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Abstract
When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs,
greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the
bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding
the crucial components of the bone microenvironment that influence tumour localization, along
with the tumour-derived factors that modulate cellular and protein matrix components of bone to
favour tumour expansion and invasion, is central to the pathophysiology of bone metastases. Basic
findings of tumour–bone interactions have uncovered numerous therapeutic opportunities that
focus on the bone microenvironment to prevent and treat bone metastases.

Tumours are generally incurable once they have metastasized to bone. Devastating
consequences of bone metastases include pathological bone fractures, pain, hypercalcaemia,
and spinal cord and nerve-compression syndromes1. Bone metastases are a common
complication of cancer and occur in 65–80% of patients with metastatic breast and prostate
cancers2,3. The incidence of bone metastases is also increasing in other cancers, probably
owing to improved tumour control at other disease sites4. Tumour invasion into bone is
associated with osteoclast and osteoblast recruitment, resulting in the liberation of growth
factors from the bone matrix, which can feed back to enhance tumour growth resulting in the
‘vicious cycle’ of bone metastases1,3,5,6. Indeed, the successful suppression of bone turnover
with bisphosphonates in patients who had bone metastases that resulted in high levels of
bone resorption markers was associated with improved survival7. Beyond the effects on
osteoclasts and osteoblasts, tumours in the bone microenvironment recruit and modulate the
function of platelets, myeloid cells, immune cells and nerve cells, and induce the formation
of new blood vessels. The bone marrow also serves as a reservoir for dormant tumour cells
that can resist chemotherapeutic attack, and these tumour cells can emerge later as full-
blown metastases in bone or other organs8–10.
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Drugs, such as bisphosphonates or receptor activator of NF-κB ligand (RANKL; also known
as TNFSF11) antibodies, that target osteoclastogenesis significantly decrease the incidence
of skeletal complications and are the current standard of care for patients with bone
metastases1,11–13. There are emerging data that these anti-resorptive agents can also have
direct antitumour effects. However, 30–50% of patients on such therapies still develop new
bone metastases, skeletal complications and disease progression1, emphasizing the need for
new therapies. Important advances in understanding the basic biology of bone remodelling,
haematopoiesis, haematopoietic cell egress and homing to bone marrow have uncovered
new therapeutic targets for the prevention and treatment of bone metastasis.

Bone resorption and formation
The bone microenvironment is comprised of a mineralized extracellular matrix and specific
cell types that are under the control of local and systemic factors. This special milieu
provides a fertile soil for many cancers to thrive (FIG. 1). Certain types of solid tumours
metastasize to bone and induce destructive osteolytic and/or bone-forming osteoblastic
lesions, with most solid tumours commonly producing both. Tumour cells secrete a vast
array of proteins, many of which interact with resident cells in the bone marrow to induce
the differentiation, recruitment and activation of osteoclasts and osteoblasts. During the
process of bone resorption, stored growth factors and ionized calcium are released from the
mineralized bone matrix, and these factors feed back to promote tumour cell growth and
further production of osteolytic and osteoblastic factors. This vicious cycle can support
tumour growth in bone3,14 (FIG. 2).

Osteoclasts are polarized, multinucleated myeloid lineage cells that adhere to the bone
surface through αvβ3 integrin, form an actin ring, and secrete acid, collagenases and
proteases that demineralize the bone matrix and degrade matricellular proteins such as type I
collagen. Macrophage colony stimulating factor (M-CSF) and RANKL are important growth
factors that support osteoclastogenesis, and they are primarily produced by osteoblasts. M-
CSF and interleukin-34 (IL-34) both bind to the FMS receptor (also known as CSF1R) on
myeloid cells and promote osteoclastogenesis209. RANKL binds to its cognate receptor,
RANK, on osteoclast precursors, to induce osteoclastogenesis through the nuclear factor-κB
(NF-κB), NFATc1 and JUN N-terminal kinase signalling pathways15. Osteoprotegerin
(OPG; also known as TNFRSF11B) is an endogenous decoy receptor of RANKL that
inhibits osteoclastogenesis. Deletion of RANK or RANKL, or overexpression of OPG,
causes severe osteopetrosis, which is consistent with the central role of this pathway in
osteoclastogenesis16,17.

Mesenchymal stem cells (MSCs) in the bone marrow are directed along the osteoblast
lineage through local factors, such as transforming growth factor-β (TGFβ)18, bone
morphogenetic proteins (BMPs) and WNT proteins (BOX 1). These pathways lead to the
expression of three key transcriptional regulators of osteoblast function: RUNX2 (REF. 19),
osterix20 and activating transcription factors (ATFs)21,22. The osteoblast-stimulating activity
of metastatic tumour cells is thought to be due to the ability of these cells to express many of
the factors listed above that can drive osteoblast formation and activation (FIGS 1, 3).

Box 1

WNT signalling in bone metastasis

WNT proteins are secreted, highly post-translationally modified proteins that have a key
role in osteogenesis199. The WNT–β-catenin signalling pathway is controlled by two cell
surface receptors, Frizzled and the LRP5 and LRP6 co-receptors. Canonical WNT
signalling activates bone formation, and among the many proteins downstream of WNT
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is RUNX2, which is required for osteoblast formation. The WNT signalling inhibitor,
dikkopf 1 (DKK1) has a crucial role in osteolytic skeletal metastasis in which osteoblast
formation is suppressed and osteoclast activity is enhanced60,200. DKK1 has been
attributed to the support of osteolytic breast cancer metastasis, and serum DKK1 levels
are increased in patients with multiple myeloma and in women with breast cancer
skeletal metastasis200,201. In experimental models of prostate cancer, DKK1 expression is
high during early carcinogenesis and decreases with skeletal progression, suggesting a
molecular switch between osteolytic and osteoblastic disease60. Tumour-derived
parathyroid hormone-related protein decreases DKK1 expression and maybe responsible
for such a switch202. Endothelin 1, a tumour-derived factor, decreases osteoblast DKK1
expression to cause the deregulated formation of new bone, as observed in prostate
cancer bone metastases181,183. It is likely that WNT signalling is central to the osteoblast-
stimulating activity of metastatic tumours. In contrast to solid tumour metastases in bone,
myeloma is largely associated with an inhibition of osteoblastic activity. Inhibitory
factors secreted by myeloma cells include DKK1, secreted Frizzled-related protein 2,
interleukin-7 and hepatocyte growth factor203–205.

The process of bone colonization
The pre-metastatic niche

The concept of a pre-metastatic niche has emerged as a means through which a primary
tumour is able to prepare sites of metastasis. In preclinical melanoma and lung cancer
models, for example, vascular endothelial growth factor receptor 1 (VEGFR1)-positive bone
marrow-derived haematopoietic cells home to the sites of future metastasis and form cellular
clusters that precede tumour cell arrival and increase fibronectin production in tumour target
sites23. Inflammatory chemoattractants that are produced in the lung in a pulmonary
metastasis model further support the concept of the pre-metastatic niche24. However, others
have described a lack of effect of bone marrow-derived endothelial cell precursors on
tumour growth25.

In the bone microenvironment, most evidence in support of a pre-metastatic niche is in the
context of endocrine-like actions. Primary tumours may condition the bone marrow through
the production of circulating factors that target cells in the bone microenvironment and thus
render it conducive to tumour localization and colonization. Examples include heparanase
that is produced by breast cancer cells increasing bone resorption26; osteopontin (OPN) that
is secreted by tumour cells and/or senescent fibroblasts promoting bone marrow cell
recruitment or tumour formation27–29; and matrix metalloproteinase (MMP) production
from osteoclasts supporting prostate cancer skeletal metastasis30. Parathyroid hormone-
related protein (PTHRP; also known as PTHLH) is produced by various tumours and can
promote bone resorption5,14 and can enhance the production of local factors in the bone
marrow, such as the chemokine CCL2 (REF. 31).

Homing to bone
Tumour cells preferentially adhere to the bone marrow endothelium, a potentially initial and
key event in their introduction to the bone microenvironment32. Tumour cells that
metastasize to bone can use the same physiological mechanisms as those used by
haematopoietic stem cells (HSCs) homing to bone33–36 (FIG. 2). Osteoblasts and bone
marrow stromal cells attract and regulate HSCs, and provide a niche through protein
interactions that include integrins, such as α4β1–vascular cell adhesion molecule 1
(VCAM1); chemokines, such as CXCL12 (also known as SDF1)–CXCR4; BMPs, Notch,
nestin and OPN33,34,37–43. Preclinical studies demonstrate that bone resorption can also
regulate HSC mobilization and homing44,45. Metastatic prostate cancer and probably other
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cancers directly compete for the occupancy of the HSC niche during localization to the
marrow. Once in the niche, they begin a process of either evicting HSCs into the peripheral
blood or driving them into progenitor pools46.

CXCL12 is expressed at high levels by osteoblasts and bone marrow stromal cells, and
expression of its receptor, CXCR4, on cancer cells has an important role in tumour cell
homing to bone35,47–50. CXCL12 expression from bone marrow endothelial monolayers has
been demonstrated to promote prostate cancer cell migration and upregulation of both
MMP9 and αvβ3 on prostate cancer cells48,51. Kang and colleagues35 found that CXCR4
was highly overexpressed in subpopulations of a serially selected and highly metastatic
human breast cancer cell line. The overexpression of CXCR4 along with other bone
metastasis signature genes, such as IL11, connective tissue growth factor (CTGF) and
MMP1, in the parental breast cancer cell lines increased their capacity to metastasize to
bone35. IL-11 and MMP1 stimulate bone resorption by increasing osteoblast production of
RANKL, and CTGF can stimulate osteoblast proliferation, as well as neoangiogenesis.
When expressed together, these proteins can act cooperatively to cause osteolytic metastasis,
but overexpression of individual proteins was insufficient to accelerate bone metastases35.
Several groups have also demonstrated a direct role for CXCR4–CXCL12 in breast and
prostate cancer cell proliferation50,52–54, suggesting that this pathway might also be required
for tumour colonization in bone.

Tumour cell surface integrins interact with extracellular matrix (ECM) proteins that are
expressed in the bone microenvironment. The αvβ3 integrin interacts with bone-derived
OPN, fibronectin and vitronectin, and expression of αvβ3 by breast and prostate cancer cells
is associated with higher rates of bone metastasis, tumour-associated osteolysis and
colonization in bone55,56. Tumour cell expression of the β1 integrin family members α5β1,
α2β1 and α4β1 — which are receptors for fibronectin, collagen I and VCAM1, respectively
— has been implicated in the interactions of leukaemia, myeloma, prostate and breast cancer
cells with bone marrow stroma, and can result in enhanced colonization and survival in
bone57–64.

CXCR4 ligation increases αvβ3 expression on prostate cancer cells and α4β1 on myeloma
cells, suggesting a crosstalk between CXCR4 and integrin expression that could both
promote tumour cell recruitment to bone and colonization48,49,65. Definition of the temporal,
anatomical and spatial pathways for tumour cell homing to and colonization in bone will be
necessary to develop anti-homing and anti-dormancy therapies.

Invading bone
The types of cancer that are commonly associated with profound osteolysis include breast,
lung and renal cancer, as well as multiple myeloma and adult T cell leukaemia. Clinical and
experimental evidence indicates that bone resorption is also increased in osteoblastic
metastases. Indeed, concentration of the bone resorption marker, N-telopeptide (NTX), is
high in patients with prostate cancer with osteoblastic disease and is a strong predictor of
morbidity and mortality66. Tumour-derived PTHRP was one of the first characterized
mediators of local bone destruction to be associated with bone metastases. In mice with an
absence of hypercalcaemia or detectable circulating levels of PTHRP, neutralizing
antibodies to PTHRP could block breast tumour-associated bone loss and tumour growth in
bone14. In patients with metastatic breast cancer, PTHRP expression levels are increased in
bone metastases compared with the primary tumour67. Yin et al.68 showed that TGFβ in the
bone microenvironment induced tumoural PTHRP production that resulted in enhanced
bone resorption68. Subsequent studies, described below, showed that TGFβ in bone
modulates many other pro-metastatic and osteolytic factors.
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MMPs have been implicated in the general metastatic cascade, and more specifically in bone
invasion and bone metastases through an increase in locally active RANKL. The effects can
be direct, as exemplified by MMP7 cleavage of RANKL in prostate cancer30, or indirect, as
shown by MMP1 and a disintegrin-like and metalloproteinase with thrombospondin motifs 1
(ADAMTS1), which proteolytically cleave epidermal growth factor (EGF)-like ligands to
decrease osteoblast-derived OPG and hence favour osteoclastogenesis69. Moreover, MMP13
can activate MMP9 and TGFβ to increase local expression of RANKL at the breast cancer–
bone interface70.

Other autocrine–paracrine mechanisms that promote tumour osteolysis involve the Jagged
1–Notch signalling pathway. Jagged 1 expressed in breast cancer cells mediates bone
metastasis by activating the Notch pathway in bone cells resulting in increased IL-6, which
confers a growth advantage to tumour cells. γ-secretase inhibitors reduce Jagged 1-mediated
bone metastasis by disrupting the Notch pathway in stromal bone cells and so provide the
rationale for targeting this pathway to treat bone metastases71.

Transcription factors, such as GLI2, RUNX2 and hypoxia-induced growth factor 1α
(HIF1α) in tumour cells have been implicated in promoting tumour osteolysis. The
Hedgehog signalling molecule GLI2 induces PTHRP expression and resultant osteolysis in
metastatic human breast cancer cells72. GLI2 is also involved in TGFβ-mediated melanoma
metastasis to bone73. The osteoblast transcription factor RUNX2 regulates MMP9 in bone
metastatic cancer cells and controls cell invasion74. In support of this, impaired intranuclear
trafficking of RUNX2 in breast cancer cells inhibits osteolysis in vivo75. Tumour expression
of HIF1α inhibits osteoblast differentiation and promotes osteoclast differentiation,
supporting HIF1α as a factor that promotes tumour osteolysis and tumour growth in
bone76,77

Bone matrix and tumour growth
Beyond encountering cells that are resident in the bone marrow, there is an exchange of
factors from the bone matrix that are released during resorption, the most notable being
TGFβ, which affect tumour localization and growth. Calcium, which is abundant in the bone
matrix, has a profound effect on tumour cells. Breast and prostate cancer cells express the
calcium-sensing receptor (CASR) and respond to ionized calcium78 (FIG. 4). Calcium
stimulation of these cells leads to an inhibition of apoptosis and a stimulation of
proliferation79. In addition, ionized calcium leads to increased PTHRP secretion by tumour
cells and hence induces further resorption and calcium release80,81. The CASR has been
shown to be central to prostate cancer skeletal metastasis, as short hairpin RNA knockdown
of this receptor in prostate cancer cells reduced tumour localization in bone82. Ionized
calcium can be a potent chemoattractant to breast cancer cells and could support bone
localization in addition to tumour cell proliferation83. Calcilytics, which are antagonists of
the CASR, are under intensive investigation for the treatment of autosomal dominant
hypocalcaemia, which results from activating mutations in the CASR84. Agents such as
these could represent a strategy to restrict cancer growth in bone.

Bone matricellular proteins that could affect tumour localization include OPN, which is also
released by stromal and tumour cells, secreted protein acidic and rich in cysteine (SPARC),
periostin, bone sialoprotein, dentin matrix acidic phosphoprotein 1 (DMP1), syndecan 1 and
decorin. SPARC, which is produced by osteoblasts, leukocytes and cancer cells, induces
cancer cell migration by interacting with αvβ5 (REF. 85) (FIG. 4). OPN, which is derived
from bone matrix, stromal and tumour cells, has an important role in tumour metastasis.
Experiments in mice deficient for OPN or overexpressing OPN revealed that levels of OPN
correlate with skeletal metastatic potential86. Periostin, which is increased during the initial
response of the bone marrow stroma to a tumour, has been shown to promote the growth of
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metastases in mouse models87. Bone sialoprotein has also been associated, at least in part,
with increased migration and cell survival in breast and prostate cancer metastasis88,89.
Differential expression of OPN and bone sialoprotein in breast and prostate cancers has been
proposed as a potential switch between osteolytic versus osteoblastic presentation90. Other
proteins of the ECM, including the proteoglycan syndecan 1, dentin sialophosphoprotein
(DSPP) and DMP1 have been shown to be associated with breast and/or prostate cancer
progression in bone91–93. By contrast, decorin suppresses bone metastasis in breast cancer
models94.

TGFβ that is derived from resorbed bone matrix has a central role in most of the events
leading to bone metastases and tumour expansion in bone through the regulation of
osteolytic and pro-metastatic factors95 (FIGS 3, 4). Human breast cancer bone metastases
show active TGFβ signalling by nuclear accumulation of phosphoSMAD2 (REF. 96). TGFβ
signalling blockade by the stable expression of a dominant-negative TGFβ receptor 2
(DNTβRII) in MDA-MB-231 breast cancer cells inhibited TGFβ-induced tumour expression
of PTHRP and suppressed bone metastasis in a mouse model68. Knockdown of SMAD4 also
inhibited the development and the formation of bone metastases in a similar model96. In
turn, overexpression of the inhibitory SMAD7 in 1205Lu melanoma cells reduced the
formation of osteolytic lesions97.

TGFβ may interact with other microenvironmental factors in bone, such as hypoxia, to
promote tumour growth. The bone marrow is a hypoxic microenvironment (with 1–7% O2)
that enhances tumour metastasis and growth76 (FIG. 2). Interactions between HIF1α and
TGFβ signalling pathways in breast cancer cells have additive responses in inducing the
expression of vascular endothelial growth factor (VEGF) and CXCR4 in vitro and in vivo77.
In a mouse model, the inhibition of either pathway in the tumour cells through mRNA
knockdown decreased bone metastasis, and the loss of both did not have additional effects.
By contrast, combined treatment with pharmacological pathway inhibitors decreased bone
metastases more than either treatment alone, resulting in less osteoclastic bone resorption
and tumour growth. These data indicate that hypoxia and TGFβ signalling drive, in parallel,
bone metastases and also that they regulate a common set of tumour genes; small-molecule
inhibitors by acting on both tumour cells and the bone microenvironment, thus additively
decrease tumour burden77. Of all the growth factors that are present in mineralized bone
matrix, the TGFβ pathway dominates and promotes bone metastases of many different
tumour types through the mechanisms described above. Abundant preclinical evidence
supports blocking the TGFβ pathway to treat bone metastases and that the major source of
TGFβ in bone metastases is that released from the bone matrix as a consequence of
osteoclastic bone resorption98.

Resorption, formation and metastatic growth
Tumour metastasis to bone can alter normal bone physiology, resulting in uncoupled bone
remodelling (FIG. 5). Enhanced osteoclast activity exacerbates the growth and progression
of bone metastases (FIGS 4, 5), and preclinical data suggest that modulation of bone
resorption prevents the development of bone metastases. Mice with increased osteoclast
activity that is induced through vitamin D deficiency, oestrogen or androgen deprivation, or
through the administration of granulocyte colony stimulating factor (G-CSF), GM-CSF or
parathyroid hormone (PTH), develop increased osteolytic tumour burden99–102.
Furthermore, Cxcr4-/- mice, which have enhanced osteoclast activity, have a higher tumour
burden in bone103. By contrast, the administration of osteoclast inhibitors, such as
bisphosphonates, OPG, RANKL antagonists and β3 integrin antagonists104, before tumour
inoculation diminishes the growth of solid tumour bone metastases and myeloma tumour
burden in bone105–107. Likewise, mice with genetically defective osteoclast function as a
result of Src-/-, Cd47-/-, Opn-/- or Itgb3-/- deletion have reduced skeletal tumour
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burden108–110. Thus, osteoclastic changes are essential for both tumour cell colonization and
growth in bone. Together, these data indicate that the state of the bone microenvironment
before bone metastasis can modulate tumour growth and the subsequent behaviour of
tumours in bone and thus it represents an important target for metastasis prevention.

Interestingly, reports suggest that cancer cells can fuse with macrophages111 or can induce
the fusion of osteoclast precursors to promote multinucleated giant cells112, leading to
mature osteoclasts with tumour cell nuclei and increased function113–116. This identification
of tumour cells with osteoclast properties shows that tumour cells are able to behave like
bone cells in some circumstances, and this is known as osteomimicry. How widespread such
osteomimicry is in skeletal metastasis and how this can be optimized for therapeutic
advantage has yet to be determined. Recent work in mouse models of breast cancer has
shown that progesterone receptor-positive epithelial cancer cells express RANKL and that
treatment with RANKL inhibitors inhibits their growth, which highlights their potential for
inhibition through targeted anti-RANKL strategies117.

Another form of osteomimicry involving osteoblasts has been identified in breast and
prostate cancer cells. The osteoblastic nature of prostate cancer skeletal metastases (FIGS 3,
5) results in bone that is of a poor quality, immature and woven type118. Various
mechanisms for a tumour-associated increase in bone tissue have been proposed. Tumour
cells in the metastatic prostate lesion may transdifferentiate to become mesenchymal cells
that are capable of osteoblastic activity, cancer cells may induce resident cells in the marrow
microenvironment to enter the osteoblast lineage, and prostate cancer cells may induce the
proliferation and/or differentiation of osteoblast lineage cells. The ability of prostate cancer
to undergo epithelial–mesenchymal transition (EMT) and hence osteomimicry has been
substantiated in animal models and humans119–122. RUNX2 has been implicated in the
osteomimicry that is attributed to breast and prostate skeletal metastasis123–125. Osteoblasts
are a vital component in certain aspects of tumour localization in bone. Tumours that display
the phenotypic ‘osteoblastic’ response are thought to be dependent on osteoblasts in the
bone microenvironment for their continued growth and survival, resulting in a co-dependent
cycle126,127.

Other cell types that prepare and feed the soil
Bone marrow endothelial and haematopoietic cells

Cancer cells preferentially adhere to bone marrow endothelial cells rather than to endothelial
cells that are derived from other organs128. Such adherent cancer cells may extravasate
through the bone marrow endothelium to take up residence in the bone microenvironment.
Subsequently, tumour neovascularization is essential for establishing micrometastases and
for enabling their expansion in the bone. Bone metastasis and bone-residing tumours, such
as myeloma, modify and recruit endothelial cells to enhance neoangiogenesis129. Targeting
of stromal and endothelial cells in the bone marrow with the multitargeted tyrosine kinase
inhibitor sunitinib resulted in bone marrow vessel leakage, stromal apoptosis and disrupted
lung cancer cell colonization and osteolysis210. Increasing evidence supports myeloid cell
participation in angiogenesis, but the ability to effectively measure the vascular supply to a
tumour in bone is challenging130. Haematopoietic cells that reside in the marrow influence
cell communication by releasing pro-angiogenic factors or by creating permissive conditions
in the tumour microenvironment that favour the growth of blood vessels131. The
haemangioblast is the progenitor cell for endothelial and haematopoietic cells and has been
reported to express CD34 and CD133. Beyond their role during development, these cells
continue to exist in adults in the bone marrow and peripheral blood as stem-like cells, which
could be implicated in tumour vasculogenesis. Endothelial progenitor cells (EPCs) have
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been implicated in numerous different tumours, but their identification and precise functions
remain elusive (FIGS 2, 6).

Adipose stem cells
Recently, adipose stem cells that are present in the bone marrow microenvironment, which
develop from the same MSC lineage as osteoblasts, were shown to promote prostate tumour
growth132. Bone marrow-derived MSCs have also been implicated in tumour growth and
metastasis through their ability to promote and protect tumour-initiating cancer stem
cells133. Interestingly, the potential of MSCs to interact with tumour cells has prompted
investigations into whether MSCs can be used for the targeted delivery of antitumour agents
to cancer cells134. More work is clearly needed in this area and is limited at least in part by
difficulties in the standardization of MSC identification135.

Myeloid and immune cells
Bone marrow-derived myeloid cells (including, macrophages, monocytes, myeloid-derived
suppressor cells, myeloid dendritic cells and osteoclasts) and lymphocytes are recruited to
tumours and areas of hypoxia and neoangiogenesis and can either promote tumour growth or
enhance antitumour immune responses136–138 (FIGS 2, 6). Recent evidence suggests that
tumour-associated myeloid cells can be influenced by anti-resorptive targeted therapies
(through either direct or indirect mechanisms), which could represent an osteoclast-
independent mechanism of action of the anti-resorptives.

Myeloid-derived suppressor cells (MDSCs) are a subpopulation of immature myeloid cells
that are characterized by GR1 expression and by the αMβ2 (CD11b) integrin adhesion
marker139. MDSCs from myeloma-bearing mice had a greater capacity to become bone-
resorbing cells compared with MDSCs from control mice136. Recent reports that mice with
osteoclast defects and immune defects were protected from tumour-associated bone loss but
did not have decreased tumour burden in bone140 highlight the role of immune cells in bone
metastasis. Bisphosphonates decrease MDSC numbers and reduce MMP secretion, which
may represent an osteoclast-independent mechanism of action141. Indeed, zoledronic acid
decreased tumour burden in murine bone with severely defective osteoclasts142. The
regulation of MDSC differentiation, recruitment from the bone marrow to tumour sites and
MDSC function in tumour biology is under intensive investigation.

Although T lymphocytes have a key role in influencing general tumour growth143 and bone
remodelling144, many animal models of bone metastasis are carried out in
immunocompromised mice that lack T cells, thus their role in regulating tumour growth
within the bone microenvironment remains largely unstudied. Of note, pro-inflammatory
CD4+ TH17 cells secrete RANKL, tumour necrosis factor (TNF) and TGFβ, all of which
activate osteoclasts and promote bone resorption144,145 and thus may enhance tumour
growth in bone through the enhancement of the vicious cycle. It is anticipated that future
investigations will reveal an important role for T cell subsets in regulating bone metastasis.

Platelets
In addition to effects on haemostasis, activated platelets are an important source of pro-
angiogenic (VEGF) and anti-angiogenic (thrombospondin 1 (TSP1)) factors, the aggregation
of which at tumour sites affects tumour growth146 (FIGS 2, 6). Tumour cells engineered to
respond to platelet-derived lysophosphatidic acid (LPA) have enhanced bone metastatic
potential in mice partly through platelet-derived LPA-mediated induction of osteolytic
factors such as IL-6 and IL-8 (REF. 147). Likewise, genetic and pharmacological inhibition
of platelet-specific integrins (αIIbβ3) or platelet activation decreased osteolytic bone
metastases in mice110,148. Targeting platelets is a promising therapeutic approach for
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inhibiting bone metastasis, in particular to prevent metastasis or to decrease tumour burden
in bone.

Conversely, bone marrow megakaryocytes, from which platelets are derived, inhibit prostate
cancer tumour growth in bone149 and also inhibit bone resorption by inhibiting osteoclast
formation150. The negative effect of megakaryocytes on bone resorption might be partly
mediated through the production of the osteoclast inhibitory factor OPG151. Megakaryocytes
might also influence bone remodelling and resorption through effects on osteoblast
proliferation that are mediated by the α3β1, α5β1 and glycoprotein IIb integrins152. As
mature megakaryocytes are located at vascular sinusoids, they are also among the first cells
to encounter cancer cells as they enter the bone marrow environment, so direct action
involving integrin-mediated signal transduction could be involved. Interestingly,
bisphosphonates increase megakaryocyte proliferation and increase the platelet
concentration of the anti-angiogeneic integrin ligand TSP1 (REFS 153,154), which suggests
that bisphosphonates could have non-osteoclast mechanisms that decrease tumour growth in
bone. Thus, platelets and their megakaryocytic precursors interact with cancer cells before,
during and after metastasis to bone.

Tumour cell dormancy
Paradoxically, metastasis is an inefficient process with only 0.001–0.02% of cancer cells
that are experimentally introduced into the circulation actually forming metastatic
foci99,155,156. Preclinical evidence suggests that metastatic tumour cells can home to and
localize in the HSC niche and survive in a dormant state. The skeleton is the preferred site
for many tumour cells to reside, and they can remain there in a dormant state for long
periods of time.

The presence of disseminated tumour cells (DTCs) in the bone mar row of patients with
primary cancer reveals the housing potential of the skeleton (FIGS 1, 5). Patients with bone
marrow DTCs at diagnosis are at a higher risk of both skeletal and extraskeletal metastasis.
Evidence exists that DTCs can persist in the bone marrow for years in a quiescent state, and
are resistant to cancer therapies8,55,157. Myeloma cells interact with bone marrow stroma
partly through integrin α4 (also known as VLA4) and VCAM1 to facilitate quiescence and
protection from apoptosis, providing resistance to chemotherapy158. Of patients with
prostate cancer who have had a radical prostatectomy, 72% have DTCs in the bone
marrow159; and 30% of patients with localized breast cancer have bone marrow DTCs at
diagnosis9,160. These DTCs are strong predictors of biochemical recurrence of disease and
do not bode well for outcomes161. Molecular characterization of disseminated breast cancer
cells in the bone marrow has revealed the specific expression of a subgroup of transcripts,
including the metastasis regulator TWIST1, and SRC activation162,163. Breast cancer cells
that have active SRC are associated with an increased risk of bone metastases in humans163.
This was attributed to a cell-autonomous pro-survival role of SRC, and was linked to the
pro-survival effects of CXCL12, as well as resistance to the pro-apoptotic effects of TRAIL.
Increasing clinical evidence suggests that DTCs are influenced by the bone
microenvironment. The treatment of women with localized breast cancer with the
bisphosphonate zelondronic acid modulated the presence of DTCs in the bone marrow8,164.

Tumour cells might mimic HSC cells, and evidence for factors that induce HSC dormancy
could explain tumour cell dormancy in bone marrow niches. Prostate cancer cells bind to
osteoblast annexin II, which induces the expression of growth arrest-specific 6 (GAS6)
receptors. GAS6 receptors are well-known inducers of dormancy in HSCs and were found to
reduce cell cycle progression in prostate cancer cells, thus implicating osteoblasts as
facilitators for tumour dormancy in bone165. Understanding tumour cell dormancy within
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the bone marrow is probably key to inducing long-term remissions and overcoming
resistance to cancer therapies.

Therapeutic targeting of bone metastases
Targeting osteoclasts

Osteoclastic bone resorption inhibitors are the standard of care for patients with established
bone metastases, and the therapeutic targeting of osteoclasts is an area of intense clinical
investigation (FIGS 4, 6). Bone matrix-targeted bisphosphonates, such as pamidronate,
zoledronic acid and ibandronate, are amino-bisphosphonates that block farnesyl
pryrophosphate synthase and that disrupt protein prenylation166. In addition to the effects on
bone resorption by osteoclasts, amino-bisphosphonates can affect other cell types that
promote bone metastases, including γδ-T cells, monocytes, MDSCs and endothelial cells, as
well as tumour cells. Clinical data suggest that bisphosphonates can limit the progression of
breast cancer both in bone and in other tissues8,167. The therapeutic disruption of RANKL
with a subcutaneously administered humanized neutralizing antibody, denosumab, results in
significant decreases in skeletal complications and reduces bone pain168. In addition,
denosumab may be effective in directly targeting subtypes of breast and prostate cancers that
express RANKL117. Other osteoclast-targeted therapies under clinical evaluation for the
treatment of bone metastasis include cathepsin K inhibitors, SRC inhibitors and αvβ3
inhibitors169–171; interestingly, these therapies also affect tumour cells and stromal
components that participate in bone metastases (FIG. 6).

Targeting TGFβ and bone matrix proteins
Several strategies to inhibit TGFβ signalling are being applied to cancer172. The different
classes of TGFβ inhibitors that have been used in preclinical models and clinical trials of
bone metastases include monoclonal neutralizing TGFβ antibodies that prevent TGFβ
ligand–receptor interactions; small molecules that inhibit TβRI (and TβRI II) kinase
activity, preventing the activation TGFβ R-SMADs; and a natural product derivative,
halofuginone (HFG), which inhibits TGFβ, although the exact mechanism remains to be
investigated (FIGS 4, 6).

Although the effects of TGFβ on osteoclasts and osteoblasts are dose- and context-
dependent in vitro, genetically modified mice showed that increased levels of TGFβ in bone
promoted osteoclastogenesis and bone resorption173. In support of this, systemic TGFβ
inhibition with an orally active TβRI kinase inhibitor SD-208, or a pan-neutralizing TGFβ
antibody, causes increased bone mass and increased bone mineralization by inhibiting
osteoclastic bone resorption and stimulating new bone formation174,175. BMP7, an inhibitor
of TGFβ signalling, inhibits the formation of bone metastases in preclinical models176,177

and is a potent inducer of bone formation; it is currently approved for clinical orthopaedic
fracture treatments178.

As a result of its wide variety of effects on numerous cell types and pathways, blockade of
TGFβ or its downstream signalling could have undesirable consequences for wound healing
and immune function179. However, human dose escalation studies with the small molecule
TGFβ inhibitor, LY2157299, for patients with advanced metastatic melanoma,
pheochromocytoma, and colon, prostate and breast cancer demonstrated that the drug is well
tolerated with minimal toxicity.

Other bone matrix proteins that are released during osteoclastic resorption include insulin-
like growth factor 1 (IGF1), platelet-derived growth factors (PDGFs) and BMPs, as well as
calcium. These proteins and mineral elements have been shown to increase the growth of
certain tumour types, and represent druggable (and in most cases currently available) anti-
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bone metastasis targets. Bisphosphonates and other diphosphonate molecules have strong
avidity to bone matrix with long bone half-lives and can be used to target compounds to the
bone matrix.

Targeting osteoblasts
One of the promising osteoblast targets investigated in preclinical and clinical trials has been
endothelin 1. Endothelin 1 is a vasoconstrictive agent that stimulates osteoblast proliferation
and enhances osteoblast differentiation180,181. Strong support of its ability to target prostate
cancer skeletal metastases in animal models promoted its investigation in human clinical
trials128,182,183. Atrasentan was the first endothelin receptor subtype A antagonist to be
investigated in patients with prostate cancer, and zibotentan is a more selective and
promising inhibitor that is currently in clinical trials184 (FIGS 3, 6).

The bone stroma and osteoblast compartments can interact with tumour cells to promote
resistance to cytotoxic chemotherapy. An exciting new approach takes advantage of the fact
that cancer cells use CXCR4 and VLA4 to home to and engraft in the marrow. Cancer cells
in the bone marrow are often resistant to chemotherapy because they are held in G0 phase of
the cell cycle by contact with bone marrow stromal cells. HSC mobilizing agents such as
AMD3100 and anti-VLA4-targeted agents mobilize leukaemia and myeloma cells into the
blood, which leads to increased sensitivity to chemotherapy in mice185,186. This approach is
now being tested in clinical trials in the treatment of acute myeloid leukaemia and multiple
myeloma.

Targeting neoangiogenesis
Anti-angiogenic therapies have been of intense interest and promise in cancer therapy in
general, but of less focus in skeletal metastasis. Cutting the blood supply to a tumour
regardless of its location has clear merit; however, the feasibility and strategies needed to
achieve this in the vascular-rich site of the bone marrow are challenging and the biology is
poorly understood. In a model of skeletal metastasis, the anti-angiogenic agent avastin was
found to inhibit tumour growth, albeit through the indirect targeting of osteoclasts187. It is
not clear what the exact target of anti-angiogenic therapy is, as the actions of such agents on
circulating endothelial progenitor cells have been inconclusive188. Combining an anti-
angiogenic agent with cytotoxic chemotherapy produced promising results in an animal
model of breast cancer skeletal metastasis189.

Bone marrow-derived endothelial progenitors are under investigation as potential targets for
anti-angiogenic strategies190. Experimental strategies using endothelial progenitor cell
markers such as ID1 are emerging, and they provide valuable new avenues for therapeutic
development191. Difficulty in this area has stemmed from the lack of a reliable endothelial
progenitor cell marker that can be used in the differing locations that these cells reside in,
such as the bone marrow, peripheral blood and tumours.

Metastasis-associated protein 1 (MTA1) is a pro-angiogenic factor that is associated with
prostate cancer progression192. Silencing MTA1 effectively limited the expression of pro-
angiogenic factors such as VEGF by prostate cancer cells and thus represents a potential
new target of angiogenic events in skeletal metastases in patients with prostate cancer.

Treating bone pain
Cancer-associated bone pain is extremely difficult to treat and is often fairly resistant to
opioids193. Bone is densely innervated by primary sensory afferent and sympathetic neurons
that are located in the periosteum and the intramedullary bone194. Bone resorption inhibitors
substantially decrease pain that is produced by the growth of bone metastases161. Honore et
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al.195 found that the acidic environment that is produced by resorbing osteoclasts activates
the acid-sensing transient receptor potential vanilloid type 1 (TRPV1) pain neurons195 (FIG.
2). The RANKL antagonist OPG successfully prevented activation of pain fibres and
decreased pain behaviour in mice with bone metastases. Nakanishi et al.196 demonstrated
that acid activation of TRPV1 neurons upregulates calcitonin gene-related peptide in the
dorsal root ganglia and is associated with inflammatory-mediated pain196. Likewise, bone-
residing tumour cells secrete factors, such as nerve growth factor (NGF) and endothelin 1,
that activate pain neurons. Invasively expanding tumours in bone may also compress or
directly induce nerve injury. Inhibitors of bone resorption, TRPV1, endothelin A receptor
and NGF all represent therapeutic targets for cancer-induced bone pain194. Another
approach to pain relief in patients with bone metastases has been the use of
radiopharmaceuticals. Strontium, samarium and radium have strong avidity to the calcified
matrix of bone. These agents can exert a small antitumour effect through localized radiation,
but have substantial effects on bone pain and are primarily indicated to provide pain
relief197.

Future directions
Bone metastases are common and have devastating effects on cancer patients. The bone
microenvironment is a unique and fertile soil for cancer metastasis, and tumour cells modify
the bone microenvironment during cancer invasion and expansion through the recruitment
and modulation of osteoclasts, osteoblasts, immune cells, vascular elements, bone matrix
and neuronal processes. Better characterization of this tumour-modified stroma and the
identification of the molecules that affect tumour expansion and dormancy in bone is
essential moving forwards. In particular, the role of immune cells (T cells, natural killer
cells, macrophages, MDSCs and dendritic cells) is crucial for understanding tumour
expansion in bone and represents an area of great therapeutic promise. Metastasis to bone
has proved a challenging process to model in vitro and in mice because various cell types
are required in distinct temporal stages. Current animal models are appropriate for
evaluating tumour expansion in bone using aggressive tumour cell lines. However, these
models use highly unstable and selected cell lines developed in different strains or species
inoculated into immunocompromised (or non-strain matched) animals, thus it is unclear how
representative these models are of physiological bone metastases. Also, the effects of
immune responses on all stages of the metastatic process are difficult to evaluate. Current
animal models of cancer develop spontaneous metastasis to bone too infrequently to readily
facilitate the study of tumour homing to and dormancy within bone. Animal models of
osteoblastic metastases are also challenging. There is a need to develop better animal models
to study tumour localization and tumour cell dormancy in bone. The enigma of why some
tumour cells lie dormant in bone for decades before progressing to symptomatic disease
requires comprehensive and detailed clarification.

Massively parallel DNA sequencing technologies have the potential to transform our
understanding of cancer biology. Beyond the somatic mutations in cancer cells, germline
DNA variants can affect any stromal cell element and can probably contribute to cancer
metastasis in ways that will be uncovered as we turn our attention away from the fractured
and unstable cancer genomes and towards the analysis of stromal cell genomes. Genetically
unstable tumour cells are exposed to clonal selection during the colonization of distant
sites198, but cells of the host tumour microenvironment represent underused, genetically
stable therapeutic targets. Great efforts are underway to better understand the epigenome of
cancer cells, including the function of microRNAs; however, epigenetic changes in tumour
stromal cells probably have important roles in cancer biology and may be amenable to
therapeutic intervention. The identification and characterization of genetic and epigenetic
changes in the key stromal elements that are involved in skeletal metastasis could lead to
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valuable and wide-reaching therapeutics for preventing the fatal attraction and devastating
consequences of skeletal metastasis.

Powerful imaging technologies are rapidly evolving, and it will be of great interest to use
these technologies to evaluate how the different stromal cell elements that are involved in
bone metastasis may be visualized in live animals. Nanotechnology applications in medicine
are in their infancy, and efforts are underway to use our knowledge of the bone
microenvironment to target nanoparticles to tumour sites within bone. Stromal-targeted
nanoparticles can have applications that are diagnostic, therapeutic or both: such agents have
been dubbed ‘theranostics’.

We hope that advances in understanding the basic biology of bone remodelling,
biomechanics and haematopoiesis, coupled with the advances in cancer genetics, will
continue to yield new and exciting therapeutic targets and insights into cancer metastasis in
bone.
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At a glance

• Bone metastases are a common complication of cancer and are generally
incurable. They cause considerable pain, pathological bone fractures and
hypercalcaemia. Up to 50% of patients prescribed anti-resorptive drugs to treat
bone metastases develop new bone metastases, skeletal complications and
disease progression, emphasizing the need for new therapies.

• Tumour invasion into bone is associated with osteoclast and osteoblast
recruitment. Osteoclasts secrete acid, collagenases and proteases that
demineralize the bone matrix and degrade matricellular proteins. Macrophage
colony stimulating factor and receptor activator of NF-κB ligand (RANKL) are
important growth factors that support osteoclastogenesis, and they are primarily
produced by osteoblasts. Osteoprotegerin is an endogenous decoy receptor of
RANKL that inhibits osteoclastogenesis.

• Bone marrow mesenchymal stem cells are directed along the osteoblast lineage
through local factors, such as transforming growth factor-β (TGFβ), bone
morphogenetic proteins (BMPs) and WNT proteins. These pathways lead to the
expression of three key transcriptional regulators of osteoblast function,
including RUNX2.The osteoblast-stimulating activity of metastatic tumour cells
is thought to be due to the ability of these cells to express many of the factors
that can drive osteoblast formation.

• Osteoblasts and bone marrow stromal cells may attract metastatic tumour cells
to bone and provide a niche through protein interactions that include integrins,
such as α4β 1–vascular cell adhesion molecule 1; chemokines, such as
CXCL12–CXCR4; BMPs; Notch; nestin; and osteopontin. These mechanisms
are similar to the physiological recruitment of haematopoietic stem cells.

• The invasion and growth of metastatic tumour cells in the bone involves the
modulation of a large number of genes and proteins that include matrix
metalloproteinases, parathyroid hormone-related protein, TGFβ, interleukin-6,
Jagged 1–Notch, GLI2, RUNX2, hypoxia-induced growth factor 1α, calcium
and the calcium-sensing receptor.

• Beyond the effects on osteoclasts and osteoblasts, tumours in the bone
microenvironment recruit and modulate the function of platelets, myeloid cells,
immune cells and nerve cells, and induce the formation of new blood vessels.
These changes all help to ensure the growth and survival of metastatic tumour
cells in bone and represent important therapeutic targets.

• Drugs, such as bisphosphonates or RANKL antibodies, that target
osteoclastogenesis decrease the incidence of skeletal complications and are the
current standard of care for patients with bone metastases. These anti-resorptive
agents might also have direct antitumour effects.

• Advances in our understanding of the basic biology of bone remodelling,
biomechanics and haematopoiesis, coupled with the advances in cancer genetics
and tumour imaging should yield new therapeutic targets and insights into
cancer metastasis in bone.
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Figure 1. Bone remodelling
The bone is a dynamic hard tissue that undergoes a continuous remodelling process to
maintain skeletal strength and integrity, with 10% of the skeleton being replaced annually.
In a finely balanced, coupled and sequential process (indicated by the dashed arrows),
haematopoietic stem cell (HSC)-derived osteoclasts resorb bone (releasing growth factors
and calcium) and mesenchymal stem cell (MSC)-derived osteoblasts replace the voids with
new bone, a process that is dependent on osteoblast commitment, proliferation and
differentiation coupled with osteoblast production of type I collagen and its subsequent
mineralization to form the calcified matrix of bone. Osteocytes, which are terminally
differentiated osteoblasts that are embedded in bone, sense mechanical strain, signal to
osteoclasts and osteoblasts, and participate in the remodelling process206. Bone lining cells
are osteoblastic in origin and have been proposed to form both a canopy over remodelling
sites and a layer over bone surfaces, as well as a conduit to communicate with osteocytes207.
The endosteum and periosteum (the lining on the inner and outer bone surfaces) contain a
population of tissue macrophages, termed osteomacs, which are likely to have important
roles in bone remodelling208. M-CSF, macrophage colony stimulating factor; RANK,
receptor activator of NF-κB; RANKL, RANK ligand.
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Figure 2. Cross-section of bone depicting stages of bone metastases
Schematic representation of tumour cell interactions within the bone microenvironment
during stages of tumour metastasis to bone — tumour cell homing, dormancy, colonization
and expansion. Tumour cells home to and enter the bone marrow cavity and either remain
quiescent or dormant or begin growth and colonization. Tumour-mediated recruitment and
modulation of bone-residing cells (osteoclasts, osteoblasts, fibroblasts, blood vessels,
mesenchymal stem cells, haematopoetic stem cells (HSCs), lymphocytes, macrophages,
platelets, neurons and osteocytes) and bone matrix modifications alter the bone environment
thus favouring tumour growth and invasion and resulting in pain, fracture and further
tumour dissemination.
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Figure 3. Tumour–osteoblast interactions
Tumours produce various factors that regulate bone formation at different levels of
osteoblast development. Bone morphogenetic proteins (BMPs), WNTs and transforming
growth factor-β (TGFβ) provide signals to mesenchymal stem cells (MSCs) to move to
areas of bone formation and to differentiate to the osteoblast lineage. Osteoblast progenitors
and pre-osteoblastic cells respond to positive osteoblastic factors that are produced by
tumour cells, such as BMPs, endothelin 1 (ET1), insulin-like growth factors (IGFs), platelet-
derived growth factor (PDGF), urinary plasminogen activator (uPA) and fibroblast growth
factors (FGFs), as well as the negative regulator dickkopf 1 (DKK1). Osteoblast-associated
transcription factors include RUNX2, osterix (OSX) and activating transcription factor 4
(ATF4). Once osteoblasts produce and mineralize a collagen matrix (shown in blue) they
may undergo apoptosis, become lining cells or be sequestered in the bone matrix as
terminally differentiated osteocytes. TGFβ can function at multiple stages that include
recruiting stem cells and promoting stem cell renewal, coupling osteoclastic bone resorption
to bone formation and inhibiting osteoblast differentiation. The BMP inhibitor, noggin, as
well as endothelin A receptor antagonists, can block osteoblastic metastases. Little is known
of the potential interactions between tumours and osteocytes.
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Figure 4. Mechanisms of tumour-associated osteolysis
Tumours secrete osteolytic factors (such as, parathyroid hormone-related protein (PTHRP),
interleukin-11 (IL-11), IL-6, IL-8, vascular endothelial growth factor (VEGF), tumour
necrosis factor (TNF), Jagged 1 and epidermal growth factor (EGF)-like ligands) that
stimulate osteoclastic bone resorption either directly (indicated by solid arrows) or indirectly
(indicated by dashed arrows) by increasing the ratio of receptor activator of NF-κB ligand
(RANKL) to osteoprotegerin (OPG). Osteoclastic bone resorption causes the release and
activation of growth factors (transforming growth factor-β (TGFβ) and insulin-like growth
factors (IGFs)) and ions (calcium) that are stored in mineralized bone matrix to further
enhance the local milieu. Tumour-associated hypoxia and hypoxia-inducible factor 1α
(HIF1α) in conjunction with TGFβ can increase tumour production of VEGF and the
chemokine CXCR4 to increase angiogenesis and tumour homing. Tumour-produced matrix
metalloproteinases (MMPs) can cleave membrane-bound RANKL (blue balls) or EGF-like
growth factors (red diamonds), which can increase the ratio of RANKL to OPG to favour
osteoclastogenesis. Platelet-derived lysophosphatidic acid (LPA) and ADP act on tumour
cells to induce growth and the release of osteolytic factors IL-8 and IL-6.
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Figure 5. Clinical presentations of bone metastases
Bone metastases can be detected or indicated by various approaches. The presence of
disseminated tumour cells in the bone marrow (shown in part a by immunohistochemical
staining for cytokeratin in a bone marrow smear taken from a patient with breast cancer) is
associated with an increased risk of bone metastasis. Post-mortem examination (part b) also
clearly shows osteoblastic lesions, in this example in the vertebral bodies from a patient who
died of mestatatic prostate cancer. A bone biopsy (part c) stained with haematoxylin and
eosin from a patient with metastatic breast cancer clearly shows the invasion of the tumour
cells into the bone and the presence of osteoclasts (OCs) and osteoblasts (OBs).
Computerized tomography (CT) scans (part d) can clearly show the different types of bone
lesions: a lytic metastasis present in a vertebral body from a patient with metastatic lung
cancer; a blastic metastasis (deposition of new bone) in the pelvis of a patient with
metastatic prostate cancer; and a scan that shows a patient with metastatic breast cancer who
has both lytic and blastic metastases in the pelvis. Bone metastases can be extensive as
indicated by the full-body bone scans (part e) from a patient with metastatic breast cancer.
Metastases are clearly present in the skull, ribs, clavicles, spine, pelvis and the tops of the
femurs. Positron emission tomography using radiolabelled [18F]-2-fluoro-deoxy-D-glucose
combined with CT (part f) also clearly shows active bone metastases, in this case a sacral
metastasis in a patient with metastatic renal cancer. BV, blood vessel. Part a courtesy of R.
Aft, Washington University School of Medicine, USA. Part b courtesy of K. Pienta,
University of Michigan School of Medicine, USA. Part c courtesy of D. Novack,
Washington University School of Medicine, USA. Images in parts d–f courtesy of V.
Reichert and J. Burkett, Washington University School of Medicine, USA.
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Figure 6. Overlapping benefits of targeting tumour and stromal cells for bone metastases
The growth and survival of metastatic cancer cells in bone require the support of numerous
cells and molecules within the bone microenvironment. Many of the therapies targeted to
cancer cell signalling pathways (part a) have overlapping effects on bone stromal
components (part b), which can enhance the antitumour effects. Likewise, stromal-targeted
therapies can also target tumour cells. Many therapies target more than these two cell types,
such as receptor tyrosine kinase (RTK) inhibitors. Anti-resorptive therapies target genes and
proteins that are involved in functional osteoclast development from pre-osteoclasts and
haematopoietic progenitor cells, but most of these therapies also have direct antitumour
effects. Targeting pro-tumour and antitumour immunity that is mediated by myeloid cells
and lymphocytes and the proteins that they secrete can disrupt tumour growth in bone and in
other sites. Inhibition of platelet aggregation and activation can limit the release of platelet-
derived pro-tumour and pro-angiogenic molecules and can disrupt tumour–platelet
aggregates, reducing adhesion to bone vessels. Targeting acid-sensing and sympathetic
neurons can decrease bone pain. A reduction in pain levels can improve quality of life,
enhance mobility (which can strengthen bones and prevent fracture) and improve nutrition,
which can promote improved survival. Anti-angiogenic therapies decrease tumour burden in
bone and potential metastasis of metastases. Bone-targeted radiation not only targets tumour
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cells but can also disrupt fibroblast–stromal support of tumour cells. Numerous protein
factors (such as transforming growth factor-β (TGFβ) and bone morphogenetic proteins
(BMPs)) that are stored within the bone matrix, as well as calcium, are released during bone
metastases and can enhance tumour growth and promote the activation and release of other
bone-derived, pro-tumour growth factors. Targeting of osteoblasts through endothelin 1,
chemokine disruption, anabolic effects of proteosomes or RTK and SRC inhibition can
decrease fractures and decrease the release of tumour chemoattractants and osteoclast
growth factors. MMP, matrix metalloproteinase; XRT, radiotherapy.

Weilbaecher et al. Page 31

Nat Rev Cancer. Author manuscript; available in PMC 2013 May 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


