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Abstract
Next Generation Sequencing (NGS) has revolutionized biomedical research in recent years. It is now
commonly used to identify rare variants through re-sequencing individual genomes. Due to the cost
of NGS, researchers have considered pooling samples as a cost-effective alternative to individual
sequencing. In this article, we consider the estimation of allele frequencies of rare variants through
the NGS technologies with pooled DNA samples with or without barcodes. We consider three
methods for estimating allele frequencies from such data, including raw sequencing counts, inferred
genotypes, and expected minor allele counts and compare their performance. Our simulation results
suggest that the estimator based on inferred genotypes overall performs better than or as well as the
other two estimators. When the sequencing coverage is low, biases and MSEs can be sensitive to the
choice of the prior probabilities of genotypes for the estimators based on inferred genotypes and
expected minor allele counts so that more accurate specification of prior probabilities is critical to
lower biases and MSEs. Our study shows that the optimal number of barcodes in a pool is relatively
robust to the frequencies of rare variants at a specific coverage depth. We provide general guidelines
on using DNA pooling with barcoding for the estimation of allele frequencies of rare variants.

1 Introduction
Much attention has been paid to the identification of rare variants (MAF < 1–5%) under the
common disease rare variant (CDRV) assumption which states that many common human
diseases may be caused by multiple rare genetic variants. This is partly driven by the advances
in the Next-Generation Sequencing (NGS) technologies (See Mardis [2008] for a review) that
enable researchers to discover novel/rare variants in the genome scale. The 1000 Genomes
Project, an international research consortium, aims to sequence the genomes of over 1000
individuals of different ethnic groups. This is further motivated by the many successful
examples of the application of NGS technologies to identify numerous disease-related variants
[e.g. Ng et al., 2010; Li et al., 2010; Choi et al., 2011; O’Roak et al., 2011].

In the study of rare variants, thousands of genomes need to be sequenced to identify and
characterize these variants due to their rarity. Even though the sequencing cost has plummeted
for the last few years, large-scale whole genome or exome sequencing is still expensive and
time-consuming. Consequently, DNA pooling has been considered as a cost-effective
alternative to more efficiently employ the NGS technologies to identify and characterize rare
variants. To address the analysis needs of pooled sequence data, several statistical methods
have been developed to use DNA pooling for the detection of rare variants and their disease
associations [Kim et al., 2010; Wang et al., 2010; Bansal, 2010; Lee et al., 2011]. However,
one main limitation of pooled DNA sequencing analysis is the inability to extract individual-
level information such as genotypes for each DNA sample in the pool. To overcome this
limitation, a number of barcoding procedures have been developed where each DNA sample
is labeled with a distinct barcode [Meyer et al., 2007; Craig et al., 2008]. More recently,
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Kozarewa and Turner [2011] developed a new barcoding method which allows multiplexing
of 96 or more samples per lane for Illumina library preparation. Pooling coupled with
barcoding, therefore, offers an attractive strategy for pooled DNA analysis. However, the issue
of optimal number of barcodes in a pool has not been investigated in the literature. This is
because the sequence coverage per barcode is roughly equal to the ratio between the total
number of sequence reads from the pool and the number of barcodes. As sequencing
technologies advance, the number of reads from a single sequencing lane will continue to
increase. Therefore, the number of reads per barcode will continue to increase on average as
well. However, the added statistical power of novel variant detection may diminish as more
reads are obtained from each individual DNA sample. As a result, a good balance needs to be
achieved between the number of reads per barcode on average and the number of individual
DNA samples to be sequenced (or equivalently barcodes).

In our previous work [Lee et al., 2011], we considered study designs for the detection of rare
variants through DNA pooling. One of the main motivations for detecting rare variants is to
study the relevance of these rare variants to disease risk. A typical analysis of these variants
would involve comparing the allele frequencies of these variants between disease cases and
normal controls [Kim et al., 2010; Wang et al., 2010]. Therefore, it is critical to obtain accurate
allele frequency estimates, especially for rare variants. In this paper we examine frequency
estimates for rare variants through DNA pooling with the possibility of barcoding individual
samples. In particular, we investigate the balance issue we mentioned above for the purpose
of allele frequency estimation.

To generate next-generation sequencing data, DNA samples need to be fragmented first.
Throughout several technical steps including image processing, millions of short-reads
sequences are generated. The length of those short-reads sequence is sequencing-platform
specific. For example, the maximum short-read length for Illumina Hi-Seq 2000 is 2×100bp.
Then those short-read sequences are mapped and aligned against a reference genome as shown
in Figure 1. At heterozygous sites where the non-reference allele frequency is 50%, about 50%
of mapped short-reads are expect to contain a reference allele whereas from the other reads, a
variant is expected to be found. It illustrates the possibility of estimating allele frequencies by
means of next-generation sequencing.

Currently several approaches have been proposed for the allele frequency estimation from next-
generation sequencing. Most of these methods belong to either of the following approaches.
The first approach infers genotypes with the most likely genotype among all possibilities first
[Li et al., 2008, 2009] and estimates allele frequencies based on those inferred genotypes. In
this approach, the genotyping accuracy may affect the estimation of allele frequencies to
varying extent. Particularly, in the case of low-coverage sequencing, the confidence of
genotype calls can be lower when solely based on the maximum likelihood. As a result, it is
recommended to use a threshold for the log-likelihood ratio of the two highest likelihood. The
second approach utilizes the NGS data directly without any genotype inferences. Lynch
[2009] and Kim et al. [2010] proposed a maximum-likelihood (ML) based method by using
observed sequence base counts. One main advantage of these methods is that they perform
better than methods based on inferred genotypes at a depth of coverage no more than 6×.
However, there seems to be no benefit from using this method at the depth of coverage equal
to 12× or higher [Kim et al., 2011]. In consideration of barcoding, exome or targeted sequencing
are more suitable in our analysis. Thus the overall depth of coverage for those sequencing
strategies are modest or high. In addition, this maximum likelihood estimate is calculated by
the use of an optimization method such as the expectation-maximization (EM) algorithm so
that it may be computationally less efficient than the methods based on inferred genotypes. As
a result, an ML-based method is not considered in our analysis.
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The first approach requires SNP genotyping. For SNP genotype calling, the prior probability
of observing a heterozygote P(G = Aa) = r needs to be specified. For the novel SNP discovery,
r = 0.001 (the heterozygous rate) is used by many existing SNP genotyping methods including
MAQ and UnifiedGenotyper in GATK [Li et al., 2008; McKenna et al., 2010], whereas for
known SNP sites such as those in dbSNP, MAQ suggests using r = 0.2. Since the estimation
of allele frequencies follows the discovery of novel SNPs, we chose to use r = 0.2 rather than
r = 0.001 in this analysis. The choice of r = 0.2 seems to be arbitrary. Currently, a limitation
of those genotyping methods is to specify the prior probability r before running those methods.
Therefore, we would like to investigate how the mis-specification of the prior distribution affect
the estimation of allele frequencies. In addition, we also consider the empirical estimation of
r by jointly analyzing sequencing bases across pooled samples in a given study. We will discuss
it in more detail later. As an alternative, we may utilize population-level frequency estimates
from the 1000 Genomes Project browser (http://browser.1000genomes.org/) or NHLBI Exome
Variant Server (http://evs.gs.washington.edu/EVS/).

This paper is organized as follows. We first describe how to estimate allele frequencies with
or without the use of barcoding information. We then evaluate and compare the performance
of several allele frequency estimation procedures. The technical details are provided in the
Appendix.

2 Methods
2.1 Estimation of Allele Frequencies

Suppose that a pooled DNA sample l is constructed by tagging each of B individual DNA
samples with a distinct barcode and pooling sequencing libraries from those B sets of DNA
samples. As a result, individual sequencing data can be determined using barcode information
after sequencing the pooled sample. For a genomic location of our interest, let Clb and Xlb
denote the sequencing coverage and the number of sequencing reads harboring a rare allele
with barcode b in pooled sample l. Let Cl denote the total sequencing coverage for the pooled

sample l, i.e. .

Here we consider three methods to estimate the minor allele frequencies (MAFs) that are based
on (1) raw base counts, (2) inferred genotypes, and (3) expected minor allele counts,
respectively. Among the three estimators, the simplest one is to directly utilize raw sequencing
base counts with a weight. The weight is assigned to each individual sample according to the
proportion of the coverage depths Clb for an individual sample with barcode b among the total
coverage depth Cl for the pooled sample l containing the individual sample. The corresponding

estimator  is defined as

(1)

where . Note that this estimator amounts to sequencing a pooled sample without
barcoding. In this sense we can examine the benefit of using barcode information by comparing
this estimator with the others with respect to MAF estimation accuracy. The second and third
estimators require the calculations of the posterior probabilities of the three possible genotypes,

, Aa, or aa where A(a) denotes a major(minor) allele, for an individual sample with
barcode b in the l-th pool. For the second estimator, we infer the genotype of each individual

sample by choosing a genotype  having the largest posterior probability based on the
observed Xlb and Clb. Then the second estimator is defined as
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(2)

where  is the number of minor allele a in genotype . Instead of inferring one genotype,
the third method considers the posterior probabilities of all three possible genotypes and
calculates the posterior expected minor allele count for each individual sample. More formally,
the third estimator is obtained as follows:

(3)

where P(·|Xlb, Clb) is the posterior probability conditional on the observed Xlb and Clb. The
Appendix describes the calculation of the posterior probabilities conditional on the observed
sequencing data.

2.2 Simulation
We simulate pooled sequencing data with barcoding to assess the performance of the estimators
described in the previous section. We first consider the distribution of the coverage of B
individual DNA samples at a variant, (Cl1, …, ClB) in the l-th pooled sample for a given total
coverage depth Cl. As pointed out by Kim et al. [2010], the mean depth for each Clb is expected
to be proportional to the amount of the DNA sample with the b-th barcode in the l-th pooled
sample, represented by qlb. An intuitive way to model (ql1, …, qlB) is the following Dirichlet
distribution

(4)

where αB = (αB, …, αB) due to exchangeability among Clb’s. Note that the variation among
(ql1, …, qlB) decreases with an increase of the hyper-parameter αB in the Dirichlet distribution.
The hyper-parameter αB can be empirically estimated based on the observed Clb using the
maximum likelihood estimate. See the Appendix in Lee et al. [2011] for more details. Then
for given (ql1, …, qlB) and total coverage depth Cl, we can generate (Cl1, …, ClB) from a
multinomial distribution,

Based on the sampled values of Cl1, …, ClB, we then simulate sequencing reads along with
barcode information as shown in Figure 2 and count sequencing reads with minor allele a.
Suppose that Ylb is the number of chromosomes carrying a at the genomic location of our
interest for the individual DNA sample with barcode b in sample l. In order to simulate Xlb,
the minor allele count out of a total of Clb base reads, we first need to generate each Ylb from
Binom(2, p) where p is the population MAF. To incorporate sequencing errors, e.g. a → A and
A → a as stated in the Section 6.1, we assume the error rates of ε1 and ε2 for these two types
of sequencing errors and then simulate

where .
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3 Results
We first evaluate the performance of three estimators ,  and , which are derived from
raw base counts, inferred genotypes, and the expected minor allele counts based on conditional
posterior probabilities. To compare those estimators, the biases and mean squared errors
(MSEs) of each estimator are calculated. We consider four MAFs 0.01, 0.02, 0.03, and 0.04.
Our analysis focuses on sequencing whole-exome or specific genomic regions of interest rather
than whole-genome. Given that the mean coverage depth of exome sequencing by Illumina
HiSeq 2000 is about 150 per lane as of June, 2011, we consider the total coverage depths Cl
of each pooled sample l varying from 150, 200, …, to 1000. The sequencing error rates ε1 and
ε2 are set to 0.01. In order to take into account variations of DNA amounts contributing to the
pool, we model the amount of contribution following a Dirichlet distribution in our analysis.
As for the choice of the specification of the hyper-parameter αB, Lee et al. [2011] estimated

 from a real pooled DNA sample. We consider this value in our following analysis.
Lastly, we need to specify the prior distribution of genotypes for inferred genotypes and
expected minor allele counts. As suggested by Li et al. [2008], we initially assume that P(G =
Aa) = r = 0.2, and P(G = AA) = P(G = aa) = (1 − r)/2 = 0.4 and later examine the sensitivity
of the mis-specification of r. We also assume that each lane is used for a distinct pooled sample.

Effect of coverage depth per sequencing lane
First, we investigate the effect of coverage depth Cl on biases and MSEs. We set the number
of barcodes B per pooled sample to 12 which is a popular choice in practice. The total sample
size N is assumed to be 600 so that the total number of pooled samples or sequencing lanes

L is 50. As shown in Figure 3(a), the raw counts based estimator,  has constant biases

The biases of  are also shown to be overall higher than those of  and  except at a low
coverage depth. In our analysis, we consider the prior probabilities of all possible genotypes
suggested by Li et al. [2008]. Those prior probabilities, P(aa), P(Aa), and P(AA) are 0.4, 0.2,
and 0.4 respectively. In this case, for rare SNPs, P(aa) and P(Aa) are over-specified whereas
P(AA) = 0.4 is under-specified. At a lower coverage, the posterior probabilities of genotypes
are more affected by this mis-specification of the prior probabilities, which may increase in

the biases of  and more so for  but there can still be a decent chance that a genotype is

inferred correctly. Hence  is less affected by a lower coverage than . We will look into the
sensitivity to prior distributions later. Figure 3(b) shows that the MSE of each estimator and

illustrates that the performance of  is overall comparable to the one based on true genotypes
and the best among the three estimators considered regardless of the true MAF p and the

coverage depth of each sample, Cl. Therefore  is a preferable choice for the MAF estimation
of p under the settings we consider in this manuscript. The estimator based on the expected

minor allele counts,  also performs similarly to  but has larger biases and MSEs for lower
coverage depths (< 30× coverage per individuaul). We also found that as the depth of coverage

per lane increases up to 500× (About 40× per sample on average or higher), the MSEs of 

and  tend to decrease but that in this case, the depth of coverage per lane higher than 500×

seems to be excessive in terms of the MSE. In addition, the raw counts based estimator,  has
approximately constant MSEs around (0.01)2 across different coverage depths. It suggests that

the biases are dominant in the MSEs of  because
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and the bias is

for a small population MAF p. This pattern also seems to be the case for the other estimators,
which are reflected in Figures 3(a) and 3(b).

Effect of number of sequencing lanes
We also investigate the effect of the number of sequencing lanes being used, L, on the
performance of the suggested estimators. Here we choose Cl = 500 in this analysis since the
MSEs are stabilized around Cl ≥ 500 when B = 12 as shown in Figure 3. At this point, an
intriguing question is on the number of sequencing lanes required to achieve a sufficiently low
MSE. We consider the situation where there are a larger number of individual DNA samples
available, for example, N = 960 so that an experimenter can utilize up to 80 lanes depending
on the availability of research fund. In the case of a limited budget on the sequencing
experiment, the experimenter may want to use as few sequencing lanes as possible while
achieving a very lower MSE. To answer this question, we can study the benefit of more lanes.
Figure 4 illustrates that the use of more sequencing lanes leads to reduced MSEs as expected.
However, the rate of decrease in the MSE becomes less as L increases so that there is little
benefit for L ≥ 60 in the scenarios considered.

Effect of number of barcodes per lane
Due to advances in sequencing technology, the amount of data per sequencing lane would
continue to increase. Figure 3 indicates that for a fixed number of individual samples per pooled
sample, B, significant increase in the coverage depth per lane Cl may not lead to continued
reduction in bias and MSE so that it is worth investigating the performance of our estimators
as a function of B, the number of individual samples or barcodes used in pooled sample l for
a given coverage depth Cl. We consider B = 12, 24 …, and 120 when Cl = 500. As we increase
the number of barcodes, the coverage depth for an individual sample with barcode b, Clb, will
decrease. As shown in Figure 5, due to the misspecification of the prior probabilities of

genotypes, the biases of those two estimators, especially , rapidly increase and thus the
corresponding MSEs increase as the number of barcodes B increases. Moreover, under the

given conditions, both  and  have higher biases and MSEs than  for B = 108 and 120 (4×
or 5× coverage per barcode). Figure 5 also shows that as the number of distinct barcodes in a

pooled sample increases, the variances of  and  tend to decrease whereas the biases of
those estimators tend to increase. So the optimal barcode size can be determined where the
MSE in minimized. As shown in Figure 6, these two factors counter balance each other, which

can lead to an optimal number of barcodes, B* for  under a specific setting. Interestingly,

the optimal number of barcodes B* of  is insensitive to MAFs to some extend (between 20

and 28). On the contrary, the bias of  increases at much higher rate than the variance of 
decreases so that the minimum number of barcodes initially defined would be the optimal

number of barcodes for  (See Figure 5).
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Effect of prior distribution specifications
From Figure 5, we can observe that the misspecification of the prior probabilities of three
genotypes can induce a potentially large upward bias, especially when the coverage depths
Clb’s are low on average. Here we want to investigate the sensitivity to the prior assignment.

For this analysis, we consider the estimation of MAF p = 0.01 by using . In this case, P
(Aa) = 2p(1−p) = 0.0198 under the Hardy-Weinberg equilibrium. We choose five different
values for P(Aa) = r including the true one r = 0.0198 and r = 0.2 which is the default value in
MAQ for known SNPs [Li et al., 2008]. Figures 7 and 8 show that the bias and MSE can be
sensitive to the choice of r and, in particular, that for a lower coverage Cl, a more accurate
specification of r produces much lower bias and MSE. Figure 8 illustrates that with different
values of r, the optimal pool size is between 24 and 48 (10 ~ 20× coverage per barcode on
average). In addition, we investigate the impact of the prior misspecification on the discrepancy
between true and inferred genotypes by

(5)

where  and  are true and inferred genotypes respectively. As shown in Figure 9, for rare
SNPs, the prior misspecification may require a bit higher sequencing coverage when the MAQ
default value to minimize Equation 5 when P(Aa) = 0.2 is used. Under the given assumption
on sequencing errors, about 15× coverage per barcode seems to be enough to infer genotypes
correctly across different prior probabilities and MAFs. However, when taking into account
the pooling variation, we may need a higher sequencing coverage to infer genotype more
accurately overall.

4 Discussion and Conclusions
Our analysis shows that the bias is the dominant factor in the MSE for each estimator. The

estimator  based on sequencing raw bases, as expected, has a higher bias in most cases

compared to  and . In this case, the bias seems to be mainly affected by sequencing errors

for a rare SNP. For the other two estimators  and , the bias reduction can be achieved by
the increase in the coverage depth Cl for each pooled sample. However, for lower Clb’s, the

biases of  and  can significantly increase due to the misspecification of the prior probability
of P(Aa) = r. In this case, as shown in Figures 7 and 8, a choice of r is critical to the reduction

of the bias of . Despite the advance in the NGS technologies, sequencing at medium/low-
coverage is still expected to be a cost-effective study design because of larger samples.
Therefore, it is important to select r informatively. If the MAF p were known, we could assign
2p(1 − p) to r. However, since the MAF of a SNP to be investigated is often unknown, we may
need to consider estimating r from the data sets. In particular, for a large-scale study, we can
estimate the prior probability r by jointly analyzing sequencing data across pooled samples as

follow. Under the Hardy-Weinberg equilibrium (HWE), r can be estimated by .
Here we consider two approaches to empirically estimating r. The first one is to estimate r by

plugging  in the HWE formula. The second approach begins with calling genotypes for a

SNP with a given prior probability, say r = 0.2 and estimating  by using . Then, it updates

 by iteratively calling genotypes with  estimated at the previous step until  converges.
Figures 10 and 11 show the results based on r = 0.0198 (the true value), 0.2 (the default value

of MAQ) and those empirical estimates  and . It is shown that ’s based on empirical

estimates  and  overall perform comparably to  with the true value of r. It indicates the

potential benefit of using one of those empirical estimate  and  instead of r = 0.2, the default
value of MAQ for known SNPs, as pointed out by Nielsen et al. [2011].
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In summary, we have considered the estimation of MAFs of rare variants through NGS with
pooled DNA samples with or without barcodes. We investigated the performance of three
estimators based on raw sequencing bases, inferred genotypes and expected minor allele counts

respectively. In our simulation study, the estimator based on inferred genotypes,  overall
performs better than the other two estimators except when the coverage depth per barcode in
a pooled sample is very low (coverage per barcode on average < 5×). Our study also shows
that the optimal number of barcodes in a pool is somehow robust to the MAFs of rare variants
at a specific coverage depth. This is a very favorable property as the MAF of the rare SNP to
be estimated is unknown. Moreover, DNA pooling with barcoding can also be a very cost-
effective approach for genetic association studies, and this will be examined in our future work.
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6 Appendix

6.1 The Posterior Probabilities of Genotypes
For the sake of simplicity, we only consider two possible sequencing errors (A → a and a
→ A). Here we assume that ε1(ε2) is the sequencing error rate when a(A) is mis-sequenced
into A(a). If X represents the number of sequencing reads with minor allele a at a genomic
location, the likelihoods of the three genotypes {AA, Aa, aa} are

where C is the coverage depth at the location. Then the posterior probabilities of the three
genotypes can be calculated by using Bayes rule as follows:

where P(G = g) is the prior probability for the genotype g ∈ {AA, Aa, aa}. For the prior
specifications for inferring genotypes at known SNP sites, Li et al. [2008] suggested P(G =
Aa) = r = 0.2, and P(G = AA) = P(G = aa) = (1 − r)/2.
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Figure 1.
Short-read Alignment: Visualization of Sequence Short-reads (Gray Horizontal Line
Segments) Mapped to the Reference Genome (Sequence of Nucleotide Bases in Color at the
Bottom) by Integrative Genomics Viewer (IGV).
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Figure 2.
Schematic illustration of the structure of raw sequencing reads at a genomic location through
the next-generation sequencing with barcoding. Here A and a represent the major and minor
alleles for a variant.
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Figure 3.
Bias/MSE against coverage depth per sequencing lane. The total number of barcodes in a
pooled sample, B = 12. The total coverage depth of each sample, C = 150, 200, …, 1000. The
total number of pooled samples, L = 50. The sequencing errors ε1 = ε2 = 0.01.

Lee and Zhao Page 13

Stat Biosci. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Bias/MSE against the number of sequencing lanes L (L = 5, 10, …, 80). The total number of
barcodes in a pooled sample, B = 12. The total coverage depth of each sample, Cl = 500. The
sequencing errors ε1 = ε2 = 0.01.
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Figure 5.
The Variance/Bias/MSE against the number of barcodes per sequencing lane within a pooled
sample. The total coverage depth of each sample, Cl = 500. The total number of pooled samples,
L = 50. The total numbers of barcodes in a pooled sample under consideration are B = 12, 24
…, 120.
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Figure 6.
The Variance/Bias/MSE of  against the number of barcodes per sequencing lane within a
pooled sample with MAFs p = 0.01, 0.02, 0.03 and 0.04. The total coverage depth of each
sample, Cl = 500. The total number of pooled samples, L = 50. The sequencing errors ε1 =
ε2 = 0.01. The total numbers of barcodes in a pooled sample under consideration are B = 12,
…, 120.
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Figure 7.
The effect of prior specification on Bias/MSE against coverage depth per sequencing lane. The
total number of barcodes in a pooled sample, B = 12. The total coverage depth of each sample,
C = 150, 200, …, 1000. The total number of pooled samples, L = 50. The sequencing errors
ε1 = ε2 = 0.01.
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Figure 8.
The effect of prior specification on Variance/Bias/MSE against the number of barcodes per
sequencing lane within a pooled sample. The total coverage depth of each sample, Cl = 500.
The total number of pooled samples, L = 50. The sequencing errors ε1 = ε2 = 0.01. The total
numbers of barcodes in a pooled sample under consideration are B = 12, 24, …, 120.
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Figure 9.
The average squared distance between true genotypes and inferred genotypes against
sequencing coverage per barcode. The sequencing errors ε1 = ε2 = 0.01. The prior
specifications of P(Aa) = 0.025, 0.05, 0.1 and 0.2 (MAQ default).
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Figure 10.
Bias/MSEs based on empirically estimated  (the first approach) and  against coverage depth
per sequencing lane. The total number of barcodes in a pooled sample, B = 12. The total
coverage depth of each sample, C = 150, 200, …, 1000. The total number of pooled samples,
L = 50. The sequencing errors ε1 = ε2 = 0.01.
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Figure 11.
Bias/MSEs based on empirically estimated  (the first approach) and  against the number
of barcodes per sequencing lane within a pooled sample. The total coverage depth of each
sample, Cl = 500. The total number of pooled samples, L = 50. The sequencing errors ε1 =
ε2 = 0.01. The total numbers of barcodes in a pooled sample under consideration are B = 12,
24, …, 120.
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