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In financial markets, participants locally optimize their profit which can result in a globally unstable state
leading to a catastrophic change. The largest crash in the past decades is the bankruptcy of Lehman Brothers
which was followed by a trust-based crisis between banks due to high-risk trading in complex products. We
introduce information dissipation length (IDL) as a leading indicator of global instability of dynamical
systems based on the transmission of Shannon information, and apply it to the time series of USD and EUR
interest rate swaps (IRS). We find in both markets that the IDL steadily increases toward the bankruptcy,
then peaks at the time of bankruptcy, and decreases afterwards. Previously introduced indicators such as
‘critical slowing down’ do not provide a clear leading indicator. Our results suggest that the IDL may be used
as an early-warning signal for critical transitions even in the absence of a predictive model.

A
system consisting of coupled units can self-organize into a critical transition if a majority of the units

suddenly and synchronously change state1–3. For example, in sociology, the actions of a few can induce a
collective tipping point of behavior of the larger society4–11. Epileptic seizures are characterized by the

onset of synchronous activity of a large neuronal network12–18. In financial markets the participants slowly build
up an ever densifying web of mutual dependencies through investments and transactions to hedge risks, which
can create unstable ‘bubbles’19–23. Detecting the onset of critical transitions in these complex dynamical systems is
difficult because we lack the mechanistic insight to create models with predictive power24–27.

A characteristic of self-organized critical transitions is that the network of interactions among the units leads to
long-range correlations in the system, or in other words, every unit ‘feels’ the state of every other unit to some
extent.

Here we measure this self-organized correlation in terms of the transmission of information among units.
Shannon’s information theory quantifies the number of bits that is needed to determine the state of a unit (i.e.
Shannon entropy), as well as the fraction of these bits that is contributed by the state of any other unit (mutual
information)28. We introduce the information dissipation length (IDL) as a measure of the characteristic distance
of the decay of mutual information in the system. As such it can be used to detect the onset of long-range
correlations in the system that precede critical transitions.

We apply the IDL indicator to unique time series of interbank risk trading in the USD and EUR currency and
find evidence that it indeed detects the onset of instability of the markets several months before the Lehman
Brothers bankruptcy. In contrast, we find that the critical slowing down indicator and other early warning signals
used in the literature do not provide a clear warning. Our results suggest that the Lehman Brothers bankruptcy
was a self-organized critical transition and that the IDL could have served as a leading indicator.

As a system’s unit influences the state of another unit it transfers information28 about its own state to the other
unit29–34. For instance, each particle in an isolated gas ‘knows’ something about the momenta of neighboring
particles due to the transfer of momentum during collisions. That is, the momentum of a particle is the result of its
recent collisions with other particles. This information is in turn transferred to other particles in subsequent
collisions, and so on. At each interaction the information is only partially transferred due to stochasticity and
ambiguity29,31,35,36, so information about the state of one particle can only reach a certain distance (IDL) before it is
lost.
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The IDL measures to what extent the state of one unit influences
the states of other units. As the state of one unit depends on another
unit, a fraction of the bits of information that determine its state
becomes a reflection of the other unit’s state. This creates a certain
amount of mutual information among them. A unit can then influ-
ence other units in turn, propagating these ‘transmitted’ bits further
into the network. This generates a decaying amount of mutual
information between distant units that eventually settles at a con-
stant. The higher the IDL of a system, the larger the distance over
which a unit can influence other units, and the better the units are
capable of a collective transition to a different state. Because of this
we can measure the IDL of systems of coupled units and detect their
propensity to a catastrophic change, even in the absence of a predict-
ive model. See Sections S1 and S2 in the SI for a more detailed
explanation and how it differs from existing indicators.

We measure the IDL of risk-trading among banks by calculating
the IDL of the returns of interest-rate swaps (IRS) across maturities.
The rationale is that the dependencies between banks are expected to
be reflected in the dependencies of swap rates across maturities, as we
explain next. Each financial institute is typically exposed to a signifi-
cant amount of risk of changes in short-term and long-term interest
rates, and buys corresponding IRSs to cancel out or ‘hedge’ these
risks. If an institute has difficulties in financing its short-term interest
rate hedges and consequently has a higher chance of default, then
each long-term IRS that it holds becomes less valuable (and vice
versa). The corresponding buyers of these long-term (short-term)
IRSs must buy additional long-term (short-term) IRSs on the market
to compensate, increasing the demand. An increased dependence
between institutes can therefore lead to an increased dependence
of the prices of IRSs of different maturities. A significant increase
of this approximated IDL may indicate the onset of a critical event.
We consider it to be a warning if a threshold of two times the 3-year
standard deviation above the mean is exceeded. This generates clus-
ters of warnings about once in three years, which is a tradeoff
between medium (twin) crises and the most severe (triple) crises;
see Section S7 for the derivation.

The IDL of the IRS market at time t is estimated as follows. The
swap prices form a one-dimensional system because, for instance, a
3-year IRS logically consists of a 2-year IRS and a prediction of the
value of a 1-year IRS that starts two years in prospect. That is, that the
price of the ith maturity depends on the price of a maturity i 2 1 and a
(stochastic) prediction component. We therefore assume that the
stochastic interaction between the IRS prices of maturities i and
i 1 1 is equal for all i37, which leads to an exponential decay of
information across the maturities (see Section S1 in the SI). The
IDL at time t is thus calculated as the halftime of the mutual informa-
tion between maturity 1 and i for increasing i. We estimate the
mutual information between two maturities at time t using the 300
most recent return values, using the equiprobable binning procedure;
see Methods for details.

The market of interest rate swaps (IRS) is the largest financial
derivatives market today38 with more than 504 thousand billion
USD notional amounts outstanding, or almost 80% of the total mar-
ket. The buyer of an IRS pays a fixed premium to the seller, while the
seller pays the variable LIBOR or EURIBOR interest rate to the buyer.
In effect, the seller insures the buyer against unexpected fluctuations
in LIBOR or EURIBOR in return for the expected net value of the
IRS. Swap prices can significantly influence the funding rates of
financial institutions and therefore play a key role in the profit-
and-loss and risk of financial institutions such as banks, insurance
companies and pension funds.

Our data is provided by the ING Bank and consists of the daily
prices of IRSs in the USD and EUR currency for the maturities of 1
(USD only), 2, …, 10, 12, 15, 20, 25, and 30 years. The data spans
more than twelve years: the EUR data from 12/01/1998 to 12/08/2011
and the USD data from 04/29/1999 to 06/06/2011. The prices of IRSs

are based on LIBOR and EURIBOR, respectively, which are the
average interbank interest rates at which banks lend money to each
other. Our data correspond to IRSs with yearly fixed payments in
exchange of quarterly variable payments because these swaps are the
most liquidly traded across a wide range of maturities. The data is
made available in the SI online.

Results
Evidence of IDL as an indicator of instability. In Figure 1 we show
the original time series of IRS rates with the corresponding values of
IDL. In both markets, the day of the Lehman Brothers bankruptcy is
preceded by a significant increase of IDL and a decrease afterwards.
This is consistent with our hypothesis that a self-organized transition
requires that information about the state of a unit can travel a large
distance through the system. The decrease of IDL following the
bankruptcy is consistent with interpreting a critical phenomenon
as the release of built-up stress1, similar to the way that an earth
quake releases the built-up tension between tectonic plates. These
two observations together suggest that the Lehman Brothers
bankruptcy was a self-organized critical transition and that the
IDL indicator is capable of detecting it. We verify experimentally
that the IDL indicator indeed detects serial correlations between
maturities and is not prone to false alarms by computing the IDL
for randomly generated time series with a known period of serially
correlated time series; see Section S6 in the SI for details.

Although in both markets the IDL indicator peaks near the
Lehman Brothers bankruptcy, the two curves differ significantly in
shape. Finding the underlying causes is highly speculative, neverthe-
less it is important to evaluate the plausibility that the IDL detected
an increased instability of the financial market. Next we discuss the
behavior of the IDL curves and their potential relations with signifi-
cant economic phenomena.

In the USD market, a long-term build-up of stress starts in the
beginning of 2004 and continues for more than four years, eventually
peaking shortly before the bankruptcy. This is consistent with the
common belief that markets create ‘bubbles’20, which grow slowly
over time and may ‘burst’, leading to sudden regime shifts triggered
by a catalyzing event. In the U.S. financial market, the performance of
subprime mortgage loans is considered a major cause of the current
global financial crisis39,40. The subprime share of the mortgage mar-
ket increased from about 8% in 2001 to 20% in 2006. Demyanyk and
van Hemert40 show in this context that the quality of loans deterio-
rated for six consecutive years before the crisis, and suggest that the
market followed a classic lending ‘boom-bust’ scenario which was
masked by a prevailing high house price appreciation. This latter
phenomenon, termed the ‘house price bubble’41, went hand-in-hand
with the surge of subprime mortgage loans. The U.S. season-adjusted
house-price index had been growing at an increasing rate from 1991
to 200642, which stimulated the sale of low-rate mortgages based on
the premise that the house prices would keep growing. Around the
year-end of 2005, however, the growth rate stopped increasing and in
March 2006 the growth rate had its largest-ever drop to below zero,
after which the prices continued to decrease. As a result, home own-
ers were less capable of financing the loan and the underlying security
decreased in value, which further deteriorated the quality of the loans
and destabilized the lending banks.

The EUR market, on the other hand, appears to have played a
more submissive role. The IDL indicator rises distinctly for about
half a year before the Lehman Brothers bankruptcy and diminishes in
about the same amount of time. One plausible explanation is that the
ever-growing instability in the USD market at some point ‘infected’
the EUR market, i.e., the EUR market may have become increasingly
unstable as a consequence of the high instability of the USD market.
This explanation is consistent with the observation that the financial
crisis initiated in the U.S., whereas Europe responded to the U.S.
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crisis rather than initiating its own. The ‘infection’ occurs due to the
intimate relation between the EUR and USD markets.

Evidence of IDL as an early warning signal. We find that the IDL
indicator could have served as an early-warning signal for the
Lehman Brothers bankruptcy. We define the earliest time at which
a warning could be given as the point where the IDL increases beyond
a predefined warning threshold (see the inset of Figure 1). In the
USD market data we find that the earliest clear warning precedes
the bankruptcy by 118 trade days and lasts for 8 days, followed
immediately by a warning that lasts for 7 days. In the EUR market
the warning is much more pronounced, but also more concentrated
near the bankruptcy. A clear warning starts 67 trade days in advance
and lasts for 117 trade days.

Comparison to critical slowing down and other indicators. The
most well-known leading indicator of critical transitions is the
increase of the autocorrelation of fluctuations of the system
state2,43–46. The intuition is that if an unstable system is perturbed it
returns more slowly to its natural state compared to a stable system.
The more stable the system, the stronger the tendency to return to

its natural state, so the more quickly it responds to transient
perturbations.

We compute the first-order autoregression coefficient of the fluc-
tuations of each maturity IRS time series for all possible window sizes
and show a representative set of results in Figure 2; see the Methods
section for details. We find indeed signs of critical slowing down
around the Lehman Brothers bankruptcy for certain window sizes.
However, it is difficult to find parameter values that provide a sus-
tained advance warning, that is, where the indicator crosses the
warning threshold for more than a few days before the bankruptcy.
Only in the EUR data for the 1-year maturity and a sliding window
size of around 1000 trade days we find a significant early warning,
which disappears for a sliding window larger than 1250 trade days
(see Section S5.1 in the SI).

Another type of generic leading indicators used in the literature
are the spatial correlation and spatial variance of the signals of the
units of a system3,47–52. See Figure 3. In our data, the dimension of
maturities can be taken as the ‘spatial’ dimension. The traditional
correlation function used is the linear Pearson correlation, shown in
the top panels of Figure 3. We also compute the correlations using the
mutual information function, shown in the middle panels, since this

Figure 1 | The original time series of the IRS rates for different maturities and the corresponding IDL indicators for the EUR and USD markets.
The IDL at time t is calculated using the 300 most recent returns up to time t. Inset: the IDL indicator and a warning threshold during the 300 trade days

preceding the LB bankruptcy. We set the warning threshold at two times standard deviations above the mean IDL of a sliding window of 750 trade days.

Bottom: the mutual information between the rates of the 1-year maturity IRS and all other maturities (red circles) at two different trade days. The fitted

exponential decay is used to estimate the IDL of the IRS rates across maturities for that specific trade day.
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function can capture non-linear relationships as well. In finance,
correlations are often calculated using the relative differences
(returns) of time series instead of the absolute values (19), so we
repeat the calculations on the returns shown in the right half of
Figure 3.

We find that in our time series these indicators do not show a
distinctive change of behavior around the time of the bankruptcy in
both markets. One possible explanation is that all IRS prices correlate
strongly with external financial indices (such as the home-price
index), which may dominate the observed correlations in the IRS
prices across the maturities. In this scenario the IDL is still capable to
be a leading indicator because it ignores the correlation that is shared
among all IRS prices. That is, the information in the IRS prices of
different maturities decays as a 1 b?(f t)12i where a is the information
(or correlation) shared among all IRS prices, and the estimated rate of
decay f t is independent of a.

More traditional indicators used for financial time series are the
magnitude or spread of interest rates53. However, Figure 1 as well as

the variances in the level data in Figure 3 show that neither measure
provide a clear warning: a high (USD) and low-spread period (EUR)
occurred more than a year before the bankruptcy and was returning
to normal at the time of the bankruptcy.

Lastly, the same swap with a different variable payment frequency
(e.g., monthly, quarterly, semi-annually) were quoted at the same
price in the market before 2007. During the recent crisis, a significant
price difference across frequencies emerged54. Although this has a
major impact on the valuation and risk management of derivatives,
this so-called ‘basis’ does not provide a clear early warning (see
Section S5.2 in the SI).

Discussion
From an optimistic viewpoint, the IDL indicator may improve the
stability of the financial derivatives market. Our observation that
previously introduced leading indicators did not provide an early
warning for the Lehman Brothers bankruptcy, and the crisis that

Figure 2 | The solid blue line is the coefficient of the first-order autoregression of the detrended time series, which is a measure of critical slowing down.
The dashed red line is the warning threshold of two standard deviations above the mean of a sliding window of 750 trade days, as in Figure 1. The

coefficient is computed of a sliding window of 500 (left) and 1000 (right) trade days which is detrended using a Gaussian smoothing kernel with a standard

deviation of 5 trade days. We show the critical slowing down indicator for the first, second, fifth, and tenth maturity in the USD and EUR markets.
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followed, is consistent with the hypothesis that leading indicators
lose their predictive power in financial markets55. A plausible
explanation is that an increase of a known leading indicator could
be directly followed by preemptive policy by central banks56, a change
of behavior of the market participants, or both, until the indicator
returns to its normal level. This would imply that the financial system
is capable of avoiding the type of critical transitions for which it has
leading indicators: it changes behavior as it approaches such a trans-
ition, while it remains vulnerable to other critical transitions for
which it has no indicators. The fact that the IDL indicator provides
an early warning signal suggests that it is capable of detecting a type
of transition for which the financial system had no indicators at the
time. Therefore, from this viewpoint the IDL indicator potentially
makes the financial system more resilient because it improves its
capability of avoiding catastrophic changes.

From a pessimistic viewpoint, on the other hand, the IDL indicator
may actually decrease the stability of the financial system. Upon an
increase of IDL, participants may respond in a manner that increases
the IDL further, reinforcing the participants’ response, and so on,
propelling the financial system towards a crisis. This is a general
dichotomy for all early warning indicators in finance57. In the
absence of a mechanistic model of the financial derivatives market
it is difficult to predict the effect of a warning indicator.

Our results are a marked step forward in the analysis of complex
dynamical systems. The IDL is a generic indicator that may apply to
any self-organizing system of coupled units. For many such systems
we lack the mechanistic insight necessary to build models with suf-
ficient predictive power. Remarkably, we find evidence that the per-
colation of information can provide a tell-tale of self-organized
critical phenomena even in the absence of a descriptive model.
Although we study the financial derivatives market here, it seems
reasonable to expect that it is true for a wide range of systems such as
the forming of opinions in social networks5–11, the extinction of spe-
cies in ecosystems3,44,45,49,58–61, phase transitions and spontaneous
magnetization in physics47,62–64, robustness in biological systems65,66,
and self-organization of populations of cells67 and even software
components68.

Methods
Calculating the IDL in the IRS time series. Because the IRS price levels are not
stationary within the sliding window sizes we use relative differences (returns)

instead. Let r(t)
i ~(c(t)

i {c(t{1)
i )=c(t{1)

i denote the return of an IRS with maturity

i 5 1,…,15 at time t, where c(t)
i denotes the corresponding price level. We fit the

exponential decay azb:(f (t))1{i to the measured Shannon information I(r(t)
1 jr

(t)
i ) as

function of i, where a is the mutual information that all IRS rates have in common, b is

the normalizing factor I(r(t)
1 jr

(t)
1 ){a, and f (t) is the rate of decay of the mutual

Figure 3 | Alternative leading indicators for the IRS time series in both markets, in levels and in returns. We computed the average cross-maturity

Pearson correlations for sliding window sizes of 100 days (blue line), 300 days (green line), and 500 days (red line) between the 1-year IRS and all other

maturities. The variance at time t is computed of the levels (returns) of all maturities of the single trade day t. Time point 0 on the horizontal axis

corresponds to the day of the Lehman Brothers bankruptcy.
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information between the IRS rates across maturities. We define the IDL as the
corresponding halftime log{1 f (t): log 1=2. The mutual information I(r(t)

1 jr
(t)
i ) is

estimated by constructing an adaptive69 contingency table of the two vectors

r(t{w)
1 , . . . ,r(t)

1 and r(t{w)
i , . . . ,r(t)

i , which are the w most recently observed returns in
the market at time t. To construct this table we divide the range of values of each
vector into h bins of variable size such that each bin contains about the same number
of samples. Two observed pairs of returns are considered equal if they fall into the
same bin. Our results are robust against choosing the parameters w and h; see Section
S4 in the SI for more details. The results in Figure 1 were produced with a window of
w~300 trade days and binning the return values into h 5 10 bins.

Calculating the first-order autoregression coefficient of fluctuations. Calculating
this coefficient of a given time series requires two parameters: the standard deviation
of the Gaussian smoothing kernel g, which de-trends the signal, and the number of
most recent IRS prices w2 which are used to compute the autoregression. The
procedure is identical for each maturity. First we use the smoothing kernel to compute
a running weighted average of the time series, where each IRS price level becomes the
weighted average of its neighbors. Then we subtract it from the original time series to
obtain the de-trended signal, i.e., the short-term fluctuations. Of these fluctuations we
calculate the first-order autoregression coefficient at time t using the w2 preceding
prices. The autoregressive model used is the Yule-Walker model70. The results in
Figure 2 were produced with a kernel of size g 5 5 and a sliding window of w2~1000
price levels. This procedure can be calculated for the price levels regardless of non-
stationarity since it contains a de-trending step. See Sections S5.1 and S5.4 in the SI for
more details as well as results for different values of g and w2.

Calculating the spatial correlation and variance. At each time point we calculate the
spatial correlation coefficient at time t as Ct~ Fcorr(s

t{w3
1 , . . . ,st

1; st{w3
i , . . . ,st

i )
� �

i ,

using the preceding w3 IRS rates of maturity 1 and maturities i, i 5 1,2,…,15. Here,
Fcorr is either the standard Pearson correlation for the upper plots in Figure 3, or the
mutual information function for the middle plots; :h ii denotes the arithmetic average
of the correlation values for the different maturities, and st

i denotes the price of an IRS
of maturity i at time t. The results in Figure 3 were produced using sliding windows of
sizes w3~ 100,300,500f g. The spatial variance is computed at each time point

t as s2(t)~
P

i
(st

i{ sth i)2. We repeat the calculations after replacing each original

level st
i by its relative difference (returns) st

i{st{1
i

� �
=st{1

i .
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