-, and 10-fold consec-
utive group. The absence of this effect in the case of fixed inter-
ring distance (dashed line) removes this minimum. Hence the
requirements of maintaining an optimal packing density and
minimal rotational sensitivity are met exclusively by the 8-, 9-,
and 10-fold consecutive group.

Discussion
We have investigated the role of the fold symmetry of LH2 in
promoting maximum excitation energy transfer on the hexag-
onal lattice. Considering the related issues of symmetry and

Table 1. Matching points and basis cells for fold numbers 2–18

N S points Basis cell Optimization

2 2 Rhombus Yes
3 3 Triangle Yes
4 2 Rhombus Yes
5 1 None No
6 6 Single ring Yes
7 1 None No
8 2 Rhombus Yes
9 3 Triangle Yes
10 2 Rhombus Yes
11 1 None No
12 6 Single ring Yes
13 1 None No
14 2 Rhombus Yes
15 3 Triangle Yes
16 2 Rhombus Yes
17 1 None No
18 6 Single ring Yes
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(right axis, dashed line) as a function of fold number N. The fold numbers
for which a or no basis cell exists are indicated with a solid circle or star.
The minimum physical inter-ring distance dmin = 10 Å is indicated by the
dotted line.

8540 | www.pnas.org/cgi/doi/10.1073/pnas.1218270110 Cleary et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218270110/-/DCSupplemental/pnas.201218270SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218270110/-/DCSupplemental/pnas.201218270SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1218270110


frustration, we conclude that the fold symmetry can promote
maximum EET via two complementary mechanisms. First, the
existence of an optimal basis cell allows optimization of the
entire hexagonal domain, thus enhancing the network effi-
ciency. Second, the type of basis cell can significantly reduce or
remove the degree of EET frustration between basis cells
across the lattice, thus smoothing the EET landscape and en-
hancing robustness. EET efficiency and robustness are precisely
the design criteria of a functioning light-harvesting organism,
e.g., the distance over which an exciton can migrate before
relaxation has a direct consequence for the ratio of LH2 to
LH1/reaction center complexes (required to capture the exci-
ton for further use) in natural systems (1–4).
A key result is that the existence of an optimal basis cell and its

type are directly related to the number of matching points
S. Additionally, basis cells exist for groups of consecutive fold
numbers, particularly the group of naturally occurring 8-, 9-, and
10-fold rings. Considering the inter-ring distance, EET rate, and
diffusion constant, we have demonstrated how this group ach-
ieves minimal rotational sensitivity in addition to an optimal
packing density. Minimal rotational sensitivity and optimal
packing density facilitate the biological function of a pigment–
protein complex in a light-harvesting role, where essentially
isotropic, delocalized behavior is desired (26). In other words,
minimization of the roughness of the energy landscape allows for
robust EET, whereas an optimal packing density enhances the
transfer efficiency. This essentially corroborates our finding that
the existence and type of an optimal basis cell achieve global
optimization and minimal frustration across the hexagonal lattice
and, through their direct relation to S, suggests the design
principle of matching the internal symmetry of the LH complex
to the underlying lattice order.
All of the above considerations provide theoretical insight into

the role of fold symmetry, arising at the molecular level, in
promoting efficient and robust EET at the supramolecular level
of the light-harvesting antenna. Recent experiments in synthetic
light harvesting (21, 22), for example, have found that hexagonal
arrays of 9-fold LH2 achieve diffusion constants greatly en-
hanced over those observed in LH2 domains in their natural
membrane due to increased coupling of the complexes. Our
design principle predicts that this enhancement should be rela-
tively reduced for 8- and 10-fold rings due to lattice mismatch
and increased EET frustration. It is hoped this work will inform
photosynthetic, self-assembled materials, and lithographic com-
munities striving to understand solar light harvesting, its limits,
and its design principles.
Finally, we note that increasingly sophisticated techniques

continue to yield exciting discoveries at the molecular level of
LH2 (27). Although we have here considered only the EET

between individual LH2 complexes, thus ignoring the dynamics
that occur within the complex, our qualitative conclusions should
remain intact. For example, we know that neither static nor
thermal disorder in an LH2 ring is strong enough to remove its
excitonic characteristic, so that the main contribution to the
average transfer rate between two rings still comes from the
lowest (formerly) degenerate eigenstates (even with disorder
a multichromophoric FRET theory between rings must be used).
Furthermore, although disorder quantitatively changes the av-
erage transfer rate between two rings, the average transfer rate
will still be 2π=N periodic with respect to rotation and have
a mirror symmetry phase of ϕN = π=N (N odd) and ϕN = 0
(N even) (Eq. S7). We thus expect our conclusions regarding
the fold symmetry mechanisms to hold in the disordered sce-
nario. The extension of our understanding of both the struc-
ture and the dynamics of individual molecular complexes to
their supramolecular function presents a significant challenge
for the future.

Materials and Methods
The system Hamiltonian of two B850 rings may be written

H=
�
HD Hc

H†
c HA

�
; [3]

where HD and HA are the donor and acceptor Hamiltonians of the two in-
dividual rings as discussed in SI Materials and Methods (Eq. S2), Hc is the
coupling Hamiltonian between the two rings Hc =

PND
m=1

PNA
n=1Vm;nÆmjÆnj, and

the inter-ring electronic coupling elements are simply Vm;n = ÆmjHcÆnj and
are calculated using the dipole–dipole approximation.

Now, due to the weak electronic coupling between LH2 rings, the exci-
tation energy transfer is incoherent. Thus, the hopping rate is adequately
described by the multichromophoric Förster theory

k=
XND

m;m′

XNA

n;n′

Vm;nVm′;n′

2πZ2

Z∞
−∞

ED
m′;mðωÞIAn;n′ðωÞdω; [4]

where ED
m′;mðωÞ and IAn;n′ðωÞ are the site basis elements of the donor emission

and acceptor absorption spectra; i.e., ED
m′;mðωÞ= Æm′jEDðωÞjmæ and IAn;n′ðωÞ=

ÆnjIAðωÞjn′æ. The diffusion constant of excitons between rings is simply kd2
c ,

where dc is the ring center-to-center distance. Now if we use the diagonal
(secular) approximation in the eigenstate basis of the donor and acceptor
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systems so that Æ«Dμ jEDðωÞj«Dμ′æ=ED
μ ðωÞδμ;μ′ and Æ«Aν jIAðωÞj«Aν′æ= IAν ðωÞδν;ν′, we

have the diagonal multichromophoric Förster rate

k=
1

2πZ2
XND

μ

XNA

ν

�����
XND

m=1

XNA

n= 1

Vm;nCm
μ Cn*

ν

�����
2

×
Z∞
−∞

ED
μ ðωÞIAν ðωÞdω; [5]

often referred to as the generalized Förster rate. Clearly excitation energy
transfer can occur between two rings via any pair of eigenstates j«Dμ æ and
j«Aν æ. However, noting that most of the total oscillator strength of a single
ring is contained in its lowest degenerate eigenstates j«2æ and j«3æ, we sim-
plify our calculation by considering only excitation energy transfer between
these two eigenstates so that we need only count the four terms given by
μ= 2; 3 and ν= 2; 3 in Eq. 5. Furthermore, because these eigenstates are
degenerate, we have ED

2 ðωÞ= ED
3 ðωÞ and IA2 ðωÞ= IA3 ðωÞ so that the overlap

integral may be factorized out. Upon translation or rotation of a ring, the
spectrum does not change, and hence the contribution from the spectral

overlap remains constant. Therefore, to find the optimal rotational
positions of two B850 rings, we need only calculate the effective dipolar
coupling term

jJj2 ≡
X3
μ=2

X3
ν= 2

�����
XND

m= 1

XNA

n= 1

Vm;nCm
μ Cn*

ν

�����
2

;

=
��Æ«A2 ��H��«D2 æ��2 + ��Æ«A2 ��H��«D3 æ��2
+
��Æ«A3 ��H��«D2 æ��2 + ��Æ«A3 ��H��«D3 æ��2; [6]

where the second relation in terms of H from Eq. 3 is obtained by extending
the dimension of j«Dμ æ and j«Aν æ from 2N to 4N by adding zeros at the end and
beginning of the eigenvectors, respectively.
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