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Abstract

The coordinated secretion of LH and FSH are critical for reproductive functions. After translocation into the endoplasmic
reticulum (ER), their biosynthetic routes diverge at a determinative step prior to sorting in the regulated (LH) and
constitutive (FSH) secretion pathways. Recently, we identified a C-terminal heptapeptide sequence, present only in the LHb
subunit, as a critical signal for entry of the LH dimer into the regulated pathway. We showed that an LHbmutant lacking the
heptapeptide (LHbDT) assembled more efficiently with the a subunit than wild-type LHb subunit, and this LHDT dimer was
secreted constitutively. Thus, an association exists between the presence of the C-terminal heptapeptide and sorting of the
LH heterodimer to the regulated pathway. To study how this delayed LHb subunit assembly is related to the trafficking of
LH, we exploited the single subunit transfection model in rat somatotrope-derived GH3 cells with the use of
immunofluorescence confocal microscopy. The LHb subunit showed a distinct immunofluorescent localization as
compared to the FSHb subunit and LHb mutants. The wild-type LHb subunit exhibited a perinuclear staining corresponding
to the ER/nuclear envelope region. In contrast, the wild-type FSHb subunit and the mutants LHbDT and LHbL119A displayed
no detectable perinuclear staining; only peripheral ER puncta were observed. Also, no perinuclear fluorescence was
detected in cells expressing the LH heterodimer. We propose that the C-terminal heptapeptide is responsible for delayed
heterodimer assembly within an ER sub-domain of the nuclear envelope, as an early partitioning event necessary for the
entrance of LH into the regulated secretory pathway, whereas FSHb does not traverse the nuclear envelope region. These
data suggest that, at least for LH, the molecular decision to enter the regulated secretory pathway is a pre-Golgi event
controlled by the novel C-terminal heptapeptide.
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Introduction

The glycoprotein hormone family includes the pituitary LH,

FSH and TSH and the placental hormone hCG. LH and FSH,

essential for normal follicular development and ovulation, are

synthesized in the same gonadotrope cell, but their secretion

pathways differ. Following exit from the Golgi complex, LH is

stored in dense core granules and is released in pulses via the

regulated pathway in response to gonadotropin releasing hormone

[1,2]. In contrast, FSH is secreted primarily through the

constitutive pathway and approximates its biosynthetic rate [3–

5]. That secretion of LH and FSH overlaps at the pre-ovulatory

surge of the estrous cycle [6,7], raises the fundamental question as

to how two structurally related gonadotropin hormones are

released from the same cells through distinct secretory routes.

Defining the early signals that govern the unique intracellular

trafficking routes of LH and FSH and to understand the

mechanistic link between their secretion and reproductive function

has been a major goal of our laboratory [8–10] and others [11–

15].

This entire gonadotropin quartet is comprised of heterodimers

that share a common a subunit but differ in their hormone-specific

b subunits. Thus, it was reasonable to conclude that the b subunit

contains the trafficking cues responsible for diverting LH and FSH

to their respective secretory pathways. In support of this, we

reported that the C-terminal heptapeptide in the LHb subunit, not

found in the FSHb subunit, is essential for the regulated release of

the LH dimer [16–18]. The manner in which this peptide

functions as a sorting signal, however, is not clear.

It is known that b/a subunit assembly occurs within the ER

lumen [19,20]. Earlier observations that might explain the

mechanism of the LHb heptapeptide demonstrated that unassem-

bled pituitary b subunits do not efficiently exit the ER in the

absence of the a subunit [9,10,21]. Although co-expression with

the a subunit rescued the b subunits, there were major differences

in the extent of assembly of the b/a subunit pairs. For example,

whereas more than 80% of the FSH dimer was generated and

subsequently secreted [21], less than 10% of the LH dimer was

formed [8,22]. The conclusion was that the LHb heptapeptide

accounted for this inefficient assembly. Taken together, these data

imply a link between LHb/a assembly and the sorting step for LH,
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both of which depend on the presence of the C-terminal

heptapeptide. To address this hypothesis, we performed a series

of morphological studies using the rat somatotrope-derived GH3

cell line, which contains both, regulated and constitutive secretion

pathways. We used immunofluorescent confocal analysis of clones

expressing single unassembled LHb and FSHb subunits, and their

corresponding mutants. In support of this model, we demonstrate

that the newly synthesized LHb subunit localizes to the ER/

nuclear envelope (NE) region, while the FSHb subunit displays no

detectable perinuclear staining, but only peripheral ER distribu-

tion. Taken together, the C-terminal heptapeptide is responsible

for directing LH to the regulated secretory pathway via the ER/

NE region, whereas the initiation of FSH trafficking involves a

different locus of the ER. The implication of these novel data is

that, at least for LH, the decision to enter the regulated pathway

involves a pre-Golgi event prior to entering the trans-Golgi

network as is traditionally believed.

Results

Previous studies from our laboratory revealed that the C-

terminal heptapeptide in the LHb subunit functions as a sorting

determinant for the regulated secretion of the LH heterodimer

[16,17]. Deletion of this heptapeptide from the LHb subunit

(LHbDT, Fig. 1) led to a constitutively secreted LHDT dimer [16].

To investigate the function of the heptapeptide in the sorting

pathway, confocal immunofluorescence staining was performed in

GH3 cells expressing single unassembled LHb and FSHb subunits

and mutants. When comparing the LHb and FSHb staining

patterns (Fig. 2) the most striking feature is the perinuclear

localization of LHb (70.163.3% of cells; .200 cells; Fig. 2A),

whereas FSHb displays only a pattern of dispersed cytoplasmic

puncta (Fig. 2B). No detectable staining was seen when normal

rabbit serum (NRS) was substituted for the LHb immuno probe

(Fig. 2C). To verify that the LHb staining was confined to the NE

region, we co-stained LHb with a known marker of the NE [23], a

monoclonal antibody against nuclear pore complex proteins

designated mAb414 (Fig. 3). It is clear that this marker delineates

the NE (Fig. 3B). Merged images confirmed that the LHb subunit

is localized in the NE region (Fig. 3C). It is unclear why the LHb
staining is not more uniform and exhibits a clustering at the NE. It

may be related to an incomplete ER overlap at the NE since

staining mAb 414 shows a relative uniform punctate staining of the

NE. The numerous punctate images of the LHb and FSHb
subunits do not correspond to the expected diffused network of

ER. However that their staining is similar to the ER marker,

calnexin (see below) shows that the subunits reside in the ER.

Since less that 10% of the LHb and FSHb subunits are secreted,

and the majority of the pool accumulates in the ER, not freely

diffusible in the lumen, it is likely that these subunits are bound to

a component in the ER and/or accumulate at ER exit sites. In any

case the issue is that the distinctions in the biosynthetic pathways

are initiated at an earlier stage.

Because the heptapeptide is critical for LH sorting, we suspected

that NE localization of LHb was due to this sequence. To test this

prediction, we stained cells expressing LHbDT; no distinctive

perinuclear staining was observed (Fig. 4A). To further examine

the role of LHb heptapeptide, GH3 cells expressing a chimera

comprised of the FSHb gene fused to the sequence encoding the

heptapeptide (FSHb-L) were immunostained with a monoclonal

antibody against the FSHb subunit (Fig. 4B). If the perinuclear

staining of the LHb subunit is attributed to the heptapeptide, the

FSHb-L chimera should also exhibit a comparable staining

pattern. Similar to LHb, the FSHb-L chimera displayed a

perinuclear-staining (67.962.6% of cells; n .200 cells; Fig. 4B;

Table 1). As expected, mouse IgG exhibited no detectable staining

(Fig. 4E).

Previously we identified a dileucine motif in the heptapeptide

that accounted for directing LH dimer to the regulated pathway

[24]. This predicts that mutating the determinant Leucine 119 to

Alanine in the LHb subunit (LHbL119A, Fig. 1) should reduce the

staining of the mutant in the NE region. The LHbL119A mutant

showed uniform cytoplasmic staining (Fig. 4C) rather than

accumulation in the NE region characteristic for the LHb subunit.

The next experiments addressed the question of whether the LH

heterodimer is also targeted to the NE. GH3 cells expressing LH

dimer, and immunostained with CGb polyclonal antiserum,

exhibited no distinct localization in the NE region (Fig. 4D).

Thus, the accumulated LHb subunit is displaced from the NE

region of the ER to peripheral ER upon combination with the a
subunit. The results confirm that only b subunits bearing the

heptapeptide accumulate in the perinuclear region and this

sequence is responsible for targeting the non-assembled LHb
subunit to this area.

To examine if the different staining patterns for LHb, FSHb
and mutants were influenced by their intracellular expression

levels, lysates of the GH3 lines synthesizing individual subunits

were examined by Western blotting (Fig. 5). LHb and its variants

migrated at 20–22 kDa (Fig. 5A, lanes 1–3; arrow). The expression

of LHbDT and LHbL119A was 1.2 and 2-fold higher, respec-

tively, compared to the level of LHb (Fig. 5B). It is unclear as to

the identity of the proteins migrating at approximately 25 kDa

(Fig. 5A, asterisk), but it is likely due to aggregation and because

they are not observed under reduced conditions as previously

shown [25]. Thus, it is evident that the lack of staining in the

perinuclear region for LHbDT and LHbL119A are not due to

their reduced synthesis (Fig. 5A, lanes 2, 3) compared to LHb
(Fig. 5A, lane 1). FSHb and FSHb-L (detected as 2 bands) show

comparable protein levels (Fig. 5A, lanes 4, 5, 5B). To detect the

FSHb and FSHb-L subunits, it was necessary to expose blots 10-

fold longer time than for the LHb (Fig. 5A). This difference in

sensitivity may be related to variations in antibody affinities. While

we cannot exclude expression of LHb (and its analogs) are more

robust, that the sensitivities for FSHb and FSHb-L are similar

implies that the immunoreactivity of the FSHb antibody is less

than the corresponding LHb immunoprobe. Since the protein

levels of FSHb and FSHb-L are comparable – but only the mutant

displays significant perinuclear staining – the lack of perinuclear

FSHb staining is not related to differential intracellular expression

levels, but rather the presence of the heptapeptide sequence in the

FSHb-L chimera.

Because CHO and MDCK cells lack a regulated secretory

pathway, we also examined the fluorescence staining of the LHb
subunit in these cells (Fig. 6). In contrast to GH3 cells, both cell

lines expressing LHb showed only dispersed cytoplasmic puncta

with no detectable perinuclear staining (Fig. 6A, B). The data

imply that the LHb staining in the NE region of GH3 cells is

associated with cells secreting protein via the regulated route.

The preferential staining of LHb in the ER region of the nuclear

envelope in GH3 cells compared to peripheral ER staining

suggests that the spatial separation might coincide with selective

chaperone binding. To address this point, we examined the

localization of two endogenous ER chaperones (Fig. 7), immuno-

logical heavy chain-binding protein (BiP) and calnexin (CNX). BiP

is localized to the ER lumen [26,27], and CNX is an integral ER

membrane protein and both contribute to early protein folding

events in the secretory pathway [28–30]. Single staining of non-

transfected GH3 cells with BiP antiserum revealed an intense

Sorting of LH and FSH in GH3 Cells
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signal predominantly located in the perinuclear area forming a

punctate ring with some staining in the cell periphery (Fig. 7A,

Table 1), which has also been shown by others [31]. In contrast,

CNX exhibited generalized ER staining throughout the cell

(Fig. 7C). The implication of these data is that the prominence of

BiP staining in the perinuclear region of the ER might be related

to the presence of the regulated pathway in GH3 cells. To address

this point, we examined staining pattern of endogenous BiP in

CHO cells, which secrete proteins primarily through the

constitutive pathway. In contrast to GH3 cells, BiP staining in

CHO cells is not concentrated to the nuclear envelope, but rather

scattered throughout the cell (Fig. 7B). These data imply that the

prominent nuclear envelope/ER staining of BiP in GH3 cells is

associated with the regulated secretion pathway.

To examine the LHb subunit co-localization with ER chaper-

ones, dual stainings were performed with a monoclonal antibody

against LHb, and polyclonal antisera against BiP or CNX (Fig. 8).

Significant co-localization of LHb and BiP in the perinuclear

region (Pearson’s correlation coefficient, r = 0.83260.014, p,0.01)

indicated by yellow color in the merged image (Fig. 8C) implies the

unique ER retention of unassembled LHb is co-incident with BiP

in the same ER sub-domain. In contrast, only some co-staining of

LHb with CNX was detected (Pearson’s correlation coefficient,

r = 0.25260.021) in the NE and in the peripheral regions of the

ER (Fig. 8, arrow). These data suggest that the presence of BiP

drives the accumulation of LHb in the NE region.

Discussion

Our prior findings indicated that the C-terminal heptapeptide

in the LHb subunit was associated with a complex of intracellular

determinative actions regarding the secretory fate of LH dimer:

Extent of assembly [10,32], basolateral release from the pituitary

[33], and controlling entry into the regulated pathway [16]. Here,

we identified another feature of the heptapeptide, its ability to

direct the LHb subunit to a perinuclear sub-domain of the ER,

which is distinct from localization of the FSHb subunit. Our

conclusion is based on: 1) localization of the LHb subunit to the

perinuclear region of cells, 2) no detectable perinuclear staining of

the LHbDT and LHbL119A mutants, and 3) dispersion of FSHb
subunit fluorescence throughout the peripheral ER, with perinu-

clear staining for the FSHb-L chimera. These data support a

model in which the regulated biosynthetic routing of LH is

initiated at a sub-domain of the ER, the nuclear envelope region,

and depends on the presence of the LHb heptapeptide sequence.

We further validated our conclusion by examining LHb
localization in transfected CHO and MDCK cells, which secrete

Figure 1. Schematic diagram of human gonadotropin subunits. The crosshatched area of the region 115–121 denotes the heptapeptide of
the LHb subunit. N, Asn-linked oligosaccharides.
doi:10.1371/journal.pone.0065002.g001
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Figure 2. Subcellular localization of LHb (A) and FSHb (B)
subunit in GH3 cells. The cells were immunostained with CGb
antiserum (green) and monoclonal antibody against FSHb subunit
(green). Note unique ER/perinuclear staining pattern for LHb (A, arrow)
vs. dispersed cytoplasmic puncta for FSHb subunit (B, arrowhead). The n
indicates the nucleus (red). The micrographs shown are representative
of four to eight experiments and are at the X100 and X150
magnification. NRS (C), normal rabbit serum.
doi:10.1371/journal.pone.0065002.g002

Figure 3. Co-localization of LHb subunit with a nuclear
envelope marker (A–C). GH3 cells expressing the LHb subunit were
immunostained with CGb antiserum (A, green) and mAb 414 (B, red).
The merged image (C) indicates co-staining of LHb subunit with the
nuclear pore complex proteins (yellow, arrow). Nuclei (n) were
counterstained using TOPRO-iodide-3 (blue shown only in C). These
images are representative of four independent experiments. X150.
doi:10.1371/journal.pone.0065002.g003
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proteins only constitutively [18,33]. This additional set of

experiments permitted us to ask whether the LHb perinuclear-

staining pattern is unique to cells containing the regulated

pathway. No significant perinuclear staining was observed in

either CHO or MDCK cells, rather, only dispersed cytoplasmic

puncta were detected, indicative of peripheral ER localization. In

contrast to the single LHb subunit data, no significant perinuclear

staining of the assembled LH dimer was evident in GH3 cells.

Essentially all of the fluorescence was observed as dispersed puncta

in areas of the peripheral ER. The ability of heterodimer

formation to successfully release the LHb or FSHb-L pool from

the ER/nuclear envelope region is in agreement with our previous

claim [9] that the a subunit serves as an escort/chaperone to

further traffic the LH heterodimer through the regulated secretory

pathway.

Studies in other systems have shown that proteins can

interchange between the peripheral ER domains/NE [34,35].

For example, TorsinA (TorA), a member of the AAA+ ATPase

family, is an ER protein required for normal neurological function.

Although TorA resides in the peripheral ER, its primary site of

action is at the nuclear envelope. The distribution of TorA in the

ER/NE is related to the levels of endogenous ER transmembrane

proteins and variations in the expression of these proteins results in

redistribution of TorA in the ER/NE. In addition, site-directed

mutagenesis of a hydrophobic amino terminal stretch in TorA also

alters the distribution between ER/NE.

Several recent reports describe the ER as a mosaic of specialized

sub-domains, which have distinct functions, as well as a specific

distribution of resident proteins [36–43]. Moreover, the ER-

resident membrane Sec61 complex that comprises the translocon

is present in the nuclear envelope [44]. These data support the

hypothesis that the transfer of LH during its biosynthetic

maturation involves more than one ER compartment, and

implicate BiP in this schema. BiP facilitates the proper folding

and assembly of multi-subunit complexes and it associates with the

incompletely folded human CGb subunit - which shares 85%

amino acid identity with the LHb subunit - resulting in a mature

assembly-competent subunit [45,46]. Moreover, the primary

interactions between BiP and polypeptides occur at small

hydrophobic patches of 7–9 amino acids [47,48]. Thus, we

suggest that BiP occupies the heterodimer interface of the LHb
subunit and is subsequently displaced by the a subunit resulting in

movement of LH dimer from the perinuclear to the peripheral

region of the ER and exits to the cis Golgi. The co-localization of

LHb and BiP at perinuclear sites supports this conclusion. LH may

also enter the secretory pathway in vesicles that bud directly from

the NE. It has been demonstrated that the COP II and, to a lesser

extent COP I vesicles, are known to bud from the NE [49–51].

In summary the data imply that both the ER and trans-Golgi

are critical for gonadotropin sorting. The first sub-domain

segregation of LH and FSH synthesis occurs in the ER and

Figure 4. Subcellular localization of LHbDT (A), FSHb-L (B), LHbL119A (C) subunit and LH dimer (D) in GH3 cells. The cells were
immunostained with CGb antiserum (green) and a monoclonal antibody against FSHb subunit (green). Note unique ER perinuclear staining pattern for
FSHb-L mutant (B, arrow) vs. dispersed cytoplasmic puncta for LHbDT and LHbL119A subunit (A, C, arrowhead) or LH dimer (D, arrowhead). The n
indicates the nucleus (red). The micrographs shown are representative of four to eight experiments. IgG (E), mouse immunoglobulin.6100.
doi:10.1371/journal.pone.0065002.g004

Table 1. Summary of subunit/chaperone localization in the
ER of GH3 cells.

ER Localization

Subunit/
Chaperone

Heterodimer
Secretion Perinuclear Peripheral

LHb Regulated + +

LHbDT Constitutive 2 +

LHbL119A Constitutive 2 +

FSHb Constitutive 2 +

FSHb-L Regulated + +

BiP NA + +

CNX NA +/2 +/2

doi:10.1371/journal.pone.0065002.t001

Figure 5. Representative Western blot of cell lysates (50 mg
total protein/lane) derived from GH3 cells. (A) The migration of
subunits (arrows) and molecular mass markers are indicated. Note the
longer time exposure (Exp.) for FSHb and FSHb-L (lanes 4 and 5)
compared to LHb and mutants (lanes 1–3). Bands at approximate
25 kDa presumably represents protein aggregates (*). In addition,
LHbDT and FSHb-L are separated on SDS-PAGE gel into 2 bands
(arrows). b-Actin was used as an internal control. (B). Histogram of
densitometric measurements for LHb, FSHb and mutants. The protein
level for LHb and FSHb was arbitrarily set as 1. Fold changes in
expression level of LHb mutants and FSHb-L were compared with LHb
and FSHb, respectively. Each value indicates the mean 6 SEM (n= 3).
*Significant difference from LHb with p,0.05.
doi:10.1371/journal.pone.0065002.g005

Sorting of LH and FSH in GH3 Cells

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e65002



subsequently, protein transfer to the Golgi leads to recognition of

sorting motifs in the hormone and packaging to unique vesicle

populations. This model provides an explanation of how an

intracellular pool of non-combined a, LHb and FSHb subunits

can assemble in the ER to generate LH and FSH heterodimers,

and ultimately sorting them to their distinct regulated and

constitutive secretion pathways.

Figure 6. Immunostaining of LHb subunit in CHO (A) and MDCK
(B) cells. The cells were immunoprobed with CGb antiserum (green).
Note that LHb shows dispersed cytoplasmic puncta (A, B, arrowhead)
with no ring-like pattern near nucleus. The n indicates the nucleus (red).
The micrographs shown are representative of four experiments. X150.
doi:10.1371/journal.pone.0065002.g006

Figure 7. Immunolocalization of endogenous BiP (A, B) and
calnexin (CNX, C) in non-transfected GH3 or CHO cells. For GH3

cells the BiP antiserum (A, red) stained predominantly around nuclei
(arrow), while the CNX antiserum (C, red) showed peripheral ER staining
(arrowhead). Note that BiP in CHO cells (B) is localized as dispersed
cytoplasmic puncta with some aggregation near the NE (arrowhead).
Nuclei (n) were counterstained using TOPRO-iodide-3 (blue). The
micrographs shown are representative of four experiments.
doi:10.1371/journal.pone.0065002.g007

Sorting of LH and FSH in GH3 Cells

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e65002



Materials and Methods

Reagents and Antibodies
Ham’s F-12 medium, DMEM/F12, Dulbecco’s phosphate-

buffered saline (DPBS), L-glutamine, trypsin and penicillin/

streptomycin were obtained from Fisher Scientific (Pittsburgh,

PA). The neomycin analog G418 was obtained from Research

Product International (Mt. Prospect, IL). Normal rabbit serum

and bovine serum albumin (BSA) were purchased from Sigma (St.

Louis, MO). Fetal bovine serum (FBS) and horse serum (HS) were

Figure 8. Dual immunostaining of LHb expressing cells with endogenous BiP (A–C) or calnexin (CNX, D–F). GH3 cells were
immunostained with LHb monoclonal antibody (green) and BiP (red) or CNX (red) antisera. The yellow color in merged images indicate co-localization
(C, F). Note that both LHb and BiP display ring-like patterns near nuclei (arrows). There is a significant co-localization of LHb subunit with BiP
(Pearson’s correlation coefficient, r = 0.83260.014, p,0.01). In contrast, LHb subunit shows a weak co-staining with CNX (Pearson’s correlation
coefficient, r = 0.25260.021). These images are representative of four independent experiments. X150.
doi:10.1371/journal.pone.0065002.g008
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obtained from Harlan Bioproducts for Science, Inc. (Indianapolis,

IN) and Gibco (Grand Island, NY), respectively. [35S]Cysteine was

obtained from MP Biomedicals, Inc. (Irvine, CA). Lipofectamine

2000 and Pansorbin were purchased from Invitrogen Corp.

(Carlsbad, CA) and EMD BioSciences Inc. (La Jolla, CA),

respectively. Normal goat serum, mouse IgG and VectaShield

mounting medium were purchased from Vector Laboratories

(Burlingame, CA). Antiserum against a or CGb (which also detects

LHb but does not cross react with the a subunit) subunits were

prepared in our laboratory. Monoclonal antibody against nuclear

pore complexes (mAb414) was purchased from Covance (Prince-

ton, NJ). Antiserum against BiP was a gift from Linda Hendershot

(St. Jude Children’s Research Hospital, Memphis, TN) [26,27]

and CNX antiserum was purchased from Enzo Life Sciences

(Plymouth Meeting, PA). The b-actin monoclonal antibody was

purchased from Sigma (St. Louis). Monoclonal antibodies against

human LHb and FSHb subunits were a gift from Organon (B.V.)

[17,24]. TOPRO-iodide-3, goat anti-mouse IgG and goat anti-

rabbit IgG conjugated to Alexa Fluor 488 or conjugated to Alexa

Fluor 568 were bought from Invitrogen Corp. (Carlsbad). Protein

Assay was obtained from Bio-Rad Laboratories (Hercules, CA).

Tropix Chemiluminescent Substrate, Tropix Nitro-Block Lumi-

nescence Enhancer, I-Block, goat anti-mouse IgG and goat-anti

rabbit IgG conjugated to alkaline phosphatase were purchased

from Applied Biosystems (Foster City, CA). Complete protease

inhibitor cocktail tablets were from Roche Diagnostic (Indiana-

polis, IN).

Cell Culture, Transfection and Selection of Stable Cell
Clones
GH3 cells were a gift from the late Dr. Dennis Shields (Albert

Einstein College of Medicine, New York, NY) [16–18]. The cells

were grown (no more than 35 passages) at 37uC in Ham’s F-12

medium supplemented with 12.5% HS, 2.5% FBS, 2 mM L-

glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin in a

humidified 5% CO2 incubator. CHO (from American Type

Culture Collection) [8–10] and MDCK (strain II, gift of Dr.

Sharon Milgram from University of North Carolina, Chapel Hill,

NC) [33] cells were cultured in Ham’s F12 or DMEM/F12,

respectively, supplemented with 5% FBS, 2 mM L-glutamine,

100 U/ml penicillin, and 100 mg/ml streptomycin. Cells were

transfected with genes encoding a, LHb, LHb114 (designated

LHbDT), LHbL119A, FSHb or FSHb chimera (designated

FSHb-L) subunits (Fig. 1) using vector pM2 HA [16]. The mutant

LHbDT described previously [8] lacks a seven-amino acid

extension (Leu-Ser-Gly-Leu-Leu-Phe-Leu) at the C terminus of

the LHb subunit. The mutant LHbL119A was constructed (Fig. 1)

where Leucine119 codon was mutated to Alanine [24]. To

construct the FSHb-L chimera, the heptapeptide sequence of the

LHb subunit (plus a stop codon) was inserted in-frame at the 39-

end of the FSHb subunit [16]. Transfection was performed using

Lipofectamine 2000 on semi-confluent cells in 6-well plates

according to the manufacturer’s instructions [16,17,24]. Stable

clones were selected with 0.25 mg/mL of G418. Single colonies

were isolated and subsequently screened by immunoprecipitating

proteins from the media and lysates of [35S] cysteine labeled cells.

Several clones (n = 5 per subunit) were maintained in culture and

used for the experiments described below.

Immunofluorescence and Confocal Microscopy
Single or double-stained immunofluorescence microscopy was

performed to assess the subcellular distribution of the (A)

glycoprotein subunits, (B) nuclear pore complexes (the NE marker,

mA414), and (C) the ER chaperones, BiP and CNX. GH3, CHO,

and MDCK cells expressing subunits were grown on Fisherbrand

Superfrost-Plus microscopy slides (Fisher Scientific, Pittsburg) in

Petri dishes. The cells were fixed with 4% paraformaldehyde for

20 min at room temperature (RT) and permeabilized with 0.2%

Tween-20 (diluted in DPBS) for 10 min [16]. Cells were then

incubated in 20% normal goat serum for 1 h to block nonspecific

binding and washed three times for 10 min in 2% BSA in DPBS.

Cells were incubated at RT with primary antibodies (1:250–

1:1000 dilution in 2% BSA/DPBS) for 30–60 min, washed and

stained with goat anti-rabbit IgG conjugated to either Alexa Fluor

488 or to Alexa 568 (1:250 dilution) and goat anti-mouse IgG

conjugated to Alexa Fluor 488 or conjugated to Alexa 568 for

20 min. Following three washes in 2% BSA/DPBS, and once in

DPBS, nuclei were counterstained with TOPRO-iodide-3 (1:500

diluted in DPBS) for 15 min. After several washes with DPBS, the

cells were mounted in VectaShield mounting medium. Negative

controls for polyclonal antisera or monoclonal antibodies were

normal rabbit serum or mouse lgG, respectively. Immunostaining

against nuclear pore complex proteins was performed at 4uC.
To determine whether LHb subunit co-localizes with endoge-

nous ER chaperones, GH3 cells were double immunostained with

LHbmonoclonal antibody, plus BiP or CNX polyclonal antiserum

followed by incubation with Alexa Fluor 488 (green fluorescence

for LHb) and Alexa Fluor 568 (red fluorescence for BiP and

CNX)-conjugated secondary antibodies. Control immunostaining

of cells incubated either with two primary antibodies and one

secondary antibody, or with one primary and two secondary

antibodies were also performed. The corresponding single staining

for LHb, BiP or CNX was also included in these experiments.

Confocal imaging was performed with an Olympus FV-500

confocal microscope with a z-interval of 0.5 mm using x100 oil

objective (image size 102461024 and 5126512 pixel images). All

confocal images represent the sum of 4–6 adjacent confocal planes

from the stack and a zoom setting of 1 and 1.5. For dual staining,

green and red immunofluorescence was imaged sequentially to

ensure no overlapping excitation between channels. Processing of

images was performed using the Metamorph Image software

package (Molecular Devices Corp., Downington, PA). Maximum

intensity projections of confocal z-series were made in Image J

(v1.4, NIH, Bethesda, MD). Images were assembled in Adobe

Photoshop (CS3) and panels were labeled in Adobe Illustrator

(CS3).

Western Blot Analysis
Intracellular expression of LHb, LHbDT, LHbL119A, FSHb,

and FSHb-L proteins were examined in lysates by Western

blotting. After termination of culture, cells were washed with ice-

cold DPBS and lysated in the presence of protease inhibitor

cocktail. After centrifugation protein concentrations in superna-

tants were determined with the Bradford reagent using BSA as a

standard. For LHb, FSHb and mutants, 50 mg of proteins were

resolved on 15% SDS-PAGE in the absence of heat or reducing

agent and transferred onto nitrocellulose. The LHb or FSHb
monoclonal antibodies were incubated for 1 hour at RT in DPBS

with 0.1% Tween-20. The b-actin monoclonal antibody was used

as an internal control. The membranes were probed with alkaline

phosphatase-coupled secondary antibodies for 1 hour at RT and

developed using Tropix chemiluminescence substrate.

Analysis of Data
For each gonadotropin subunit and dimer, the percentage of

cells showing the perinuclear staining pattern was calculated in 5–

8 fields per slide (200–700 cells). That only LHb and FSHb-L
showed the perinuclear pattern, their data (mean 6 SEM; n= 5
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experiments) were analyzed by t-test, with p,0.05. The bands

from Western blots were densitometrically scanned using a GS-

710 calibrated Imaging Densitometer and quantified using the

Quantity One Software (BioRad Laboratories Inc.). The protein

level for LHb and FSHb was arbitrarily set as 1 and fold changes

in the expression level of LHb mutants and FSHb-L were

compared with LHb and FSHb, respectively. Statistical analysis
was performed by t-test. Each experiment was repeated four-eight

times and the results are expressed as mean 6 SEM, with p,0.05

considered significantly different. Co-localization between LHb
and BiP or CNX was calculated with an ImageJ using JACoP

program [52,53] and expressed as Pearson’s correlation coefficient

(rCC). The RCB images were converted to an 8-bit grayscale and

an automatically detected threshold was applied to eliminate the

background. The rCC, which can range from 21 to +1, greater
than 0.69 was considered to indicate significant co-localization

[52,53]. Co-localization was analyzed in 5–10 fields in a single

experiment. Each experiment was repeated three to five times and

the results are expressed as mean 6 SEM. Statistical significance

was performed by t-test with p,0.01.
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