
CORaL:

Comparison of Ranked Lists for

Analysis of Gene Expression Data

MICHAEL ANTOSH,1,2 DAVID FOX,2 LEON N COOPER,1,2 and NICOLA NERETTI2,3

ABSTRACT

Because a very large number of gene expression data sets are currently publicly available,
comparisons across experiments between different laboratories have become a common
task. However, most existing methods of comparing gene expression data sets require setting
arbitrary cutoffs (e.g., for statistical significance or fold change), which could select genes
according to different criteria because of differences in experimental protocols and statis-
tical analysis in different data sets. A new method is proposed for comparing expression
profiles across experiments by using the rank of genes in the different datasets. We intro-
duce a maximization statistic, which can be calculated recursively and allows for efficient
searches on a large space (paths on a grid). We apply our method to both simulated and real
datasets and show that it outperforms other existing rank-based algorithms. CORaL is a
novel method for comparison of gene expression data that performs well on simulated and
real data. It has the potential for wide and effective use in computational biology.
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Availability: Source code (Matlab) available at www.sourceforge.net/p/coralv1

1. INTRODUCTION

In the past several years, many gene expression datasets have been made publicly available, in part for

the purpose of comparison with each other and with newly produced data. The most common method for

comparing two gene expression experiments is to consider the two experiments separately and then find the

genes that are determined to be significant in both experiments. This method depends on applying cutoffs for

test statistics such as p value (statistical significance) and fold change (average expression in treatment

divided by average expression in control). Using cutoffs introduces uncertainty, as cutoffs are generally set

arbitrarily.

To avoid using cutoffs that select some genes while arbitrarily excluding others, rank-based methods

have been developed. For example, the algorithms behind Gene Set Enrichment Analysis (Subramanian

et al., 2008) and GOrilla (Eden et al., 2009) rank genes by fold change to estimate enrichment of gene sets.

Eden et al. (2007) use ranked lists to compare experimental samples of immunoprecipitation data with
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background. Jurmen et al. (2007) and Boulesteix and Slawski (2009) compare the algebraic stability

between ranked lists of genes.

This article describes a new rank-based comparison-analysis method based on a maximization statistic

that is calculated using a recursive algorithm.

There are two existing algorithms for comparison of gene expression data using ranked lists. The

algorithm of Plaisier et al. (2010), called Rank-Rank Hypergeometric Overlap (RRHO), focuses on visual

representations of the similarities between two ranked lists, using a mathematical model similar to ours.

The algorithm of Yang et al. (2006), called OrderedList, focuses on using a similarity score to evaluate

whether two lists have significant similarity. These algorithms will be compared with our method in detail

in the Results section.

Our new algorithm improves and extends an algorithm we have presented in Antosh et al. (2011). The

model for calculation of p value has been improved, and the method has been extended to allow for the

more general case where the two experiments have a different number of differentially expressed genes.

2. METHODS

2.1. Model

In our model, we first group genes into two sets: genes that change from control and genes that do not. We

presume that most of the genes that change from control have higher fold changes than most of the non-

changing genes; that is, the biological change generally is higher than the noise. Based on this, the genes that

change in both experiments will overlap (be highly ranked in both experiments)—this is because the genes

that change in both experiments will be near the top of a list of genes ranked by fold change in each

experiment. We further presume that this overlap drops off at the point in the ranked lists where most of the

genes do not change. The genes above this drop-off point in the ranked list are referred to as the significant set.

In the algorithm, the genes are ranked by fold change. The lists are analyzed starting from the top by

adding groups of genes in incremental steps. As shown in Figure 1A, the top m elements in list 1 and the

top n elements in list 2 have an overlap of k elements. Also, k increases by a value Dk when m increases by

a step-size Dm and n increases by a step-size Dn. The statistical significance ( p value) of each step is the

probability that the additional Dk genes found in the step is significantly more than the Dk that would be

expected randomly. These statistical significance values are used in a maximization function, defined

below, to determine the optimal set sizes in each list.

The maximization process can be thought of as a search on a grid, with an example grid illustrated in Figure

1B. Each point on the grid is a possible significant set size, with the significant set size in each list being a

multiple of the step-size D. Using the strategy of a grid search, we want to maximize the likelihood of both

reaching a point and of stopping the search at that point. We define the statistic to be maximized, L, as the

measure of the probability of reaching a point on the grid and then stopping at that point. It is thus the product

of the likelihood of reaching each point, defined as T, and the likelihood of stopping at that point, defined as S:

L = T � S (1)

Both T and S depend on the probability of the individual steps taken in the grid, as illustrated in Figure

1B, and are formally defined in Section 2.3.

2.2. Calculation of step p values

The overlaps between the regions of the list shown in Figure 1A step can be represented using a 3 · 3

contingency table (Table 1). In this table, four different variables combine to make up the variables k and

Dk shown in Figure 1A. This is because the different sections of lists produce distinct overlaps. In the table,

kAB is the overlap between section A and section B in Figure 1, kAD is the overlap between sections A and

D, and so on. Dk is thus equal to the sum of kAD, kBC, and kCD, and k is equal to kAB. Also, Dm is the step

size in list 1, and Dn is the step size in list 2. Ghent (1972) derived an exact equation for the probability of a

3 · 3 contingency table; specifically, the statistical probability that an exact set of overlaps (kAB, kAD, kBC,

kCD) is found. This probability is given in Equation (2). For shortness of annotation, Cij is introduced to

represent the entry in the ith row and jth column in Table 1. The denominator is thus N factorial times the

factorial of each element in the 3 · 3 table.
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p =
m!(Dm)!(N - m -Dm)!n!(Dn)!(N - n -Dn)!

N!
Q3
i = 1

Q3
j = 1

Cij!

(2)

2.2.1. Normalizing for kAB. The 3 · 3 contingency table (Table 1) represents the probability that an

exact set of k happens—meaning the exact combination (kAB, kAD, kBC, kCD). The probabilities will only

add up to one over all possible combinations of the four k variables. However, only the case where kAB

Table 1. 3 · 3 Contingency Table Applied to Ranked List Steps

List 1 index

List 2 Index

1 to m (m + 1) to

(m +Dm)

(m +Dm + 1)

to N

Total

1 to n kAB kBC n - kAB - kBC n

(n + 1) to (n +Dn) kAD kCD Dn - kAD - kCD Dn

(n +Dn + 1) to N m - kAB - kAD Dm - kBC - kCD N - m - n -Dn

-Dm + kAB +
kAD + kBC + kCD

N - n -Dn

Total m Dm N - m -Dm N

FIG. 1. Illustration of method. (A) Sections of ranked lists:

kAB is the overlap of red sections A and B, and Dk is the sum of

the overlaps between sections A and D (kAD), sections B and C

(kBC), and blue sections C and D (kCD). (B) Illustration of grid

search and of two possible paths from (D,D) to (3D,3D).
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equals the actual found value of kAB is relevant to this problem, because the overlap kAB at the first point in

the step is considered to be known and fixed, and thus has only one allowed value. The probability

calculated in Equation (2) can be normalized to eliminate other possible values of kAB by dividing by the

probability of finding an overlap of magnitude kAB between regions A and B. This probability is the

Fisher’s exact test and is given by Equation (3).

p(kAB) =
m

kAB

� �
N - m
n - kAB

� �

N
n

� � (3)

2.2.2. Summation over probabilities to calculate p value. The step p value is the probability that

Dk is greater than or equal to the value of Dk found. This is a sum over Equation (2) divided by Equation (3)

for all values of Dk greater than or equal to the value found. This involves a sum over kAD, kBC, and kCD.

However, the sum is shortened by some constraints, given in inequalities 4.

0pkCDp min (Dm‚Dn)

0pkADpDm - kCD

0pkADpn - kAB

0pkBCpDn - kCD

0pkBCpm - kAB

kAD + kBC + kCDqmeasured kAD + kBC + kCD (4)

For kCD, the first constraint is that the overlap (between sections C and D in Fig. 1) cannot be greater than

the total number in the smaller of the step sizes—it is the overlap of segments the size of the step sizes. For

kBC, the first constraint is that only so many elements in section C are left to overlap with section B in

Figure 1 because some of the elements in section C could be in the overlap with section D, kCD. The second

constraint on kBC is the number of elements left to overlap in section B because some of the elements in

section B could be in the overlap with section A, kAB. The constraints on kAD are analogous to those on kBC.

The final constraint is the actual p value constraint.

If Dn = Dm, the number of terms in the sum before constraint is equal to (Dm)3. Thus if Dm = 100, that

number is 1 million. However, the second and fourth constraints alone remove roughly 60 percent of the

terms. The speed of calculation is aided by the use of a table of factorial values instead of recalculating the

factorial values in each term. Additionally, terms that stay the same throughout (e.g., N!) are only cal-

culated once.

2.2.3. Summary. In summary, the step p values are calculated in the following manner. First, the step

is modeled as a 3 · 3 contingency table, which has a calculable probability (Eq. 2) for each combination of

overlaps (kAB, kAD, kBC, kCD). The value of kAB is considered a fixed point (because we know where the

step is starting), and the calculated probabilities are normalized (using Eq. 3) to eliminate all other values of

kAB. The step p value is equal to the sum over all 3 · 3 table probabilities where kAB is the measured value

of kAB, and kBC, kAD, and kCD satisfy inequalities (4).

2.3. Maximization approach to determining optimal overlap size

As stated in Section 2.1, the maximization approach is analogous to a grid search, with an example grid

shown in Figure 1B. Allowed step directions are forward by one step in one list or the other, or forward in

both lists. Using the strategy of a grid search, we want to maximize the likelihood of both reaching a point

and of stopping the search at that point.

The maximization statistic in Equation (1) can be computed recursively for all (i,j) in the grid illustrated

in Figure 1B. The total probability (T) in Equation (1) for a given point (i,j) on the grid is the sum over all

possible paths from (0,0) to (i,j) of the probability of that path, Rpath [Equation (5)].

Ti‚ j =
X

all possible paths from (0 ‚ 0 ) to (i ‚ j )

Rpath (5)
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The probability Rpath of a given path depends on the length of the path and the probability pstep that the

step will be taken (Eq. 6). Pstep is defined as one minus the step p values computed in Equations (1) to (3). A

small p value indicates a step that adds a comparatively large overlap (Dk), and a large p value indicates a

step that adds a comparatively small overlap. Thus we presume that the smaller the p value, the more likely

the step is to be taken. Hence, the path probability can be computed as follows:

RPath =
1

3(path length - 1)

Y
steps on path

pstep (6)

The factors of 1/3 come from the three possible steps (we are allowing only forward steps in the x

direction, the y direction, or both) at each grid point. To choose the direction that each path takes, the other

two directions must be discarded (for that particular path). The probability of choosing any of the three

directions randomly is 1/3. This is true with one exception. The first step has to be from (0,0) to (1,1),

because a step to (0,1) or (1,0) will have a zero overlap by definition. Thus, the first step has no factor of 1/

3, producing the 1/3 to the power of path length minus 1. The step probabilities are corrected for multiple

testing using the Benjamini–Yekutieli method (Benjamini and Yekutieli, 2001), which controls the false

discovery rate under arbitrary interdependence of the steps.

The likelihood of stopping, S, shown in Equation (7), is the product of the step probabilities ( pstep) of not

taking a step forward in any of the three given directions (first three terms in the product) and the

probability of taking the three forward steps up to the point (last three terms). Any steps that would go off

of the grid are not considered.

Si‚ j = (1 - p(i‚ j) to (i + 1‚ j + 1))(1 - p(i‚ j) to (i + 1‚ j))(1 - p(i‚ j) to (i‚ j + 1))

· (p(i - 1‚ j - 1) to (i‚ j)p(i - 1‚ j) to (i‚ j)p(i‚ j - 1) to (i‚ j))
(7)

Using the grid of possible set sizes, the point with the maximum value of L is chosen. Once this point is

chosen, the statistical significance of the overlap at that point is evaluated and ruled significant if Fisher’s

exact test (a sum over kAB in Eq. 3, with kAB ranging from the measured value of kAB to the smaller of the

two significant set sizes found in the optimization) gives a p value less than 0.05. Note that T can be

computed recursively because Ti,j depends only on the sums of probabilities for the steps leading up to (i,j).

Pseudocode for the recursive algorithm used to compute it is presented in the Supplementary Material

(Supplementary Material is available online at www.liebertonline.com/jcb).

2.4. Existing methods testing

We compared the results of our algorithm with the results of algorithms developed by Plaisier et al.

(2010) and Yang et al. (2006). The algorithm developed by Yang et al., OrderedList, was applied using

their software package in R. Simulations were run using the rank-input commands compareLists and

getOverlap, and the biological data comparisons were done using the command OrderedList. Default

values were used, including for the parameter alpha that determines candidate values for significant

set size.

The algorithm developed by Plaisier et al. (2010), RRHO, was implemented using their web-based

interface. The step size matched the step sizes used in CORaL. A step size of 100 was generally used,

which matches the recommended step size listed. Overlaps and set sizes were considered from the regions

referred to as A (genes upregulated in both lists) and B (genes downregulated in both gene sets). Overlaps

with p value less than 0.05 were ruled nonsignificant. We coded Plaisier’s method into the statistical

computing language R for the simulations; the code is available in the Supplementary Material.

In simulations, the same data were used for all three methods. In real data, the same genes were used for

all three methods.

3. RESULTS

CORaL (our algorithm), OrderedList (Yang et al., 2006), and RRHO (Plaisier et al., 2010) were im-

plemented on simulated data as well as data used in Bauer et al. (2010) and Pearson et al. (2008).
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3.1. Simulated data

The goal of the simulated data is to produce data that are realistic and also have a predictable result. For

inputs of list length N and desired overlap k, the simulation procedure is as follows:

� To start, the two lists will each contain N ‘‘fold changes’’ covering the values 1 through N. The

element in each list with fold change N will have the best rank.
� Select k elements in the two lists to become the overlap. In list 1, give these elements the k best fold

changes (i.e., fold changes between N and N - k + 1).
� Temporarily set up the k elements in the overlap to have perfect correlation—order the fold changes

for the overlap elements in each list such that the element in list 1 that has the best fold change of the

overlap elements also has the best fold change of the overlap elements in list 2, and so on down the list.
� Randomly distribute the rest of the fold changes in the list.
� Subtract from each fold change the absolute value of randomly drawn, normally distributed noise with

the standard deviation of the noise specified as a simulation parameter.
� Run the analysis methods (CORaL, RRHO, OrderedList) on the fold changes.

The realistic nature of this simulation method is verified by attempting to reproduce data with behavior

similar to the comparison of genes upregulated from control in two dietary restriction data sets from Bauer

et al. (2010). Running CORaL on these data resulted in the parameters k = 3290, N = 5700. A simulation

using those parameters resulted in data that fit the real data based on the overlap fraction diagnostic plot

described in Figure 1 of Antosh et al. (2011). Using the same notation as Equation (3), that plot is the

fraction of overlap (kAB/m, keeping m = n for a diagnostic) versus m/N. The diagnostic plot is shown in the

Supplementary Material, along with an illustration of the simulation method.

In the simulation, we used two levels of noise—a realistic noise amount and zero noise. The real-

istic noise was determined by examination of the diagnostic plots (included in the Supplementary

Material); the desired result was a smooth curve where k/m did not significantly decrease with increasing

values of m/N. The zero noise level was included in order to have some results that were completely

predictable.

Two overlap simulations were performed: k = 400, N = 1200 and a two-dimensional simulation where

200 overlap elements receive the 200 best fold changes in list 1 and 200 of the top 400 best fold changes in

list 2 (so that for the significant set sizes, m = 200, n = 400 in our notation). The second simulation is to test

the effectiveness of the method in a situation where m and n should not be equal. A step size of 50 was used

in these simulations.

With zero noise, CORaL chooses the expected answers. It chooses m = n = k = 400 in each of 100

simulations with k = 400, N = 1200, and it chooses m = 200, n = 400, k = 200 in the second simulation

(which has desired result m = 200, n = 400). The choice of m and n from the second simulation is shown in

Figure 2.

In the noisy, more realistic simulations, the k overlap elements have spread out, and the important

measure is how many of the elements can be recovered. It is not expected to recover all of the elements,

because some will have been altered significantly. In the k = 400, N = 1200 simulation with noise of

standard deviation 300, CORaL chooses significant set sizes that retain an average of 327 – 21 of the

original 400 overlap elements, finding on average an additional 26 elements that were not in the original

overlap before noise. Variation in the results is a result of variation between the 100 simulated data sets;

the result of CORaL on the same data is always the same.

In the m = 200, n = 400 simulation with noise of standard deviation 150, CORaL chooses significant set

sizes that retain an average of 167 – 18 of the original 200 overlap elements, finding on average an

additional 21 elements that were not in the original overlap before noise.

As a negative control, 100 simulations were run with random data (m = n = k = N = 1200). CORaL

chose the smallest possible set size.

3.2. Results on real data sets

Pearson et al. (2008) produced a data set consisting of three treatments given to mice (dietary restriction,

a high dose of resveratrol, and a low dose of resveratrol) with samples from four different tissues (heart,

liver, fat, and muscle). The effects of these treatments should be somewhat specialized by tissue, because

the biological properties of the tissues tested differ significantly.
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Using each method, all possible pair-wise comparisons were run between the treatments; the total

gene overlap was used to cluster the treatments hierarchically (average linkage method). CORaL shows a

complete clustering effect with tissue, with the following mean number of genes in common between

treatments on the same tissue: 6315 for fat, 798 for heart, 3125 for liver, and 3078 for muscle (actual

overlaps shown in Supplementary Material tables). Pearson et al. (2008) finds the correlation of gene

expression pathways to be significantly less strong in the heart data than in the other tissues; this is

supported by the heart overlap being significantly smaller than the other tissues in our results. As a measure

of effectiveness in determining the existence of significant overlaps, CORaL found a significant overlap in

49 of the 66 possible pair-wise comparisons between the 12 Pearson et al. data sets (three treatments and

four tissues).

3.3. Comparison with existing methods

In the comparison with the methods of Plaisier et al. (2010; RRHO) and Yang et al. (2006; OrderedList),

it is important to note the similarities and differences in approach and goals between the methods. The

foremost goal of Yang et al. is to determine whether or not there was any statistically significant similarity

between the two ranked lists. The foremost goal of Plaisier et al. is to visualize ‘‘the strength, pattern and

bounds of correlation’’ through a graphical map of the statistical significance of the overlap between

different subsets of the ranked lists. The foremost goal of our algorithm is to estimate the significant set in

each of the two lists.

Yet, all three methods share two general goals: determining whether or not there is a statistically

significant similarity between the two ranked lists, and determining the size of a significant set. The

methods of Yang et al. (2006) and Plaisier et al. (2010) for detecting similarity was described in the

paragraph above. Yang et al. also looks for a significant set size, justifying the need for it by saying that

‘‘A priori, we do not know how deep inside the lists we must look to detect a biologically relevant signal.

This calls for an algorithm that calibrates a adaptively to the gene lists of interest.’’Alpha is their parameter

for decay of the exponential term in the similarity score, determining how much weight the lower parts of

the list have on the similarity score and thus how far down the list the similarity score is significant. Their

process for finding how deep to go in the list is based on partial areas under receiver operating curves, and

is described in Section 2.3 of their article. It is true that they emphasize the overall similarity, but the

process of finding the significant set is necessary for their algorithm as well. Plaisier et al. use corrected

Fisher test p values to determine quantitatively whether or not there is similarity between the lists, and they

approach finding the significant set on the way to summarizing their visual map, stating that ‘‘the most

straightforward summary statistic of a rank–rank hypergeometric map is the point with the maximum

FIG. 2. Simulation results for

m = 200, n = 400, k = 200,

N = 1200, D = 50. About 100 data

sets were simulated, and the prob-

ability of selecting each set size is

displayed.
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absolute log p value, which represents the rank threshold pair that gives the most significant hypergeo-

metric overlap in the experiments being compared.’’ Thus, Plaisier et al. also make an attempt at labeling

significant sets, although it is important to remember that Plaisier et al. are attempting to summarize their

visualization, whereas we are attempting to find precision in the significant set sizes.

In producing their visualization, Plaisier et al. (2010) compute the hypergeometric probability based on

Fisher’s exact test (a sum over kAB in Eq. 3) for every possible combination of significant set sizes in

each list (m genes from experiment 1, n genes from experiment 2, overlap k and total number of genes N).

They then summarize this visualizing by selecting the set (m,n) that gives the minimum p value as the

location of the significant sets. They do allow for two selections: one representing the overlap between

genes up and one representing the overlap between genes down. They allow correction of these p values

for multiple hypothesis testing (although this should not affect which values are minimum, only their

significance level).

The choice of minimum p value as their analog of the significant set makes an implicit assumption that

the point with the highest significance is the end of the significant correlation between the two lists, whereas

our algorithm looks for the point that is most likely to be reached and stopped at in a grid search.

In the simulated data, the method of Plaisier et al. (2010) underestimates in the noisy simulations. In both

of the zero-noise simulations, it chooses the expected results. In the noisy simulations, it finds significantly

fewer genes than CORaL: 250 – 26 of the 400 elements in the k = 400, N = 1200 simulation and 130 – 29

of the 200 elements in the m = 200, n = 400 simulation. Thus, compared with the CORaL result, the result

of Plaisier’s method is a point in the lists where statistically significant steps are left untaken. In both of

these results, there were fewer nonoriginal overlap elements than found by CORaL (three elements in the

first simulation and five elements in the second simulation), but this is likely a result of the significantly

smaller set sizes chosen.

With the Pearson et al. (2008) data sets, Plaisier’s (2010) method shows very distinct tissue clusters.

However, the number of significant genes is very large: the mean number of genes in common between

treatments on a given tissue is 11,144 for fat, 9141 for heart, 10,032 for liver, and 9483 for muscle (actual

overlaps shown in Supplementary Tables). In particular, the average overlap of treatments in the heart is

approximately 8300 genes larger as the average overlap found by our method, and no longer smaller than

the other tissues (as found by our method and by Pearson). These results suggest an overestimation. We

could identify a possible cause in the way Plaisier’s p values were computed, specifically by including the

full list of genes in their computation, as opposed to the subset of genes up- and downregulated that we

utilize in our method. This will result in consistently lower p values, and some comparisons being labeled

as significant that would otherwise not be. The primary goal of Plaisier’s method is to provide assess

similarities between ranked lists of genes, without a specific focus on the accuracy on the number of

overlapping genes, and this might have played a role in their choice of a less strict model for the com-

putation of the p values. Of the 66 possible pair-wise comparisons, Plaisier’s method finds 61 to have a

significant overlap.

As mentioned previously, Yang’s (2006) method uses a similarity score, shown in Equation (8).

Sa =
XN

m = 1

e - am(km‚ top + km‚ bottom) (8)

For a given ranked list index m, the score is the overlap of the top and bottom m genes in each list

multiplied by an exponential decay term. Here, k represents an overlap, and a is a tuning parameter. The

choice of a is analogous to choosing the significant set sizes in our method, because the score is set to

zero when the exponential factor reaches a certain magnitude. a is determined by calculating the similarity

score for permutations of the data and fashioning the results into a receiver operating curve for several trial

values of a.

This approach to determining both significance and significant sets has several important differences

when compared with our method. Yang’s (2006) method fixes the top and bottom significant sets in each

list (four total significant sets) to all be the same size, whereas our method provides a more general solution

in allowing the four sets to all be of different sizes. Both methods essentially step down the list, but only our

method looks at the probabilities of the individual steps.

In the simulated data, Yang’s (2006) method often overestimates. For k = 400, N = 1200 simulation with

zero noise, a set size of m = n = 1000 is chosen in all simulations. With realistic noise, 398 – 7 of the 400
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original overlap elements are chosen, but so are on average 205 nonoriginal overlap elements. For m = 200,

n = 400 simulation with zero noise, a set size of m = n = 1000 is chosen the majority of the time. With

realistic noise, 176 – 44 elements are chosen. This result is similar to that of CORaL, although the result

has a higher standard deviation. The result in this simulation for total overlap genes (original plus extra) is

165 – 81 elements.

One stated goal of Yang’s (2006) method is to test for the existence of significant overlap between data

sets. Of the 66 pair-wise comparisons in the Pearson et al. (2008) data set, only 11 were determined to have

significant overlap. This is significantly fewer than the 49 found by CORaL. In addition to this, Yang’s

method of finding significant sets results in no distinct tissue clusters by tissue. Because of the process in

OrderedList where replicates are ignored, it was only possible to run OrderedList with an extra sample

added to the fat and liver control samples as well as the fat dietary restriction samples. This extra sample

consisted of the mean expression of the other samples.

3.4. Determining step size

The only adjustable parameter in our method is the step size (Dm or Dn), which sets the size of the grid

describing the data (as in Fig. 1). The Dm and Dn are allowed to be two possible values: 0 or an overall step

size D (the allowance of 0 is to create the steps in only one list or the other list). Figure 3 illustrates the

effect of step sizes on a comparison of genes upregulated from control in the sir2 mutation and dietary

restriction data sets from Bauer et al. (2010). As shown in the figure, D = 50 and D = 100 choose smaller

significant set sizes than those chosen by larger values of D, while step sizes of 200 and larger choose the

same point to within one step. It appears that D = 50 stops because of random fluctuations in the data. The

smaller the step size, the more likely it is that random fluctuations will happen. The larger step sizes will

jump past small random fluctuations.

Thus, we propose to handle fluctuations by testing multiple step sizes and finding the step size that no

longer increases the resulting set sizes. For a set of step sizes such as (50, 100, 200, 400, 800), where the

step sizes increase by a common factor (2), the best step size is the first to have the step size after it selects

the same set size to within one step.

Applied to these data, RRHO selects (m,n) = (2600, 3500), the same result CORaL at that step size.

OrderedList selects (0,0). The results of CORaL and RRHO that DR (n) has a larger set size than sir2 (m) is

consistent with sir2 being a smaller-scale effect as compared with DR, which was the conclusion reached in

Bauer et al. (2010).

4. CONCLUSIONS

This article introduces a comparison analysis algorithm for gene expression data that does not depend on

arbitrary cutoffs for such statistics as fold change and p value (statistical significance).

FIG. 3. Illustration of different step-size results. Black

lines represent the size of each step. The result from

D = 200 is within one step size of the results of every

larger step size; demonstrating the method is step-size

independent for step sizes above the value needed to

skip random fluctuations.
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CORaL is a new algorithm for comparing gene expression data based on (1) comparing lists of genes

ranked by fold change and then (2) maximizing the statistical likelihood of reaching a given significant set

size, using the overlaps between sections of the ranked lists. There are two innovations in the method:

finding the p value for a given step in the list and the use of these p values to determine the point of

significance. There is only one parameter, the step size, and multiple step sizes can be used to find an

appropriate step size. The maximization statistic used can be calculated recursively and allows for efficient

searches on a large space (paths on a grid).

The method performs as expected on simulated data, always choosing the end of the significant sets.

Results of data from Pearson et al. (2008) and Bauer et al. (2010) produce conclusions that make sense

biologically, including a tissue-specific effect in the data of Pearson et al. and the relative sizes of the

effects of sir2 and dietary restriction in the data of Bauer et al.

The use of contingency tables in our method (as well as in the Fisher’s test in the method of Plaisier et al.

(2010)) makes an implicit approximation that genes are behaving independently. This is of course not

always true. However, correcting the p values with the Benjamini–Yekutieli correction (Benjamini and

Yekutieli, 2001) controls the false discovery rate in arbitrary dependencies, and the method has been shown

to work satisfactorily on simulated and real data that is partially correlated. The Supplementary Material

shows the level and significance of correlation between the ranks of the overlap genes in the Pearson data

for the significant overlaps chosen by CORaL.

Our method is shown to perform equally well or better than the existing algorithms for comparison of

ranked list gene expression data that attempt to determine significant set size and the existence of sig-

nificant correlation. The significant set size determination method of Yang et al. (2006) often overestimates

and is shows a greater variance than CORaL in simulations, and finds significantly fewer similarities

between the datasets from Pearson et al. (2008). The summary of visualization in Plaisier et al. (2010)

recovers fewer overlap genes than CORaL in realistic simulations. It effectively clusters the data of Pearson

et al. by tissue, but chooses extremely large overlaps that are likely the result of an overestimation. It equals

the result of our method on the data from Bauer et al. (2010).

With the growing number of gene expression datasets, comparisons between datasets will become

increasingly important. This method is an improvement on existing ranked list methods and could be

applicable to data from fields outside of gene expression and biology.
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