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Abstract
We develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use
this model to drive the fluid-structure interaction (FSI) between the ensuing blood flow and a
mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta
configuration. The kinematic model is of lumped type and employs a cell-based, FitzHugh-
Nagumo framework to simulate the motion of the LV wall in response to an excitation wavefront
propagating along the heart wall. The emerging large-scale LV wall motion exhibits complex
contractile mechanisms that include contraction (twist) and expansion (untwist). The kinematic
model is shown to yield global LV motion parameters that are well within the physiologic range
throughout the cardiac cycle. The FSI between the leaflets of the mechanical heart valve and the
blood flow driven by the dynamic LV wall motion and mitral inflow is simulated using the
curvilinear immersed boundary (CURVIB) method [1, 2] implemented in conjunction with a
domain decomposition approach. The computed results show that the simulated flow patterns are
in good qualitative agreement with in vivo observations. The simulations also reveal complex
kinematics of the valve leaflets, thus, underscoring the need for patient-specific simulations of
heart valve prosthesis and other cardiac devices.

Keywords
cardiac electrophysiology; FitzHugh-Nagumo model; left heart hemodynamics; patient-specific
modeling; bi-leaflet mechanical heart valve; fluid structure interaction

1. Introduction
In spite of significant recent advances in imaging modalities for studying cardiac
hemodynamics [3, 4, 5], present-day in vivo measurement techniques can only resolve large
scale blood flow features [6]. Understanding flow patterns in the heart at physiologic
conditions and scales sufficiently fine for establishing quantitatively links between heart
disease and patient-specific hemodynamics continues to remain a major research challenge.
This challenge becomes even more formidable when prosthetic heart valves are implanted
[7]. For instance, in vitro experiments with simplified models of the left heart [8, 9, 10, 11]
and fluid-structure interaction (FSI) computational studies in straight [12, 13, 14, 15, 1, 2,
16, 17] and anatomic [18] aorta geometries have clearly shown that at physiologic
conditions the presence of a prosthetic heart valve gives rise to complex flow patterns
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characterized by fine scale flow structures and transition to turbulence. This complex and
dynamically rich flow environment is widely believed to be the major culprit for the clinical
complications that arise following implantation of valve prosthesis [19, 20]. Considering the
resolution limitations of present-day in vivo measurement techniques and the complexity of
the underlying flow environment, high-resolution numerical simulation appears to be the
only viable option for advancing our understanding of cardiac hemodynamics especially in
the presence of prosthetic heart valves. For computational algorithms, however, to yield
clinically relevant results their degree of realism needs to be drastically enhanced by
incorporating into the modeling framework multi-physics elements of cardiac function along
with input from modern imaging modalities and in vivo measurement techniques. In this
paper, we report some progresses in that direction by developing a high-resolution FSI
algorithm for simulating a bi-leaflet mechanical heart valve (BMHV) implanted in the aortic
position of an anatomic beating left ventricle (LV) whose wall motion is simulated via a
lumped-parameter model inspired by cardiac electro-physiology.

Critical prerequisite for simulating the motion of a BMHV in a beating left heart is the
development of a model for simulating the LV hemodynamics, which is dominated by the
complex interaction of the blood flow with the compliant and continuously deforming heart
walls. Patient-specific simulation of the ensuing FSI problem from first principles is a
formidable task since total heart function emerges as the result of the coupled interaction of
the blood flow with a host of molecular, electrical and mechanical processes that occur
across a wide range of scales [21, 22]. At the cellular level contractile forces that cause the
heart muscle to move are generated as cells are repolarized or depolarized by absorption or
release of several ions (such as [Ca+], [Cl]−, [Na]+, [K]+ etc., respectively). The resulting
electrical excitation wave propagates throughout the heart via a fast conducting system
known as the Purkinje fibres network [23]. Such cable-like conducting system controls the
myocardial activation sequence and is thus very important for the emerging LV contraction
[24]. At the tissue level, the heart wall is structured into three main layers: the outermost
epicardium; the myocardium; and the innermost endocardium, which is in contact with the
blood flow. The myocardium is significantly thicker than two other layers and contributes
most of the contractile forces. The myocardial muscle fibers bind themselves into “sheet-
like” structures [25, 21], which are laid on top of each other wrapping around the LV
chamber from the base to the apex and vice versa. At the organ level, the activation of
cardiac cells also depends on the ions transport through the system of coronary arteries.
Therefore, simulation of the whole heart organ continues to remain elusive as it would
require a multi-physics simulation framework spanning a variety of scales ranging from
metabolism of cardiac cells to the large scale fate transport (oxygen, ions .etc) in coronary
arteries and the aorta [26, 4, 22].

Available models for simulating blood flow in the heart can be broadly classified based on
their spatial dimension and degree of sophistication into four categories [27, 28]: 1) Lumped
and one-dimensional (1D) model; 2) Two-dimensional (2D) models; 3)Three-dimensional
(3D) models with prescribed heart wall motion; and 4) Three-dimensional models with
coupled FSI simulation of blood flow and tissue mechanics (3D-FSI).

1D models rely on a non-linear relation between the LV pressure and the blood flow via an
empirical, black box simulator [29, 30, 31, 32, 27, 33]. Such models are simple to use and
can efficiently obtain the pressure and volume curve but they are inherently incapable of
providing the flow field inside the LV chamber.

2D models typically simulate idealized LV models [34, 35, 36]. Although these models can
incorporate more physics than their 1D counter-part, their extension to simulate realistic LV
flow in patient-specific geometries is difficult, if not impossible.
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3D models employ a three-dimensional LV geometry, which can be idealized [37] or
anatomic [38], with the wall motion prescribed either through simple analytical functions
[37] or using patient-specific data [39, 40, 38]. In the latter category of 3D models [39, 40,
38], the patient-specific LV kinematics is reconstructed directly from in vivo MRI
measurements. Such models can incorporate a high-degree of patient-specific realism
provided that imaging modalities of sufficient resolution are available to accurately
reconstruct the wall motion. Since the present day scanning frequency per heart beat
(frames/s) is technologically limited, however, temporal interpolation between successive
MRI images must be used to reconstruct the LV wall motion over the cardiac cycle [41, 39,
40, 38]. Obviously the accuracy of the resulting kinematics, and consequently the clinical
relevance of the 3D hemodynamic model, depends both on the accuracy of the interpolation
technique and the initial temporal resolution of the MRI images. The spatial resolution of
MRI can also be a potential source of error and uncertainty especially when subtle modes of
the LV wall motion, such as twisting due to spiral fiber contraction [28], are to be
incorporated in the model. The reconstruction of such feature ensures the fine scale structure
of the flow be capture realistically.

From the modeling sophistication standpoint 3D-FSI models [42, 43, 44, 45, 46, 47, 28, 48],
are the most advanced as the heart wall is allowed to interact with the blood flow in a fully
coupled manner. Critical prerequisite for the success of such models is the development of
patient-specific constitutive models for the cardiac tissue that not only account or the
interaction of blood flow with the heart wall but also for the interaction of the heart with
surrounding organs [22]. These complexities require extensive assumptions on the heart wall
structure and electrical activation [28] to enable fully-coupled blood-tissue interaction
simulations, which could compromise the physiologic realism of the resulting models [45,
44, 46, 28]. The first attempt to develop such a model was the pioneering work by Peskin
and co-workers [49, 50] who assumed that myocardial fibers are discretely distributed. In
this model the heart was assumed to be embedded in a periodic domain filled with fluid and
the simulations were carried out at conditions that were not physiologic [50]. More recent
versions of this model have been able to carry out simulations at higher cardiac volume flow
rate [51, 52, 43, 17]. Other 3D-FSI models have attempted to raise the degree of patient-
specific modeling realism by incorporating information acquired from non-invasive imaging
modalities. Such models have incorporated continuous fiber distribution into the wall model
[28] and even attempted to couple the electrical excitation with the tissue response [47, 22].
The main challenges confronting this class of models stem from the previously discussed
limitations in the resolution of imaging modalities as well as the extensive simplifying
assumptions that need to be incorporated in the FSI model.

With only exception the work by Peskin and co-workers [51, 52], who simulated native
heart valves, all previously discussed computational models have focused on the LV
hemodynamics and neglected the presence of heart valves. Furthermore, and to the best of
our knowledge, FSI simulations of heart valve prosthesis ([see 53, for a recent review]) have
been thus far carried out in idealized straight aorta models [54, 55, 15, 2, 16, 17] or anatomic
aorta models [56]. For both cases the valve motion and so-induced systolic phase
hemodynamics were driven by an imposed flow wave form at the inlet of the computational
domain. To our knowledge, high resolution FSI simulation of an implanted heart valve
prosthesis in a patient-specific beating left heart under physiologic conditions has yet to be
reported in the literature.

In this work, we report computational advances that have enabled us to carry out high-
resolution simulations of patient-specific LV hemodynamics with a BMHV (see Fig. 1)
implanted in the aortic position. We develop a lumped-parameter, cell-based model of the
LV wall motion, which is inspired by cardiac electro-physiology and yields physiologic LV
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kinematics during the entire cardiac cycle. We use this model to prescribe the motion of the
anatomic LV system in our simulation. The so prescribed LV wall motion drives the
hemodynamics in the LV/aorta domain and the ensuing motion of the implanted BMHV
leaflets, which is calculated via a coupled FSI approach.

In what follows, we begin by presenting the cell-based model of the LV wall kinematics.
Subsequently we present the FSI method for simulating flows in arbitrarily complex
domains with moving immersed boundaries. The method is based on the Curvilinear
Immersed Boundary (CURVIB) method developed by [1] and extended to FSI problems by
[2]. Finally we demonstrate the potential of the computational framework by applying it to
simulate the flow in a domain consisting of an anatomic LV and the aorta, reconstructed
from MRI data from a healthy volunteer, with the BMHV implanted in the aortic position
and a flow wave form imposed at the mitral orifice to simulate the effect of the mitral valve.
Comparisons with available data are presented to demonstrate that the method yields
physiologic results and future extension and generalization of the method are discussed.

2. Computational Methods
We simulate incompressible flow of a Netwonian fluid in the computational domain shown
in Fig. 2. The domain consists of two sub-domains: the LV and the aorta sub-domains,
respectively. The LV sub-domain contains the left ventricular chamber with incoming flow
from the mitral orifice. This sub-domain is filled with fluid whose motion is driven by the
moving heart wall. The LV sub-domain is connected to the aorta sub-domain via the LV
outflow track (LVOT) interface. The aorta sub-domain contains the BMHV (solid domain)
embedded within the fluid-filled aorta (fluid domain).

We denote the fluid domain as Ωf and the solid domain as Ωs (see Fig. 2b). The subscripts f
and s will be used to indicate the fluid and solid domains, respectively, throughout this
manuscript. The interface between the fluid and the solid domain is denoted as Γ = ∂ΩF =
∂ΩS. The portions of the interface between the BMHV leaflet interface and the blood flow is
denoted as ΓFSI, since the motion of the leaflets is determined via a coupled FSI algorithm in
our model. The endocardium surface, the mitral inlet, the aorta and the outlet of the
descending aorta are denoted as ΓLV, Γinlet, Γaorta and Γoutlet, respectively. Therefore, in our
computational domain the interface Γ between solid and fluid is given by Γ = ΓFSI ∪ ΓLV ∪
Γinlet ∪ Γaorta ∪ Γoutlet as shown in Fig. 2.

In our model we neglect the motion of the aortic domain, Γaorta and Γoutlet, as well the
motion of the portion of the LV domain which is close to the mitral opening Γinlet. All other
parts of the boundary move either with prescribed motion or as the result of coupled non-
linear FSI. We can thus express Γ as follows: Γ = ΓM ∪ ΓS, where ΓM is the moving portion
of the boundary (= ΓFSI ∪ ΓLV) and ΓS is the portion of the boundary that is held stationary
(= Γinlet ∪ Γaorta ∪ Γoutlet).

We discretize the interface between the moving portion of the boundary and the fluid
domain using a set of material points [57] i = 1, I with coordinates xi defining the interface
ΓM = ΓM (xi). The motion of material points are tracked in a Lagrangian manner by solving
the following equation:

(1)

where vi is the velocity vector of the ith material point. Since the two portions, ΓFSI and ΓLV,
of ΓM move as a result of different physical processes, we treat each one of them with
different numerical techniques described below.

Le and Sotiropoulos Page 4

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1. The left ventricle kinematics model for ΓLV

In this work, we develop a novel model for reconstructing physiologic LV kinematics by
adopting a lumped-parameterization approach [29, 30, 27], which is simple and
computationally efficient yet sufficiently sophisticated to reproduce the essential physiologic
features of the LV kinematics including features that are difficult to obtain from MRI data
such as the LV wall spiral twisting and untwisting motions.

The model to be described below is applied to animate an anatomical left heart geometry
reconstructed from MRI scanned images of a healthy subject provided to us by the
Cardiovascular Fluid Mechanics Laboratory of the Georgia Institute of Technology. The
ventricle model is shown in Fig. 3 and its basic dimensions are as follows: the long and short
LV axes length are L = 80mm and DL = 47mm, respectively; the diameter of the aorta at the
LV OT is D = 26.7 mm; and the mitral annulus diameter is DM = 37mm. Due to the BMHV
implantation the mitral annulus is blocked partially. The mitral orifice opening area is
reduced to a circular area with diameter Dorifice = 22.5 mm and the effective mitral opening
area is MV A = 3.97 cm2, which lies entirely in the physiological range [58, 59] of an adult
subject. No mitral valve is included in the model and thus the mitral orifice is set to be fully
open during diastole and fully closed during systole.

We seek to develop a model that enables us to estimate and prescribe the activation
sequence, expressed in terms of a time-dependent transmembrane potential p(t). It is
important to emphasize, however, that p(t) in our model should be viewed as a parameter of
a lumped model, which is calibrated to animate the LV wall motion. With p(t) given, a
lumped model for the electrical excitation of the endocardium is derived as a function of p(t)
[60] based on a heuristic approach [30]. The so obtained electrical excitation drives through
the proposed model muscle deformation and animates the LV wall. Such excitation
sequence depends on several factors, including the transport of ions in the coronary arteries
as well as the transmission of the electrical current in the Purkinje network. Therefore,
incorporating in the model a specific p(t) functionally corresponds to a lumped-modeling
approach that reflects the emergent large scale dynamics of the heart wall. Nevertheless, the
development of our model is guided by cell-based processes and, as we will show, it can be
calibrated to yield physiologic characteristics of the wall motion.

The model is based on the following three assumptions. First, we assume that the base and
the apex of the LV are stationary. Second, we model the endocardium as the wall surface
since this is the only layer of the heart muscle that comes in contact with the blood flow. The
endocardium surface ΓLV is discretized with an unstructured grid with Je material nodes as
shown in Fig. 4. Each material node j (j = 1, Je) is assumed to represent one endocardium
cell. Third, the motion of each material node in response to the cardiac electrical stimulation
is assumed to be a function of a time-dependent transmembrane potential p(t).

The instantaneous velocity vector of the jth material node (j∈ΓLV) can be expressed as
follows:

(2)

where , and  are the radial, tangential and axial velocity components, respectively,
and ir, iθ, and iz are the corresponding unit vectors (see Fig. 3 for coordinate definition).
Starting from a known instantaneous configuration of the LV wall, i.e. all position vectors xj
for j∈ΓLV are known at the initial time t0, and assuming that the velocity vector of each cell
is known as a function of time, Eq. 2 can be readily integrated in time for all material points
j = 1, Je to update the shape of the LV wall at the next instant in time. In what follows, we
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develop a model for the time dependent velocity vector of each material node that ultimately
relates the wall velocity to the time-dependent transmembrane potential p(t).

To develop a mathematical model that couples electrical (p) and mechanical (vj) activity of
the heart, we begin by considering existing electro-mechanical models (see [61], for a recent
review). Following [61], the cardiac tissue mechanical stress can be decomposed as the sum
of a passive and active component. The passive stress component is the classical second
Piola-Kirchoff tensor while the active stress Ta expresses the stress that develops in the
cardiac tissue during cellular depolarization. In the model proposed by Nash and Panfilov
[61], Ta is expressed as the function of the non-dimensional transmembrane potential p via
the following equation:

(3)

where KTa is a coefficient that controls the amplitude of the active stress response. Equation
3 shows that the temporal variation of the active stress is governed by a wave propagation in
the medium excited by the transmembrane potential. Since the instantaneous velocity of
each material point is a function of both the passive and active stress components, and
inspired by the underlying wave-like electromechanical physical processes implied by Eq. 3,
we propose a simple model that expresses the instantaneous velocity magnitude υj = |vj(t)|
of each material point as a function of a time-dependent, wave propagation component (G)
(due to the active stress) and a spatial component S (due to the passive stress) as follows:

(4)

The spatial distribution part of the stress is modeled as a power law [62] expressed in the
cylindrical coordinate system shown in Fig. 3. More specifically, we assume that S varies
along the endocardium as a function of the radial (rj) and longitudinal (zj) coordinates of
each material point as follows:

(5)

The wave propagation component G in Eq. 4 can be thought of as the total transmembrane
current for each cardiac cell, which depends on p(t). To develop a model for G we assume
that its spatial and temporal variation is governed by FitzHugh-Nagumo type models, which
have previously been used succesfully for modeling cardiac tissues [61, 63, 64]. In its
simplest form the FitzHugh-Nagumo model reads as follows [65, 66, 64, 61]:

(6)

where D is the media conductivity tensor, the parameters c1 and c0 are model-dependent
constants, q is the recovery variable, and b, d are recovery constants. To simulate the
excitation of the whole media, one needs to solve the system of Eqs. 6 to get the spatial
distribution of the current G [61]. Since for a patient-specific case, the conductivity D is not
known in advance Eqs. 6 cannot be solved.
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To circumvent this difficulty, we employ a lumped modeling approach by assuming that the
patient-specific transmembrane potential p(t) is somehow known, say it can be measured in
vivo via a modality like electrocardiography or it can be obtained via patient-specific
calibration. By adopting this assumption we eliminate the need for solving the FitzHugh-
Nagumo system of equations for each material node. However, the challenge of deriving a
reasonable approximation for G as a function of p still remains.

We note that the electrical excitation of a given cardiac cell, which is expressed in terms of
G, depends on processes that occur within the cell itself as well as the interconnections of
the cell with neighboring cells via the Purkinje network [21]. Therefore, we propose to
model G(xj, t) as a product of a local, time-dependent part Ej(t), which is a lumped model of
processes in the given cardiac cell, and a wave-propagation part S(xj, t), which accounts for
interconnections between neighboring cardiac cells, as follows:

(7)

In the Eq. 7, Ej is assumed to be a function of the time-dependent potential pj, i.e. Ej(t) = E
[pj(t)]. We assume that E has similar form with that of the current G under equilibrium
condition, denoted as Ge. Following [61], we can obtain the equilibrium solution from the

FitzHugh-Nagumo system of equations by setting  and  in Eqs. 6. Doing so, we
obtain for an isolated cell at equilibrium the following expression for Ge:

(8)

Or:

(9)

To account for transient effects in p(t) and q(t), we express Ej as a function of Ge but also
introduce exponential decay terms as follows:

(10)

where the functional pj(t) and the model constants c0,c1, c2 and c3 are selected as part of the
calibration of the model in the range reported in previous studies [66] (see below).

The S(xj, t) term, which models the large scale interconnection between cells, has been
observed in – vivo to be well described as a large scale mechanical wave [67, 68, 69]. We
thus propose to model S in Eq. 7 as a sine wave function [70, 68] with scaling frequency
factor fs and phase lag φ, as follows:

(11)

where κ0 and κ1 are parameters of the model while T is the heart beat cycle. Heaviside
function H(t − ts) is used to simulate the cell repolarization process starting at time ts, where
the cardiac cells recover their potential (T – wave in ECG signal). Note that the scaling
frequency factor is fs ≠ 1 because the mechanical response wave does not have the same
frequency with the heart beat. In the model proposed by Eqs. 11, we have assumed that the
mechanical activation wave only propagates along the main LV axis (z direction). However,
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it is possible to model the wave propagation along the LV circumference by adding further
parameters to the functional form of S.

Eqs. 4 to 11 above complete the model for the instantaneous velocity magnitude υj(t) of
each material node. The final step before the three-dimensional LV wall configuration can
be updated in time by integrating Eq. 2 is to define the three components of the velocity
vector. To do so, we employ an empirical approach for distributing the known velocity
magnitude υj along the three cylindrical coordinate directions as follows:

(12)

where α,β and γ are parameters of the model satisfying α2 + β2 + γ2 = 1, which are selected
as described in the following section.

Calibration of the LV kinematic model—We calibrate the model parameters (i.e α, β,
c0 etc.) and the functional form for p(t) to ensure that the resulting temporal variation of the
LV volume V = V(t), dV/dt, agrees with reported values in the literature [44, 35].

We adjust the gross features of dV/dt through the specific functional p(t). In this study, we
assume that all material points j = 1, Je have the same functional form of p(t). During
diastole, the LV exhibits a pure elastic expansion (untwist motion). Thus p(t), as a lumped
parameter, is allowed to have a (mechanical wave) peak during E-wave filling. The atrial
contraction, which induces the LV to expand at late diastole, is also modeled as another
(mechanical wave) peak of p(t) during A-wave filling. During systole, the LV depolarization
is at work and p(t) variation reflects such electrical activity. The systolic depolarization is
simulated with a large positive peak in the variation of p(t) (or the QRS complex) [71]. We
simulate the potential recovery of the cells (T – wave of ECG) [71] by a rapid drop p(t) to
zero value at the end of systole.

We fine-tune dV/dt by appropriately adjusting the parameter κ0 in Eq. 11. The parameters
c0, c1, c2, c3 that appear in Eq. 10 are calibrated around the values reported in the literature
for cardiac tissue [66]. The final step is to fine-tune the wall motion by selecting the
parameters α, β and γ used to define the components of the velocity vector. These
parameters are estimated based on the relative magnitude of the three velocity components
obtained from MRI measurements of the velocity of material points on the heart wall [72].
The final values of the various calibrated model parameters are summarized in Table 1 while
the calibrated functional form for p(t) is shown in Fig. 8. At the end of systole, we calibrate
the LV kinematics via the parameter κ1 in Eq. 11 so that the total regurgitant flow volume
through the BMHV during diastole is approximately 10ml according to the reported in the
literature values for St. Jude Regents valve [73], which is the valve we employ in our
simulations.

2.2. Fluid-structure interaction numerical method
Governing equations and boundary conditions for fluid domain Ωf—We treat
blood as incompressible, Newtonian fluid with constant viscosity ν = 3.33 × 10−6 m2/s and
specific weight ρf = 1050 kg/m3. These assumptions are widely accepted for blood flow in
the heart chamber [21]. The blood motion is governed by the unsteady, three-dimensional
Navier-Stokes equations:

Le and Sotiropoulos Page 8

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(13)

Where the stress tensor τ relates to the pressure p and strain rate ε via the Newtonian stress-

strain relation:  and .

As required by the curvilinear immersed boundary (CURVIB) method [1] we employ to
solve the governing equations in arbitrarily complex geometries (see subsequent section),
Eqs. 13 are formulated in cartesian coordinates and then transformed fully into generalized
curvilinear coordinates using the approach proposed by [1]. The CURVIB method is
described in more detail in section 2.3.

To solve the Eqs. 13, boundary conditions must be specified on the solid/fluid interface Γ.
As seen in Fig. 2, Γ consists of solid surfaces that are either stationary or moving as well as
inflow and/or outflow boundaries resulting from truncating the connection of the LV/aorta
system we simulate from the rest of the cardiovascular system. Depending on the
characteristics of the boundary portion, different strategies are implemented to reconstruct
the boundary conditions.

At the mitral inlet Γinlet (see Fig. 5), we model the mitral valve, which is not included in our
simulation, by prescribing a physiologic, time-dependent blood flow flux from the left
atrium to the LV chamber as boundary condition Qm = Qm(t). The mitral valve is thus
assumed to be open at all times but the flux through it varies in time in a manner that mimics
the natural pattern during diastole [11, 39] (see Fig. 8). Any spatial variability of the velocity
profile at Γinlet is neglected and the flow is assumed to be uniform at all times.

Outflow boundary conditions need to be imposed at the outflow of the aortic flow track
Γoutlet. The flux into the descending aorta Qa results from the difference between the mitral
flux Qm and the volume rate of change of the LV chamber. That is:

(14)

This condition needs to be specified at every instant in time for a well-posed incompressible
Navier-Stokes problem. For that, at every time-step we obtain the velocity field at Γoutlet by
assuming zero velocity gradient normal to the outflow boundary:

(15)

and subsequently correct the resulting velocity profile to satisfy Eq. 14 using uniform
correction.

Along the ΓLV portion of the boundary, the time-dependent LV wall motion, obtained with
the cell-activation method described in section 2.1, is prescribed as input to the simulation
and used to drive the LV blood flow. The no-slip and no-flux boundary conditions are
imposed for the velocity field at the LV wall portion ΓLV as follows:

(16)

Along the wall of the aorta domain, which as discussed above is treated as a fixed, rigid
boundary, the no-slip and no-flux boundary condition is prescribed by setting:
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(17)

In our simulations the motion of the BMHV leaflets is driven by the beating left ventricle
and, thus, the velocity at the interface between the valve leaflets and the blood flow (ΓFSI)
needs to be obtained by a coupled FSI procedure. To find the motion of the BMHV, it is
necessary to evaluate the load (moment) applied on the surface of the BMHV leaflets by the
blood flow. We can write the fluid solver as an operator F that when acting on the boundary
yields the load M imparted by the fluid on the leaflet surfaceΓFSI depending on the
boundary and initial conditions on Γ:

(18)

In the next section we describe the equations we solve to determine the motion of the valve
leaflets in the FSI algorithm.

Governing equations for solid domain Ωs—The solid body (i.e the BMHV), whose
motion is to be determined by FSI, consists of two leaflets pivoting around their rotational
axes under the pulsatile loading of the blood flow (see Fig. 1). The two leaflets are attached
via a hinge to a circular housing implanted at the LV OT (see Fig. 5).

The motion of the two leaflets is rigid body rotation around their axes of rotation. In the
Cartesian coordinate (X, Y, Z) system shown in Fig. 1, the leaflets rotational axes are
parallel to the X direction. We denote with ϕ the opening angle of the leaflet, which can be
used to express the position vector (x(X, Y, Z)) of a material point on the leaflet as follows:

(19)

where xc(X, Yc, Zc) is the projection of the material point on the rotational axis, R(ϕ) is the
in-plane rotational matrix (see below), and rc is the radial distance to the rotational axis thus:

. For the specific BMHV we use in our simulations, the maximum
angle ϕmax = 58° (fully close) and the minimum angle is ϕmin = 5° (fully open). The in-plane
(i.e X = const) rotational matrix R(ϕ) is defined as follows:

(20)

The governing equation of the leaflet motion is obtained from the conservation of angular
momentum and can be written in terms of ϕ as follows:

(21)

Here I0 as the reduced moment of inertia, which is calculated as:

(22)

where ρs and ρf are the specific weight of the solid and fluid, respectively. Finally, M0 is the
moment coefficient:
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(23)

where MX is the moment around the X axis found by integrating the fluid stress τ on the
interface ΓFSI

(24)

The structural solver therefore can be written as an operator estimating the position vector x
(and thus the angle ϕ) from the external load M and boundary conditions on ΓFSI asa
follows:

(25)

The Fluid-Structure Interaction algorithm to calculate the motion of ΓFSI—The
details of fluid-structure interaction algorithms are presented in [2] and thus only a brief
description of the method is discussed here. The kinematics of the leaflets of BMHV is the
result of the interaction between the blood flow dynamics in the LVOT and the inertia of the
leaflets. In our partition approach (Dirichlet-Neumann) FSI approach, the load (M) is
calculated from the fluid solver (F) and is prescribed as Neumann boundary condition for
the structure solver (S). The structural solver is then used to find the position of the leaflets,
which is prescribed as Dirichlet boundary conditions for the fluid solver. The kinematic
condition requires the continuity of the interface between solid and fluid (see Fig. 2):

(26)

Note that the solid/fluid boundary, which consists of the fluid-structure interaction interface
ΓFSI, is also a function of the leaflet angle ϕ. Therefore we can write:

(27)

The dynamic condition requires the continuity of the stress at the interface:

(28)

with no the slip condition on the interface ΓFSI:

(29)

The governing equations for the fluid (F) and solid (S) parts presented in the previous
sections can now be combined and expressed in operator form as follows:

(30)

(31)

Note that the operators S and F change with time and are dependent on the initial and
boundary conditions imposed on the boundary Γ. Thus this system of equations can be
written in compact notation:

(32)
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where the operator ○ denotes the transfer load at the interface ΓFSI from the fluid solver to
the solid solver and supply for the solid solver S = S(M). Therefore, the coupling between
the solid solver S and the fluid solver F is equivalent to finding the fixed point of the
operator S ○ F.

Assuming that the leaflet angle ϕ is known at time step n − 1, we solve Eqn. 32 to obtain the
leaflet angle at timestep n with the current boundary conditions on Γ via a series of strong-
coupling sub-iterations [2]. The Aitken non-linear relaxation technique is used to accelerate
convergence and enhance robustness [2, 74]. For more details, the reader is referred to [2].

2.3. Discretization and numerical integration
The numerical method for solving the governing equations combines the CURVIB method
with overset grids as shown in Fig. 2. The computational domain is decomposed into two
overlapping blocks. The first block contains the left ventricle. The moving LV geometry is
embedded in a stationary background curvilinear mesh, which outlines but does not conform
with the LV wall, and treated as a sharp-interface immersed boundary using the CURVIB
approach to effiectively handle the large wall deformation. The second block motion
consists of the aortic arch, which is discretized with a boundary fitted curvilinear mesh. The
BMHV leaflets are embedded in the background aorta mesh and treated as immersed
boundaries via the CURVIB method. The overlapping interfaces of the LV and aorta sub-

domains are  and , respectively. The governing equations are solved in each
sub-domain (see Fig. 5) using the sharp-interface curvilinear-immersed boundary
(CURVIB) method of [1] (see below). Tri-linear interpolation is used to reconstruct
boundary conditions at each node on the overlapping interface using the 8 grid points of the
neighboring sub-domain surrounding the node at the interface of the host sub-domain. The
details of the numerical method can be found in [75].

The central part of the CURVIB method is the reconstruction of boundary conditions for the
velocity field [76] at grid nodes in the immediate vicinity of the boundary. The
reconstruction is either linear or quadratic interpolation along the local normal to the solid
body [76]. The governing equations are discretized on a hybrid staggered-non-staggered
grid, which facilitates both the boundary condition reconstruction process as well as the
enforcement of the discrete divergence-free constraint [57]. We use the 2nd order accurate
QUICK scheme for the convective terms and three-point, second-order accurate, central
differencing for all other terms. For time integration, we employ a second-order accurate
fractional step methodology [1]. A Newton-Krylov solver is used to solve the non-linear
discrete momentum equations in the momentum step and a GMRES solver with multigrid
preconditioner is employed for the Poisson equation in the projection step. The CURVIB
method has been shown to be 2nd order accurate in space and time [57, 1]. The details of the
FSI solver can be found in [2] and [75].

The FSI-CURVIB flow solver has been extensively validated in [2] for pulsatile flow past a
BMHV in a straight, axisymmetric aorta and under physiologic conditions. In that work, the
computed results were compared with particle-image velocimetry (PIV) and leaflet
kinematics measurements [15] and were shown to be in very good agreement. More
recently, we have also demonstrated the ability of the method to capture very complex
vortex dynamics in impulsively driven flow through an inclined nozzle [77]. Le et al. [77]
showed that the simulations, carried out with the same numerical method we employ herein,
are in excellent agreement with the measurements [78, 79]. The inclined nozzle test case is
relevant to the simulations presented in this paper in so far as it is characterized by the
formation and instability of an inclined and asymmetric vortex ring, which, as we will
subsequently show, also dominates the LV flow during diastolic filling.
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2.4. Computational setup
As shown in Fig. 5, the LV and aorta sub-domains are discretized with grids consisting of
161 × 281 × 161 and 161 × 161 × 401 nodes, respectively. As discussed above, the grid
discretizing the LV sub-domain is a stationary curvilinear mesh that contains at all times but
does not conform to the LV wall. The aorta mesh is a boundary-conforming curvilinear
mesh. In the overlap region of the two sub-domains, the aorta block is extended along its
longitudinal axis 0.55D into the left ventricle block, where D is the aorta diameter at the
LVOT. The LV wall is discretized with an unstructured triangular mesh, as required by the
CURVIB method, with 3648 nodes as shown in Fig. 4. The BMHV leaflets are also
discretized with an unstructured mesh, with 104 nodes on each leaflet as seen in Fig. 1.

The heart beat cycle T is chosen to correspond to a heart rate of 52 bpm, T = 1.15s. The
systolic rate, ie. the ratio of the systole duration over the cardiac cycle, is chosen to be 40%
as in the normal range [80]. The systolic rate is set by allocating the length of systolic and
diastolic activation period of p(t) correspondingly. The simulation time step is Δt = 0.1074
ms, which corresponds to discretizing the cardiac cycle with N = 10710 time steps.

The valve is chosen as St. Jude Regent 23mmm implanted in the cusp-noncusp plane of the
aortic root. The symmetric plane (x = 0) of the BMHV nearly goes through the apex of the
LV chamber (see Fig. 5). The leaflet density of ρs = 1750kg/m3 (Polycarbonate) and fluid
density of ρf = 1000kg/m3 in this case resulting I0 of 0.001 (see Eqn. 22 for the definition of
I0).

3. Results and discussion
In this section we present the results of our computational model and discuss their
physiologic significance. We begin by demonstrating the ability of the model we developed
for animating the LV wall to yield kinematics that are well within the physiologic range for
a human subject. Subsequently we discuss the calculated hemodynamics during diastole and
systole and the leaflet kinematics that result from the FSI simulation of the BMHV driven by
the cell-based activation model for the wall motion.

LV wall kinematics
To demonstrate that the emerging, large-scale LV wall kinematics resulting from the
proposed model is physiologic, major global LV kinematics parameters calculated from the
model are summarized in Table 2. The most important parameter during diastole is the E-
wave velocity at the mitral orifice. In our case, the E-wave peak velocity, which is estimated
as the bulk velocity from the mitral inflow wave from, reaches 70 cm/s. This value is in the
range of measurements obtained from in vivo MRI, which range from 50 to 70 cm/s [81, 41,
38]. The variation of the LV volume over one cardiac cycle (expansion during diastole and
contraction during systole) is typically quantified in terms of its minimum (end systolic
volume or ESV) and maximum (end diastolic volume or EDV). The stroke volume (SV) is
defined as the difference of these two values, i.e. SV = EDV-ESV, and the ejection fraction
(EF) is defined as EF=SV/EDV. The values for all these important quantities for
characterization the ventricular function summarized in Table 2 are well within the
physiologic range for a normal subject [82]. For example, the range of values for EF
observed in – vivo is from 40% to 60% [82].

The instantaneous direction of the calculated wall velocity field is visualized in Fig. 6 in
terms of instantaneous LV wall streamlines at several instants during the cardiac cycle. The
velocity field is given by Eqs. 2 to 12 with the model parameters summarized in Table 1. As
seen in Fig. 6, the cell-activation model produces wall surface motion that exhibits complex
twisting motion as it relaxes in the clockwise direction (looking from the base) during
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diastole and contracts in the counter-clockwise direction during systole. These twisting
patterns are consistent with in vivo observations [21], in which the rotation of the apex
relative to the base is in the counter-clockwise direction during systole and clockwise during
diastolic untwist (as viewed from the base).

To quantify the local deformation of the LV wall, we track the motion of one material point
(see Fig. 4 for its location) on the LV wall by plotting time series of the three velocity
components at this point in Fig. 7. During the rapid filling phase (E-wave) the material point
rapidly moves toward the apex as indicated by the large positive spike in the longitudinal
velocity . At the same time the LV chamber expands at lower rate

 and twists around the LV axis . During systole, the wall
motion exhibits radial, longitudinal and twisting motions with velocities in the range of 3 −
4 cm/s.

As shown in Fig. 7, the magnitude and direction of the velocity resulting from our model
exhibits wide variations from diastole to systole in a manner that closely resembles in – vivo
data reported in [72, 83]. During the rapid filling phase (E-wave) the endocardium motion
resulting from our model is in good quantitative agreement with the MRI tissue phase
mapping data [84, 85], which report the radial expansion velocity in the range of 4-5 cm/s
and longitudinal velocity of 10 cm/s. During systole, the wall motion exhibits radial,
longitudinal and twisting motions with velocities of 3 – 4 cm/s, which also agree with the
reported values (3-5 cm/s) in the literature [84].

The calculated LV volume rate of change dV/dt during one cardiac cycle is shown in Fig. 8.
During diastole, the distinct early diastolic filling peak (E-wave) is separated from the
passive filling peak (A-wave) by a phase of very slow volume expansion, referred to as
diastasis. An important physiologic parameter is the ratio of the E- and A-waves dV/dt peaks
(E/A ratio). As shown in Fig. 8, the E/A ratio resulting from our model is approximately 1:1,
which is in good agreement with physiologic values [86, 87, 88].

In the systolic phase, the dV/dt resulting from the model becomes as low as −19 liter/min
(see Fig. 8), which is also well within the physiologic in the order of −20 liter/min [73, 19].
At the end of the cardiac cycle, and as seen in Fig. 8, the LV chamber exhibits a slight
expansion. This is due to the fact that the flow in the ascending aorta exhibits slightly
reverse regurgitant flow. This behavior is entirely consistent with what has been observed in
a number of in vivo studies [89, 90, 88].

It is important to re-emphasize that the LV volume rate of change as well as all LV
kinematic parameters presented above are driven in our model by the transmembrane
potential p(t), which is also shown in Fig. 8. Our main assumption is that the p(t), which is
similar to surface potential obtained from surface ECG as discussed above, implicitly
reflects the dynamics of the LV wall [71, 91, 69]. In this sense, p(t) in our model can be
viewed as emerging from electrical activity of many cells. The electrical potential has the
largest depolarization peak at systole (QRS complex of ECG). In the E-wave filling period,
however, the LV chamber exhibits a pure elastic expansion and thus ECG signal does not
reflect such elastic expansion. To mimic the expansion wave, the variation of p(t) during E-
wave is allowed to exhibit an elastic excitation peak p(t) in Fig. 8 to mimic such pure
mechanical behavior. During A-wave filling, the atrium contracts under its depolarization
(P-wave of ECG signal) [71] and induces the LV to expand. This A-wave period of LV is
also represented by a smaller peak in the variation of p(t) as shown in Fig. 8.

Finally, there are two important non-dimensional numbers, which control the large scale
intraventricular hemodynamics. Namely, the peak systolic Reynolds number (Re) and the
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Womersley number (Wo). Using the aortic diameter D = 26.7 mm, peak systolic bulk
velocity U0 = 0.55 m/s and heart beat cycle T = 1.15s as the length, velocity and time scales,
these parameters and their values resulting from our model are given as follows:

(33)

Both of these values are well within the physiologic regime [81, 9].

In summary, the results we have presented in this section make a strong case that the model
we developed in this work to animate the LV wall yields kinematics that are well within the
physiologic range. These include not only essentially all significant global LV parameters
but also the qualitative and quantitative variation of the endocardium velocity field
throughout the cardiac cycle.

LV hemodynamics
During the diastolic phase the intraventricular flow is dominated by the rapid filling of blood
flow from the left atrium into the left ventricular chamber. The calculated vortex dynamics
during the filling phase is visualized in Fig. 9 by plotting out-of-plane instantaneous
vorticity contours on the vertical plane of symmetry of the BMHV leaflets (x = 0 plane).

The initial flow structure is organized and laminar with the high velocity front propagating
impulsively downstream of the mitral orifice to create a mitral vortex ring as seen in Fig. 9a.
The asymmetric LV geometry induces the ring to become inclined and asymmetric. As
clearly seen in Fig. 9a, a large vortex core is formed near the LVOT cavity while the ring
core near the posterior wall is significantly smaller.

It should be noted that during the diastolic phase, the BMHV leaflets, while free to move
and interact through the FSI algorithm with the blood flow, remain closed and stationary as
seen in Fig. 9. There is, however, a small amount of leakage flow near the edges of the
leaflet as shown in Fig. 9a. The leakage flow forms because when a BMHV is implanted the
leaflets in the fully-closed position are not in complete contact with the housing wall but
instead a small gap exists between the edge of the leaflet the aorta wall [92]. A small but
intense jet (known as the periphery jet [92]) forms through this gap region and dissipates
quickly into the central region of the aortic valve. Our results show that even though very
small, this leakage flow interferes significantly with the formation of the mitral vortex ring
during diastole and causes the ring to break up close to the mitral orifice as shown in Fig. 9a
and b.

At the end of E-wave, the core of the mitral vortex ring has broken up into small scale
structures occupying the central region of the LV chamber (see Fig. 9b). Such structures
continue to propagate toward the posterior wall and the LV apex during diastasis as seen in
Fig. 9c. After the A-wave passive filling, the blood flow rolls up again at the edge of the
mitral orifice to create additional vortex cores. Since the peak and the duration of A-wave
are significantly smaller than the E-wave, these vortex cores stay close to the mitral orifice
and do not propagate far into the LV chamber as shown in Fig. 9d. At the end of diastole,
small scale structures fill up the entire LV chamber.

The systolic phase starts with the contraction of the left ventricle and the small scale flow
structures are ejected from the LV chamber into the aorta. During the opening of the
BMHV, the flow accelerates rapidly from the apex towards the septum wall and across the
valve as shown in Fig. 10a. Shear layers start to develop inside the LVOT at the two side
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orifices, forming between the housing wall and the leaflets, as well as the central orifice
between the two leaflets as shown in Fig. 10b. It is important to note that these shear layers
and the associated roll-up of the flow downstream of the leaflets are broadly similar to those
observed in previous simulations and experiments with a BMHV in a straight axi-symmetric
aorta [15]. Our results do show, however, that in the anatomic case the shear-layer formation
is impacted by interactions with small-scale flow structures that are advected by the
accelerating systolic flow from the LV chamber past the valve leaflets. Moreover, the flow
is seen to separate from the housing area near the upper leaflet causing a clearly defined
shear layer of positive vorticity at peak systole (see Fig. 10b).

As the LV continues to contract, the vortical structures shed from the valve leaflets advance
toward the aortic root and break up rapidly into a turbulent-like state past peak systole as
seen in 10c. At the end of systole, the LV slightly expands (see Fig. 8) and the aortic flow
exhibits reverse flow. The retrograde flow from the aorta drives the leaflets swiftly to the
fully close position as shown in Fig. 10d. As seen in the figure, the closing of the valve is
asymmetric with the lower leaflet closing faster than the upper one. In fact, the acceleration
of the lower leaflet is sufficiently large to induce a high speed leakage jet in the region
between the leaflet edge and the aortic wall as shown in Fig. 10d. This high speed jet
penetrates back into the LV chamber as the BMHV approaches fully close state as seen in
Fig. 10d.

The formation of the mitral vortex ring during E-wave filling has been confirmed in
previous studies both in–vivo [88, 6] and computational studies [93, 39, 38, 28]. Our
findings on the formation of the vortex ring at the mitral orifice during E-wave agree well
with in – vivo measurement [88, 94, 3, 6] and other computational works [42, 39, 45, 44, 40,
38, 28]. Our result in Fig. 9a further shows that the vortex ring is highly asymmetrical with
the vortex core at the anterior side (aortic side) is larger than the posterior side. This feature
agrees with recent three-dimensional measurements from MRI data [6] where the mitral
vortex is shown to be an inclined vortex ring in healthy subjects.

The evolution of the mitral vortex ring in Figs. 9a-d is the result of both self-deformation of
the mitral vortex ring and its interaction with the left ventricular wall. Moreover, our result
in Fig. 9b suggests that the break up of the mitral valve vortex ring is an important
phenomenon since the so resulting small-scale flow patterns dominate the flow field inside
the LV chamber through out the subsequent systolic phase. Finally, the large scale rotational
direction of LV flow at the end of diastole in Fig. 9d is consistent with in – vivo
measurements in healthy subjects [95, 6], in which the asymmetrical evolution of the mitral
vortex ring set up the clockwise rotational pattern at the end of diastole. For further
discussion of the mitral vortex ring evolution, the reader is referred to [96].

The three-dimensional structure of the intraventricular flow is visualized in Fig. 11 by
plotting instantaneous iso-surface of Q-criteria [97] at four instances during the cardiac
cycle. The formation of the asymmetric, donut-shaped, mitral vortex ring at the end of the E-
wave filling is clearly evident in Fig. 11a. The mitral vortex ring is initially inclined at an
angle to the mitral annulus as its two sides propagate at different speeds into the LV
chamber. The coherence of mitral vortex ring is rapidly lost as it breaks down into small
scale structures due to three-dimensional instabilities and its interaction with the LV wall as
seen in Fig. 11b.

The three-dimensional structure of the flow during systole is visualized in Figs. 11c and d.
The existence of worm-like, coherent structures inside the LV chamber at the beginning of
systole is shown in Fig. 11c. These structures are circulated within the LV by the clockwise
rotational flow during early systole and subsequently ejected rapidly toward the LVOT. As

Le and Sotiropoulos Page 16

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the LV contraction progresses, these structures are elongated and stretched as they are
transported through the LVOT past the two leaflets. At peak systole, the flow downstream of
the leaflets exhibits is explosive, small-scale dynamics dynamics as the large-scale coherent
structures break down into a turbulent-like state filling the entire aortic root region (see Fig.
11c). After the BMHV closes fully, the coherent structures inside the aorta dissipate quickly
and the flow returns to rest at the end of cardiac cycle as shown in Fig. 11d.

Our results in Fig. 11 reveal, for the first time, the existence of the complex coherent
structures at the LV OT during systole. Simulations with idealized left heart models [46]
suggest that the complex geometry of the LV chamber and the curvature of the aorta induce
the flow to form a large scale three dimensional swirling flow [46]. The presence of large
scale three-dimensional coherent structures has also been confirmed via in – vivo
measurements in healthy volunteer [6]. However, the formation of the small scale structures,
which are created during diastole as seen in Fig. 9b and Fig. 11b and convected out to the
LV OT during systole, has never been uncovered both experimentally and numerically
before. The existence of these small scale structures are important because they interact with
the upper leaflet as seen in Fig. 10b and affect the leaflet dynamics. Since the leaflet
dynamics control the three dimensional vortex shedding from the leaflet surface and the
housing as seen in Fig. 10b, controlling the small scale structures is important for prosthetic
heart valve design.

The leaflet kinematics
The calculated kinematics of the BMHV leaflets are shown in Fig. 12 in terms of the
temporal variation of the angle of each leaflet ϕ. As seen in this figure, both the upper
(leaflet 1) and lower (leaflet 2) leaflets accelerate rapidly and almost simultaneously during
the opening phase, which is symmetric (in the sense that both leaflets open at the same time)
and lasts about 50-70 ms. Asymmetries in the motion of the two leaflets are observed,
however, as the leaflets reach the fully open position. In particular, and as shown in the
zoomed-in view of Fig. 12, leaflet 2 is clearly seen to decelerate faster than leaflet 1. The
zoomed-in view in Fig. 12 also shows that both leaflets rebound slightly after they reach the
fully opening position.

The BMHV remains fully open for about 400 ms and only starts to close when significant
reverse flow develops in the aorta. The closing phase occurs in about 80 ms. Unlike the
opening phase, however, the closing is highly asymmetric with leaflet 2 closing faster than
leaflet 1 (see Fig. 12). The large asymmetry of the leaflet kinematics is due to the three-
dimensional anatomic geometry but also the interaction of the highly three-dimensional
retrograde flow coming back into the left ventricle and the leaflets as seen in Fig. 10d. Since
most of the retrograde flow is directed toward the lower part of the LV, leaflet 2 tends to
close faster than leaflet 1.

After reaching the fully close position, leaflet 2 rebounds for about 40ms before coming
back to fully close position. This complex dynamic response of leaflet 2 is the main culprit
for the high speed jet observed in Fig. 10d in the gap between the edge of leaflet 2 and the
housing area.

The calculated kinematics of the leaflets in our simulation exhibit similarities but also
significant differences with previous simulations in straight and anatomic aorta geometries
in which the valve motion is driven by a pulsatile wave form [16, 2, 56]. The large
asymmetries during the closing phase found in our simulations are in stark contrast with the
symmetric leaflet motion documented in experiments and simulations for a straight, axi-
symmetric aorta geometry [15]. The delay in the opening of leaflet 2 observed in our
simulations is similar to that observed in the simulations of [56] who used an anatomic aorta
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with a prescribed wave form at the inlet of the aorta. The leaflet rebound after the leaflets
reach the fully open position has also been reported previously in both idealized aorta [2]
and anatomic geometries [56] and is consistent with in – vitro experimental data of [15]. In
summary, our results along with the previous simulations of [98] clearly show that the
anatomical geometry of the aorta and the implantation orientation of the BMHV can
significantly alter the flow dynamics and the leaflet kinematics.

4. Conclusions and future directions
We developed a novel cell-activation based model for simulating physiologic kinematics of
the left ventricle. The model is inspired by cardiac electro-physiology and gives rise to
physiologic large-scale kinematics of the endocardium as a function of a time-dependent
transmembrane potential. We showed that the model not only simulates physiologic global
LV parameters but also gives rise to large-scale contractile mechanisms that can simulate the
effect of fiber expansion, contraction and twist.

The model of the LV wall motion was used to drive the large-scale FSI between the blood
flow and the leaflets of a BMHV implanted in the aortic position. To our knowledge this is
the first time that the motion of a valve prosthesis is simulated in an anatomic LV/aorta
model driven by a contracting ventricle. Our simulations captured the formation and break
up of the mitral vortex ring during diastole and showed that the leakage jet flow emanating
from the gaps between the leaflet edges and the aortic wall can disrupt and destabilize the
LV flow during diastolic filling even when the valve is in the closed position. During
systole, our simulations revealed the symmetric opening of the two leaflets and small
asymmetric rebound as the leaflets approach the fully open position. The valve closing
phase, however, exhibits highly asymmetric kinematics induced by the complexity of the
anatomic geometry and the three-dimensionality of the retrograde flow that enters the LV
chamber from the aorta.

The time-dependent transmembrane potential (p(t)) that drives the LV wall motion in our
model is obtained in the present work through calibration to ensure physiologic LV motion.
In future extension of the model, the value of p(t) may be calibrated to develop a range of
beating LV models for both healthy and diseased hearts.

The LV/aorta system is truncated from the whole arterial tree and the motion of the valve
leaflets are driven by the beating left ventricle only. Thus the effect of the rest of the
cardiovascular system, such as flow resistance arising from smaller arteries such as the
carotid arteries, subclavian arteries at the descending aorta, is not included. These
resistances, which play an important role in regulating the valve closure, are patient-specific
and are not known in advance. In future studies, our computational model can be extended
to incorporate one-dimensional resistance models [99] that can account for such effects.

The presence of a native or prosthetic valve in the mitral position is not simulated in our
model and thus mitral valve effects are not accounted for. Recent works [93, 38, 33],
however, have clearly shown the importance of the prosthetic mitral valve on the LV
hemodynamics. Our future work will thus focus on extending our computational framework
to develop FSI modules for simulating native and various prosthetic heart valves, such that
the complete LV/aorta system with valves both in the aortic and mitral positions can be
simulated.
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Figure 1.
A bi-leaflet mechanical heart valve is placed at the aortic position with anatomic orientation.
The symmetric plane of the BMHV (x = 0) goes through the left ventricular apex. The
implantation is shown in Fig. 5.
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Figure 2.
The sketch depicts the computational framework and the partition between the fluid and the
solid domains. Γinlet and Γoutlet are the inlet and outlet of the computational domain. Γaorta is
the aortic portion of the domain where the no-slip boundary condition is applied. ΓFSI is the
interface between leaflets Ωs and the blood flow Ωf, which is simulated via the fluid-
structure interaction methodology. The ΓLV represents the endocardium surface where the
left ventricle beats. The kinematics of ΓLV is simulated by the cell-based model as discussed
in section 2.1.
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Figure 3.
The left ventricle model reconstructed from MRI images includes the left ventricle outflow
tract (LVOT) and the left ventricular chamber. (r, θ, z) is the cylindrical coordinate system
defined for the LV with corresponding unit vectors ir, iθ, and iz. L and DL are the lengths of
the long and short LV axes, respectively.
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Figure 4.
The moving LV model, discretized with the unstructured grid is immersed in a background
stationary curvilinear mesh as required by the CURVIB method (see Fig. 5). The blood flow
is driven by the LV wall motion resulting from the cell-activation model in section 2.1. The
“red” material point denotes one material point on the LV surface.
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Figure 5.
a)The computational grid consists of two distinct blocks: the left ventricle block and the
aorta block. The left ventricular block is a structured grid of size 161 × 281 × 161. For
clarity, the 3D background grid is shown only on the symmetry plane (x = 0) of the BMHV
for every four grid line. The aorta block is a body fitted mesh of size 161 × 161 × 401. For
clarity, every one out of four grid points is shown. At the mitral position, uniform pulsatile
flow Qm(t) is specified as boundary condition and the mitral valve is assumed to be fully
open during diastole.
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Figure 6.
The deformation of the endocardium surface during one cardiac cycle from diastole to
systole. The instantaneous wall velocity field is indicated by the projected streamlines on the
endocardium surface. The red dot in the inset shows the time instance in the cardiac cycle.
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Figure 7.
Calculated time series of the three velocity components for the material point shown in Fig.
4. For the definition of radial (υr), tangential (υθ) and longitudinal (υz) velocity
components, see Eqs. 2 to 12 and the parameters in Table 1.
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Figure 8.
The left ventricle volume rate of change during one cardiac cycle. There are two distinct
positive E-wave and A-wave peaks separated by the diastasis during diastole. The negative
peak is the systolic peak.
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Figure 9.
The formation and breakup of mitral vortex rings during diastole: a) the formation of mitral
vortex ring after the E-wave; b) The breakup of the mitral vortex ring in to small scales; c)
the evolution of the intraventricular flow during diastasis; d) The flow at the end of diastole.
The flow is visualized using the out-of-plane vorticity ωx on the symmetry plane of the
BMHV (x = 0). The red dot in the inset shows the time instance in the cardiac cycle. The
upper and lower leaflet are denoted as leaflet 1 and 2, respectively.
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Figure 10.
The ejection of blood flow from the left ventricle into the aorta visualized by the out-of-
plane vorticity ωx on the symmetry plane of the BMHV (x = 0): a) The existence of
coherent structures inside the left ventricular chamber at the beginning of systole; b) The
BMHV opens at the peak systole and induces the unstable shear layer to form on the leaflet
surfaces; c) The formation of three dimensional worm-like structures inside the aortic root;
d)As the BMHV closes, the leaflet 2 (lower) accelerates faster than the leaflet 1 (upper). The
closure of the BMHV induces leakage flow back into the LV chamber. The red dot in the
inset shows the time instance in the cardiac cycle.
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Figure 11.
The formation of coherent structures inside the left ventricular chamber during diastole in
(a) and (b). The small scale structures are advected into the aorta during systole in (c) and
(d). The flow is visualized by Q-criteria [97]. The view is from the apex. The red dot in the
inset shows the time instance in the cardiac cycle.
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Figure 12.
The kinematic (angle ϕ) of upper leaflet (1) and lower leaflet (2) over the whole cardiac
cycle. The difference of two leaflet motion is most significant near the closing phase of the
BMHV. The inset shows the definition of the opening angle ϕ with fully open and fully
close position.
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Table 1

The non-dimensional parameters used in the left ventricular kinematic model.

Name Systole Diastole

c0 1 1

c1 0.21 0.175

c2 0.011 0.011

c3 0.55 0.55

ts/T 0.87 0

fs 0.35 0.3

κ0 3.9 0.36

κ1 -0.2 0

φ -0.052 0.424

α 0.52 0.52

β 0.3 0.3

γ 0.8 0.8

Note that the left ventricular geometry is non-dimensionalized using the characteristic length scale D0 = 29mm. c0, c1, c2, c3 are variables of the

FitzHugh-Nagumo model. ts is the starting time of T-wave and T is the cardiac cycle. f is the frequency of the propagating wave front. κ0, κ1 are

the scaling factors. α, β, γ are the distributing factors of the velocity vector along radial, tangential and axial directions, respectively (see Eq. 12 for
definition).
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Table 2

The global parameters of the left ventricle kinematics resulting from the proposed cell-activation based model.

Parameters Value Definition

End systolic volume (ESV) 65 ml Minimum of LV volume

End diastolic volume(EDV) 118 ml Maximum of LV volume

Stroke volume (SV) 53 ml EDV - ESV

Ejection fraction (EF) 45% SV/EDV

Peak E-wave velocity 0.7 m/s Maximum bulk velocity at mitral orifice

All quantities are well within the physiologic range.
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