Skip to main content
. 2013 May 30;4:47. doi: 10.3389/fpsyt.2013.00047

Figure 3.

Figure 3

Hierarchical message passing in the visual-oculomotor system: the schematic illustrates a neuronal message-passing scheme (generalized Bayesian filtering or predictive coding) that optimizes posterior expectations about hidden states of the world, given sensory (visual) data, and the active (oculomotor) sampling of those data. It shows the speculative cells of origin of forward driving connections (in red) that convey prediction errors from a lower area to a higher area and the backward connections (in black) that construct predictions. These predictions try to explain away prediction error in lower levels. In this scheme, the sources of forward and backward connections are superficial (red) and deep (black) pyramidal cells respectively. The cyan connection denotes a neuromodulatory connection from the ventral tegmental area (VTA) which mediates estimates of precision. The equations on the right represent a generalized descent on free energy under the hierarchical model described in the main text – this can be regarded as a generalization of predictive coding or Bayesian (e.g., Kalman–Bucy) filtering. These equations are simplified versions of Eq. 3, in which state-dependent precision has been suppressed. State units are in black and error units are in red. The cyan circle highlights where precisions enter these equations – to modulate prediction error units (superficial pyramidal cells) such that they report precision-weighted prediction errors. In this schematic, we have placed different levels of a hierarchical model within the visual-oculomotor system. Visual input arrives in an intrinsic (retinal) frame of reference that depends on the direction of gaze. Exteroceptive input is then passed to the lateral geniculate nuclei (LGN) and to higher visual and prefrontal (e.g., frontal eye fields) areas in the form of prediction errors. Crucially, proprioceptive sensations are also predicted, creating prediction errors at the level of the cranial nerve nuclei (pons). The special aspect of these proprioceptive prediction errors is that they can be resolved in one of two ways: top-down predictions can change or the errors can be resolved through classical reflex arcs – in other words, they can elicit action to change the direction of gaze and close the visual–oculomotor loop.