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Abstract
CARs are recombinant receptors that provide both antigen-binding and T cell activating functions.
A multitude of CARs has been reported over the past decade, targeting an array of cell surface
tumor antigens. Their biological functions have dramatically changed following the introduction
of tri-partite receptors comprising a costimulatory domain, termed second generation CARs. These
have recently demonstrated clinical benefit in patients treated with CD19-targeted autologous T
cells. CARs may be combined with costimulatory ligands, chimeric costimulatory receptors or
cytokines to further enhance T cell potency, specificity and safety. CARs represent a new class of
drugs with exciting potential for cancer immunotherapy.

Introduction
CARs are recombinant receptors for antigen, which, in a single molecule, redirect the
specificity and function of T lymphocytes and other immune cells. The general premise for
their use in cancer immunotherapy is to rapidly generate tumor-targeted T cells, bypassing
the barriers and incremental kinetics of active immunization.(1, 2) Once expressed in T
cells, the CAR-modified T cells acquire supra-physiological properties and act as “living
drugs” that may exert both immediate and long-term effects. The engineering of CARs into
T cells requires that T cells be cultured to allow for transduction and expansion. The
transduction may utilize a variety of methods, but stable gene transfer is required to enable
sustained CAR expression in clonally expanding and persisting T cells. In principle, any cell
surface molecule can be targeted through a CAR, thus over-riding tolerance to self-antigens
and the antigen recognition gaps in the physiological T cell repertoire that limit the scope of
T cell reactivity. Various T cell subsets, as well as T cell progenitors and other immune cells
such as natural killer (NK) cells, can be targeted with a CAR. Redirecting immune reactivity
towards a chosen antigen is not however the only purpose of smarter CARs, which are
designed to accomplish much more than to target and initiate T cell activation. CARs with
different strengths and quality of signaling have the potential to modulate T cell expansion
and persistence, as well as the strength of T cell activation within the tumor
microenvironment, features that dramatically alter the efficacy and safety of tumor-targeted
T cells. In this regards, CARs provide a broader range of functional effects than transduced
T cell receptors (TCRs), wherein strength of signaling, which is for the most part determined
by the TCR’s affinity for antigen, is the principal determinant of T cell fate. CARs and
TCRs have their respective advantages and disadvantages.(1-4) While the flexibility and
“dynamic range” of CARs is attractive, current CARs are limited to recognizing cell surface
antigens, whereas TCRs recognize both cell surface and intracellular proteins. CARs
however do not require antigen processing and presentation by HLA, and are therefore more
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broadly applicable to HLA-diverse patient populations. We discuss here the targeting and
signaling properties of CARs, focusing on their effects on T cell specificity, potency and
safety. Other general aspects of adoptive T cell therapy that apply not only to the use of
CARs but other T cell therapies as well, including T cell expansion methodologies, T cell
subset selection and host conditioning, are beyond the scope of this review. Owing to the
extraordinary potential of T cell engineering and the modular nature of their structure, CARs
are rapidly evolving and show great promise for their successful utilization in a wide range
of immunotherapies.

CAR targeting
CARs are recombinant receptors that typically target native cell surface antigens.(4) Unlike
the physiological TCR, which engages HLA-peptide complexes, CARs engage molecules
that do not require peptide processing or HLA expression to be recognized. CARs therefore
recognize antigen on any HLA background, in contrast to TCRs, which need to be matched
to the patient’s haplotype. Furthermore, CARs can target tumor cells that have down-
regulated HLA expression or proteasomal antigen processing, two mechanisms that
contribute to tumor escape from TCR-mediated immunity.(5) Another feature of the broad
applicability of CARs is their ability to bind not only to proteins but also to carbohydrate
and glycolipid structures, again expanding the range of potential targets. A survey of
antigens targeted to date by CARs is shown in Table 1.

The moieties used to bind to antigen fall in three general categories, either scFv’s derived
from antibodies, Fab’s selected from libraries, or nature ligands that engage their cognate
receptor (see Fig. 1, first generation CARs). Successful examples in each of these
categories–too many to cite–have been reported (Table 1). scFv’s derived from murine
immunoglobulins are commonly used, as they are easily derived from well-characterized
monoclonal antibodies. They however may prove to be more immunogenic than Fab’s
derived from human libraries or invariant human ligands.

The rules for selecting optimal epitopes for CAR targeting are still little known. The position
of the epitope and its distance to the cell surface are expected to affect the binding to the
antigen and the optimal formation of T cell-target conjugates and synapses,(6) but there is
still little knowledge of the overall rules governing optimal epitope selection. Empirical
observations indicate that the structure of the “spacer region” between an scFv and the
transmembrane region (Fig. 1) can affect CAR specificity, but no definitive principles have
yet emerged.(7) CAR length and protrusion from the T cell membrane are likely to affect
synapse formation. The optimal affinity of CARs is also little defined. Few studies have
attempted to address this question, which is of major importance in the case of TCRs(8, 9)
and likely to impact CAR function as well. Informative studies comparing multiple CARs
recognizing the same epitope with different affinities are still lacking. Finally, the effect of
antigen density is not yet well defined. CARs typically target highly expressed antigens, but
little is known about minimum thresholds. It is uncertain whether CARs are as exquisitely
sensitive as TCRs.(9) If not, lesser sensitivity could represent a limitation in their activity
against tumors expressing low antigen levels but may also turn into an advantage where
avoidance of low-level antigen expression on normal cells is desirable. Thus, the antigen-
binding moiety of the CAR is not just a targeting device but is integral to CAR function,
which is largely but not solely defined by the signaling components incorporated into the
CAR’s cytoplasmic domain.

CAR signaling
The first fusion receptors shown to have T cell-activating potential on their own were
chimeric molecules between CD3-ζ or Fc receptor γ and CD8, CD4, CD25 or CD16 (Fig. 1,
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first generation CARs), which were shown to initiate phosphatidylinositol and tyrosine
kinase pathways together with calcium influx in human T cell leukemias.(10-13) The
addition of a hapten-specific scFv derived from amurine antibody to the extracellular portion
of such fusions, termed a T-body (Fig. 1, first generation CARs), effectively redirected
cytolysis by murine T cell hybridomas.(14) While CD3-ζ chain aggregation is sufficient to
enable lytic activity in CTL lines, it is important to bear in mind that the strength of signal
required for cytotoxicity is lower than that needed for other T cell functions. This likely
underscores the limited therapeutic responses reported with activating receptors, the anti-
tumoral effects of which are often confined to local administration models (15, 16) or short-
term systemic models.(17) In transgenic mice, T cells expressing CARs that only comprise
an activation domain in their cytoplasmic domain are prone to undergoing anergy.(18)

Once we could efficiently transduce human primary T cells, we found that CD3-ζ CARs
failed to elicit a robust cytokine response, including interleukin-2, and support T cell
expansion upon repeated exposure to antigen.(19) It would take the design of a tri-partite
fusion receptor, possessing both activating and costimulatory properties (Fig. 1, second
generation CARs), to obtain absolute T cell expansion of human peripheral blood T cells
upon repeated exposure to antigen.(20) Significantly, these essential functions cannot be
investigated in leukemic or immortalized T cell lines,(21) but only in primary T cells, which
CAR investigators have now solidly embraced as the gold standard for evaluating CAR
function in vitro or in vivo. Eventually dubbed second-generation CARs, receptors
encompassing the CD3-ζ chain and the cytoplasmic domain of a costimulatory receptor
such as CD28, 4-1BB, DAP10, OX40 or ICOS, were eventually reported (Table 1). The
superior activity of dual-signaling receptors over the activating-only receptors was observed
in several models utilizing mouse or human T cells.(22-24) The key attribute of dual-
signaling receptors is to confer greater strength of signaling and persistence to the T cells,
resulting in their overall greater potency. The enhanced persistence imparted by dual-
signaling CARs has been confirmed in patients treated with a mixture of T cells transduced
with either a CD28/CD3ζ or CD3ζ-only CAR.(25) Second generation CARs come in varied
configurations, but exhaustive comparisons are still lacking. Some CD28 and 4-1BB–based
second generation CARs were compared in animal models, but either one proved to be
superior to the other in different contexts. In one study, Carpenito et al found that two CD28
and 4-1BB-based CD19-specific CARs had the same therapeutic activity, but noted that the
T cells expressing the 19-BB CAR accumulated to greater levels over time, possibly in
antigen-independent fashion.(26) This difference was not observed in another model.(27)
More comparative studies are needed, noting that such studies must take into account the
variability between CARs within any one given category. For example, different CD28/
CD3ζ CARs differ in their ability to elicit interleukin (IL)-2 secretion.(20, 28) Furthermore,
the location of the targeted epitope, its density, the affinity of the CAR and other topological
effects of CAR structure affect CAR signaling, as discussed above. Comparisons will thus
need to include multiple representatives of the evaluated categories to reach generalizable
conclusions.

A third generation of CARs, encompassing two costimulatory domains combined with an
activation domain in their cytoplasmic domain (Fig. 1, third generation CARs), has been
described, which appears to confer yet greater potency to tumor targeted T cells in some
mouse models.(26, 27, 29, 30) These more complex structures warrant further study as well.
A first clinical study utilizing a CD20-specific CD28/4-1BB/CD3ζ did not shown dramatic
responses,(31) but this early result should not in anyway detract from the potential value of
these “triple-decker” CARs. Overall, more investigation is needed to attain a better
understanding of optimal CAR signaling to promote sustained T cell function and survival,
preventing premature death, rapid exhaustion or undue proliferation.

Sadelain et al. Page 3

Cancer Discov. Author manuscript; available in PMC 2014 April 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Potentiation and complementation of CAR function: costimulatory ligands,
chimeric costimulatory receptors and cytokines

Costimulatory support can be engineered into T cells otherwise than through a CAR. (Fig. 2)
The coexpression of chimeric costimulatory receptors (CCRs), costimulatory receptor
ligands and cytokines, have all been utilized to modulate the function and/or survival of
CAR-transduced T cells.

Costimulatory ligands
The constitutive expression of costimulatory ligands on the T cell surface (Fig 2) provides a
powerful means to potentiate CAR-targeted T cells. Several ligands for Ig super-family and
TNF receptor family costimulatory receptor, including CD80, CD86, 4-1BBL, OX40L and
CD70, have been shown to enhance T cell proliferation and cytokine secretion upon antigen
engagement.(32) The combination of two ligands, in particular CD80 and 4-1BBL, results in
sustained in vivo T cell expansion and persistence, associated with the rejection of massive,
established tumor burdens.(32) Both auto- and trans-costimulation have been shown to
contribute to enhanced T cell activity in this context, which may be useful to enhance
adoptive cell therapies utilizing CAR- or TCR-transduced T cells. The occurrence of
costimulatory ligands found on tumor cells is also likely to influence the activity of CAR-
modified T cells, whether they are activating (e.g., CD80, CD40L, 4-1BBL) or inhibitory
(e.g., PD-L1).

Chimeric costimulatory receptors
CCRs mimic costimulatory signals but, unlike CARs, do not provide a T cell activation
signal. Their purpose is to provide costimulation, e.g. a CD28-like signal,(33) in the absence
of the natural costimulatory ligand on the antigen-presenting cell (Fig.2). They thus provide
a means for the tumor to direct counterfeit costimulation specifically within the tumor
microenvironment. CCRs targeting the glycolipid GD2, MUC16, PSMA and the α-folate
receptor have been described, utilized in conjunction with a TCR or a CAR to augment T
cell reactivity against dual-antigen expressing T cells, reinforcing T cell activation in the
absence of natural costimulatory ligands and in antigen-dependent fashion.(20, 33-35)
Under particular conditions, CCRs may also be utilized to improve selective tumor
targeting, as further discussed below.

Cytokines
Another approach to enhance the potency of CAR-targeted T cells is to further genetically
modify the T cells to secrete pro-inflammatory or pro-proliferative cytokines. Its purpose is
not only to provide autocrine support to enhance the function, proliferation and/or
persistence of CAR-expressing T cells, but also to favorably alter the tumor
microenvironment and recruit endogenous innate and cognate immune effectors. The
expression of T cell-encoded cytokines additionally aims to limit the systemic toxicity of
many cytokines. Preclinical reports investigating γc cytokines or IL-12 show great promise
for this approach.

T cell-encoded IL-15 increases the viability and proliferation of human peptide-specific T
cells despite withdrawal of exogenous IL-2. (36) Improved in vitro and in vivo expansion of
human Epstein Barr Virus specific cytotoxic T cells (EBV-CTLs) following retroviral gene
transfer of the IL-2 or IL-15 cDNA has also been reported.(37) The report of an isolated
IL-15 modified CD8+ T cell clone exhibiting logarithmic proliferation for over 1 year in the
absence of exogenous cytokine support cautions against this approach, (38) although this
concern may be mitigated by using a suicide gene to potentially remove T cells via drug-
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induced apoptosis(37). Cytokine modified T cells used as antigen presenting cells to expand
tumor targeted T cells, expressing either IL-7 and IL-12 (39) or IL-21, (40) successfully
expanded tumor-targeted T cells, with a more favorable central memory phenotype in the
latter case. Comparisons between cytokines expressed at different levels in different assays
or tumor models are complex to interpret. Nonetheless, we compared CD19 CAR-targeted
human 19z1+ T cells that constitutively expressed either IL-2, IL-7, IL-15 or IL-21 under
standardized conditions and found that all four γc cytokines enhanced tumor rejection in a
xenotransplant model of human CD19+ tumor, more so, in this context, with IL-7 and IL-21
than IL-2 and IL-15 (41).

In an immune competent syngeneic tumor model, CD19-targeted, CAR-modified T cells
expressing IL-12 showed greater efficacy than CAR-modified T cells alone.(42)
Significantly, IL-12 modified T cells eradicated CD19+ tumors in the absence of any prior
conditioning and, additionally, exhibited resistance to regulatory T cell (Treg) inhibition. In
a murine melanoma model, transgenic Pmel-1 CD8+ T cells, as well as Pmel-1 TCR-
transduced murine T cells that were modified to express IL-12, eradicated established
tumors with significantly greater potency than T cells expressing the Pmel-1 TCR alone(43).
Similarly improved outcomes were obtained in tumor bearing mice treated with IL-12
secreting T cells targeted to tumor by an anti-VEGF receptor-2 CAR.(44) In both latter
models, the effect of IL-12 appears to act at least in part by altering myeloid cells in the
tumor microenvironment.(44, 45)

The titration of cytokine secretion by T cells is important because of the potential toxicity of
elevated systemic levels. One may address this concern by appropriately calibrating
promoter strength or through conditional cytokine release following T cell activation
utilizing nuclear factor of activated T cells (NFAT)-inducible promoters.(46) Using this
approach to control cytokine secretion, two trials treating metastatic NY-ESO-1+ tumors
with autologous TCR-targeted T cells or tumor-infiltrating T cells secreting IL-12, are under
way at the NCI (NCT01457131, NCT01236573).

CARs in the clinic
The CD19 paradigm

The most investigated target to date is CD19, an attractive target for CAR-based therapy as
it is present in most B cell leukemias and lymphomas but not in any normal tissue other than
the B cell lineage.(47, 48) CD19+ malignancies were the first cancers to be eliminated by
CAR-engineered human T cells administered intravenously to systemic tumor-bearing mice.
(49) Successful B cell tumor eradication was eventually obtained with different CD19
CARs(15, 22-24), paving the way for several on-going clinical trials. The targeting of CD19
has thus become a paradigm for evaluating CAR technology.(50) We estimate that at least
50 patients with leukemia or lymphoma have been treated at the time this review is written,
28 of which were reported from 5 centers in the past year.(25, 51-56) The reported clinical
outcomes were recently reviewed elsewhere (57, 58) and are briefly summarized here.

The largest series and most dramatic early results were reported from the National Cancer
Institute (NCI), Memorial Sloan-Kettering Cancer (MSKCC) and the Abramson Family
Cancer Research Institute at the University of Pennsylvania (UPenn). These clinical trials
followed the same overall procedures, including patient T cell apheresis, retroviral or
lentiviral CAR transduction, T cell expansion and host conditioning prior to T cell infusion.
They however differ in several regards, including not only CAR design (same CD28/CD3z
dual-signaling domain utilized at the NCI and MSKCC, 4-1BB/CD3z utilized at UPenn), but
also T cell manufacturing, conditioning chemotherapy, tumor burden, tumor chemo-
sensitivity, and T cell dosage, which are reviewed in detail in ref. (57) Kochendorfer and the

Sadelain et al. Page 5

Cancer Discov. Author manuscript; available in PMC 2014 April 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



NCI group reported on 8 patients (4 with CLL, 3 with follicular lymphoma, and one with
marginal zone lymphoma) conditioned with fludarabine and cyclophosphamide, and further
given IL-2 after T cell infusion. Amongst the 4 CLL patients, one achieved a complete
response (CR) and another stable disease (SD). Four of the 8 treated patients exhibited B
cell aplasias.(53) Brentjens and colleagues reported on 8 patients with CLL and 1 patient
with B cell acute lymphoblastic leukemia (B-ALL), whose diseases were resistant to the
milder cyclophosphamide conditioning regimen used in 5 of the 8 CLL patients (the first 3
were given T cells without any prior conditioning; no significant response was obtained). In
the CLL cohort, 2 patients had stable disease and one patient demonstrated a substantial
lymph node reduction. None of the CLL patients developed B cell aplasia, in contrast to the
one patient with relapsed B-ALL. (47) June and colleagues (54, 55) treated 3 patients with
bulky CLL that were conditioned with bendamustine, a highly active agent in these in these
patients. Two of them achieved dramatic, long-lasting CR’s. The reasons for the different
outcomes in these 15 CLL patients treated at 3 different centers, which include significant
differences in CAR design, conditioning intensity and the selection of chemosensitive
patients amongst many variables,(57) still remain to be elucidated. Altogether, better
responses were observed following more active conditioning, resulting in a 25% CR rate in
12 CLL patients treated with T cells following chemotherapy conditioning. Much will
undoubtedly be learned about the role of the CAR and other parameters by comparing
biological and clinical outcomes using similarly manufactured T cells in similarly selected
patients.

Solid tumors
One next frontier for CAR-based therapies is to take on solid tumors. Early attempts with
first generation CARs did not yield very encouraging data,(59) although one recent study
targeting the GD2 ganglioside in children with neuroblastoma showed 2 CRs in 13 patients.
(60) Solid tumors present a different set of challenges compared to B cell malignancies:
overall lesser sensitivity to T cell mediated cytotoxicity, a microenvironment that presents
with an array of immunosuppressive mechanisms differing between tumor types, and a
paucity of target antigens with an expression profile as favorable as CD19. Despite an
impressive number of investigated targets (Table 1), few target candidates are tumor-
specific, or restricted to the tumor and a “dispensable” normal cell type or a tissue that is
sheltered from an immune attack. In this perspective, identifying valid targets to achieve
efficacious tumor rejection while ensuring patient safety is an essential goal that requires
further investigation. Nonetheless, several trials utilizing first and second generation CARs
are under way and listed on the US clinicaltrials.gov web site.

CAR safety
The two main safety concerns associated with the use of CARs are the targeted destruction
of normal tissues and cytokine storms associated with large-scale immune responses. The
toxicity of the different conditioning regimens used in conjunction with adoptive T cell
therapies is also a significant issue to consider but is beyond the scope of this review.

On-target, off-tumor responses
The immune-mediated rejection of normal tissues that express the targeted antigen is
referred to as an “on-target, off-tumor” response. This occurrence is best illustrated in the B
cell aplasias induced by CD19-targeted CARs.(52-54) Whereas B cell aplasia can be
effectively managed by administering intravenous immunoglobulin, such collateral damage
may not be tolerable in many other instances. This may for example be the case for her2,
(61) which is expressed at low level in several normal tissues, including heart and
pulmonary vasculature. Other examples, for which no toxicities have been reported to date,
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include PSMA, which is highly expressed in castrate-resistant, metastatic prostate cancer,
(62) but is detected in astrocytes type II, the renal proximal tubule and the jejunum brush
border; ROR1, which is expressed in a subset of leukemias and lymphomas, but is also
detected in adipocytes.(63) T cells are very effective at destroying normal tissues that
express the targeted antigen, as exemplified by the ocular and vestibular effects of MART-1-
specific T cells(64) and the cholestatic effect of T cells targeted to carbonic anhydrase IX.
(65) It is presently unknown whether the very low level expression of antigens such as
PSMA and ROR1 on normal tissues will expose these to immune destruction. This problem
would be easily resolved if there were truly tumor-specific cell surface molecules to target,
but such molecules are so far very rare. The identification of restricted CAR targets is
therefore a high priority.

Cytokine storms
The second major concern is that of “cytokine storms” associated with intense anti-tumor
responses mediated by large numbers of activated T cells.(53-55) These typically cause high
fever and hypotension, potentially resulting in organ failure. Their management may require
steroids, vasopressors and/or supportive therapy delivered in the intensive care unit. Grupp
and colleagues have observed that IL-6 blockade utilizing Tocilizumab may be effective in
steroid-refractory circumstances, without compromising T cell efficacy.(66) Unlike many
conventional drug-induced side effects, this toxicity cannot be controlled by simply reducing
drug dosage, as proliferating T cells will increase in numbers and eventually reach critical
levels where a synchronous cytokine response exceeds tolerability. Split T cell dosing or
short-lived T cells may partially reduce this effect, but more fundamental solutions are
needed to reduce and ideally prevent the occurrence of overwhelming T cell activity..

Emerging solutions to improve CAR safety
Recognizing that CAR-modified T cells are in general well tolerated, their broader use
requires having solid strategies to treat or, better, prevent on-target, off-tumor effects and
cytokine storms. On therapeutic option is to utilize suicide genes to have a means to
eliminate an excessive response. Herpes simplex virus thymidine kinase(67) and inducible
caspase-9(68) are clinically tested systems that could be used to halt deleterious responses.
(69) The downsides to this approach are that it is reactive, not preventative, and that active T
cells will be eliminated, possibly curtailing the therapy. A better understanding of cytokine
storms may offer novel prospects for reducing toxicity without compromising therapy and
limiting the use of corticosteroids.(66) Significantly, we find, in ALL patients treated with a
CD19-specific CD28/CD3z CAR, that stronger cytokine responses occur in patients with
large tumor burdens but not in those with minimal residual disease at the time of T cell
infusion, a finding that suggests that reducing tumor burden by alternative means prior to T
cell infusion will reduce the risk of T cell-induced cytokine-mediated toxicity following a
subsequent T cell infusion (unpublished observations). Ultimately, the design of T cells that
are effective, highly tumor-specific, and regulated in their maximal accumulation and
activation (so as to prclude toxic cytokine elevation), will represent a valuable advance for
the use of CARs. One approach to improve tumor selectivity, based on combinatorial
antigen recognition, is reviewed below.

New directions in the CAR industry
New technologies or concepts other than the design of better CARs and their combination
with costimulatory ligands, chimeric costimulatory receptors or cytokines, are emerging to
broaden or improve the use of CARs. These include improved CAR delivery systems, the
design of CARs that recognize intracellular antigens, and combinatorial antigen recognition
to increase T cell specificity and potency.
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CAR delivery
The mechanics of T cell transduction are beyond the scope of this review but are briefly
addressed here. CARs began to be investigated in meaningful ways when methods for the
transduction of human primary T cells became available(70-72). For the past 15 years,
virtually all CAR studies have relied on retroviral vectors, including gamma-retroviral and
lentiviral vectors.(73) Most current clinical trials utilize retroviral vectors derived from
murine leukemia virus or human immune deficiency virus-1. Although retroviral vectors can
induce insertional oncogenesis in hematopoietic progenitors(74, 75), T cells appear to be far
less susceptible to retroviral vector-induced transformation(76-79). Transposases, which
also provide random vector integration(80), are starting to be evaluated in the context of
CAR therapy.(81) The relative advantages/disadvantages of these different integrating
systems have not yet been elucidated, but will hinge on CAR expression levels, silencing
over time, safety features, ease of manufacturing and usage, and cost. Although T cell
transformation secondary to insertional mutagenesis has not been reported to date, site-
directed vector integration into genomic safe harbors(82) may eventually enable to achieve
long-term CAR expression without any risk of insertional oncogenesis. Alternative
approaches that do not rely on transgene integration, which utilize RNA electroporation,(83,
84) or cell surface conjugation,(85) result in transient CAR expression, precluding effective
T cell persistence beyond a week or two. The usefulness of transiently CAR-expressing T
cells, which would presumably require multiple infusions to provide meaningful tumor
responses but may reduce destruction of normal tissues or prevent T cell accumulation to
levels exposing to the risk of cytokine storms, remains to be established.

Another key aspect of CAR delivery is the addressee and identifying what T cells, expanded
under what conditions, are better suited for optimal tumor eradication. As stated above, this
topic is beyond the scope of this review, recognizing that different T cell subsets (CD4+ or
CD8+ αβ T cells, γδ T cells, naïve, central memory, effector memory, virus-specific T cells
and the recently described stem-like memory T cells) (86, 87) warrant further investigation
to delineate whether different CAR designs are best suited for different T cell types. CARs
are also functional in Tregs(88) and in the progeny of transplanted T cell progenitors(89).

CAR-like TCRs and TCR-like CARs
The transfer of TCRs into T cells poses two particular challenges that CARs elude: the risk
of mispairing between endogenous and transduced TCR chains(90), and competition for
rate-limiting CD3 complex(91), which is required for TCR signaling. Several approaches
have been proposed to prevent TCR chain mispairing, including partial murinization of the
constant regions, the addition of disulfide bonds and altering the knob-in-hole directional
interaction between constant regions. Another approach is to add signaling domains to the
intracellular portions of the transduced TCR (92), similarly to first generation CARs, which
Willemsen and Debets showed could at once avert TCR mispairing and reduce association
with CD3.(92, 93)

Conversely, HLA-peptide complexes can be targeted by antibody structures that mimic TCR
recognition. CARs may be advantageous in this regards as they do not interfere nor compete
with the native TCR and CD3, and can be further endowed with costimulatory capabilities.
Human Fab fragments specific to peptide/MHC molecules have been derived from phage
display libraries.(94). While many preferentially bind to MHC, (95) some high-affinity Fabs
with greater binding affinity for the peptide have been generated and shown by
crystallographic analysis to have a binding footprint to MHC/peptide complexes similar to
that of TCRs(96). The therapeutic potential and toxicity of these TCR-like CARs remain to
be established.
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Combinatorial antigen recognition
T cells may also be rendered more tumor-selective through combinatorial antigen
recognition. We recently described a strategy that integrates combinatorial antigen
recognition, split signaling and, critically, balanced strength of T cell activation and
costimulation, to generate T cells that eliminate target cells that express a combination of
antigens while sparing cells that express each antigen individually.(97) In this approach, T
cell activation requires TCR or CAR-mediated recognition of one antigen, while
costimulation is independently mediated by a CCR(33) specific for a second antigen. To
achieve tumor selectivity, we diminished the efficiency of T cell activation to a level where
it was ineffective without rescue provided by simultaneous CCR recognition of the second
antigen.(98) Novel approaches to enforce tumor specificity in the face of truly unique target
antigens are an important direction for future immunotherapies.

Perspectives
While there remains a vast number of important biological questions to address – optimizing
CAR signaling, defining optimal targets, working out optimal combinatorial strategies,
identifying the best and most practical processes for T cell subset selection and T cell
manufacturing, reducing T cell-mediated toxicity and the toxicity of host conditioning – the
first clinical successes of CAR therapy are being registered. The prospect of meeting the
challenging premise of adoptive T cell therapy – to achieve specific tumor destruction with
one or few T cell infusions and limited collateral damage to normal tissues– may be within
reach. The targeting of B cell malignancies through CD19 has emerged as the paradigm for
the CAR field. At the present, it also stands as an exception. The identification of safe
targets in a broad range of tumor types, eventually in combinatorial fashion, and harnessing
CAR technology for the treatment of solid tumors, are future challenges for all adoptive T
cell therapies including those utilizing CARs. As this review aims to convey, there are many
exciting strategies in the pipeline, and as many reasons to be optimistic about the prospects
for CAR therapies. Providing access to targeted T cell therapies to all medical centers and
their patients will pose additional biological, logistical and economic challenges, which are
beyond the scope of this review. The fact that models for broad access to targeted T cell
therapies are increasingly discussed is testimony to the therapeutic potential and rising
credibility of CARs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Chimeric antigen receptors (CARs) are a new class of drugs with great potential for
cancer immunotherapy. Upon their expression in T lymphocytes, CARs direct potent,
targeted immune responses that have recently shown encouraging clinical outcomes in a
subset of patients with B cell malignancies. This review focuses on the design of CARs,
including the requirements for optimal antigen recognition and different modalities to
provide costimulatory support to targeted T cells, which includethe use of second and
third generation CARs, costimulatory ligands, chimeric costimulatory receptors and
cytokines.
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Figure 1. Three generation of CARs
Left: First generation CARs, including activating receptors such as CD8/CD3z fusion
receptors and T-bodies; middle: Second generation CARs providing dual-signaling to direct
combined activating and costimulatory signals; right: Third generation CARs comprising
more complex structures with 3 or more signaling domains.
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Figure 2. Strategies to provide costimulatory support to CAR-modified T cells
From upper left: UL, physiological costimulatory ligand display by professional or artificial
antigen presenting cells; UR, auto- and trans-costimulation by T cells expressing
costimulatory ligands; LR, embedded costimulation provided by second or third generation
CARs; LL, redirected costimulation mediated by an antigen-specific chimeric costimulatory
receptor (CCR).
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Table 1

Antigens targeted by CARs

Target Antigen Associated Malignancy Receptor Type (Other
specificity)

In vivo studies Reference

α-Folate receptor Ovarian cancer ScFv-FcεRIγ Phase I (1)

epithelial cancers scFv-41BB-CD3ζ + (2)

CAIX Renal-cell carcinoma scFv-CD4- FcεRIγ Phase I (3-5)

Renal cell carcinoma G250-FcεRIγ - (6-8)

CD19 B cell malignancies scFv-CD3ζ (EBV) - (9)

B cell malignancies scFv-CD3ζ + (10, 11)

B cell malignancies scFv-CD28-CD3ζ + (12-16)

Refractory Follicular Lymphoma scFv-CD3ζ Phase I (17, 18)

B cell malignancies scFv-CD28-CD3ζ + (19-22)

ALL scFv-41BB-CD3ζ - (23)

ALL scFv-41BB-CD3ζ + (24)

B cell malignancies scFv-CD3ζ (Influenza MP-1) + (25)

B cell malignancies scFv-CD3ζ (VZV) - (26)

ALL FMC63-CD28-41BB- CD3ζ +, - (27-29)

B cell malignancies FMC63-41BB-CD3ζ + (30)

Follicular lymphoma FMC63-CD28-CD3ζ NCT00924326 (31)

B cell malignancies FMC63-CD28-CD3ζ NCT00924326 (32)

CLL & ALL SJ25C1-CD28-CD3ζ (NCT00466531 NCT01044069) (33)

CLL FMC63-41BB-CD3ζ NCT01029366 (34, 35)

Lymphoma scFv-CD3z + scFv-CD28-CD3ζ Phase I (36)

CD20 Lymphomas scFv-CD28-CD3ζ - (37)

B cell malignancies scFv-CD4-CD3ζ - (38)

B-cell lymphomas scFv-CD3ζ - (39, 40)

Mantle cell lymphoma, indolent
B cell lymphomas

scFv-CD28-41BB-CD3ζ NCT00621452 (41, 42)

CD22 B cell malignancies scFV-CD4-CD3ζ - (38)

CD23 CLL scFv-CD28-CD3ζ + (43)

CD24 Pancreatic adenocarcinoma scFv- CD28-FcεRIγ + (44)

CD30 Lymphomas scFv-FcεRIγ - (45)

Hodgkin lymphoma scFv-CD3ζ (EBV) + (46)

scFv-CD28-CD3ζ (EBV) + (47)

CD33 AML scFv-CD28-CD3ζ - (48)

cFv-41BB-CD3ζ

scFv-CD28-CD3ζ (EBV) + (49)

CD38 Non Hodgkin lymphoma scFv-41BB-CD3ζ + (50)

CD44v7/8 Cervical carcinoma scFv-CD8-CD3ζ + (51)

CEA Colorectal cancer scFv-CD3ζ + (52-56),

scFv-FcεRIγ + (55, 57)

scFv-CD3ε - (58)
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Target Antigen Associated Malignancy Receptor Type (Other
specificity)

In vivo studies Reference

scFv-CD28-CD3ζ - (59)

scFv-CD28-CD3ζ + (60, 61)

EGFRvIII Glioblastoma scFv-CD28-41BB- CD3ζ NCT01454596 (62)

EGP-2 Multiple malignancies scFv-CD3ζ - (63)

scFv-FcεRIγ - (63),(64)

EGP-40 Colorectal cancer scFv-FcεRIγ - (65)

EphA2 Glioblastoma scFv-CD28-CD3ζ + (66)

erb-B2 Breast and others scFv-CD28-CD3ζ + (67, 68)

scFv-CD28-CD3ζ (Influenza) + (69)

scFv-CD28mut.-CD3ζ + (70)

Prostate cancer scFv-FcεRIγ + (71)

Colon cancer (72)

Various tumors scFv-CD28-41BB- CD3ζ + (73, 74)

erb-B 2,3,4 Breast and others Heregulin-CD3ζ - (75),(76)

scFv-CD3ζ + (77)

FBP Ovarian cancer scFv-FcεRIγ + (78-80)

Ovarian cancer scFv-FcεRIγ (alloantigen) + (81)

Fetal acethylcholine e
receptor

Rhabdomyosarcoma scFv-CD3ζ - (82)

GD2 Neuroblastoma, Melanoma scFv-CD3ζ - (9, 10)

scFv-CD3ζ NCT00085930 (83, 84)

scFv-CD28-OX40-CD3ζ -, + (74, 85, 86)

scFv-CD3ζ (VZV) - (26)

Ewing sarcoma scFv-CD28-CD3ζ + (87)

GD3 Melanoma scFv-CD3ζ, ScFv-CD3ε - (88)

scFv-CD28-CD3ζ + (89)

Her-2 Medulloblastoma scFv-CD3ζ + (90)

scFv-CD28-CD3ζ + (91)

Pancreatic adenocarcinoma scFv-CD28-41BB- CD3ζ + (44)

Glioblastoma Phase I (92)

Osteosarcoma scFv-CD28-CD3ζ + (93)

Ovarian scFv-CD28-CD3ζ + (94)

HMW-MAA Melanoma scFv-CD3ζ, ScFv-CD28-CD3ζ - (95)

IL-11Rα Osteosarcoma scFv-CD28-CD3ζ + (96)

IL-13R-α2 Glioma IL-13-CD28-4-1BB- CD3ζ + (97)

Glioblastoma IL-13- CD3ζ + (98, 99)

Medulloblastoma IL-13- CD3ζ + (100)

KDR Tumor neovasculature scFv-FcεRIγ - (101)

κ-light chain B-cell malignancies (B-NHL,
CLL)

scFv-CD3ζ + (102)

scFv-CD28-CD3ζ + (102)

Lewis Y Various carcinomas scFv-FcεRIγ - (103)
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Target Antigen Associated Malignancy Receptor Type (Other
specificity)

In vivo studies Reference

Epithelial derived tumors scFv-CD28-CD3ζ + (104-106)

L1-cell adhesion molecule Neuroblastoma scFv- CD3ζ Phase I (107, 108)

MAGE-A1 Melanoma scFV-CD4-FcεRIγ - (109)

scFV-CD28-FcεRIγ

Mesothelin Mesothelioma scFv-41BB-CD3ζ + (73, 110, 111)

Murine CMV infected
cells

Murine CMV Ly49H- CD3ζ + (112)

MUC1 Breast, Ovary scFV-CD28-OX40- CD3ζ + (113, 114)

MUC16 Ovary scFV-CD28-CD3ζ (115)

NKG2D Ligands Myeloma, ovarian & other
tumors

NKG2D-CD3ζ + (116-121)

NY-ESO-1 (157-165) Multiple myeloma scFv-CD28-CD3ζ + (122)

Oncofetal antigen (h5T4) Various tumors scFV-CD3ζ (vaccination) + (123)

PSCA Prostate carcinoma 7F5-β2-CD3ζ - (124)

scFv-CD3ζ (125)

PSMA Prostate cancer/ tumor
vasculature

scFv-CD3ζ + (126, 127)

Prostate/tumor vasculature scFv-CD28-CD3ζ - (128)

scFv-CD3ζ + (129)

ROR1 B-CLL and mantle cell
lymphoma

scFv-CD28-CD3ζ + (130)

Targeting via mAb IgE Various tumors FcεRI-CD28-CD3ζ + (131)

TAG-72 Adenocarcinomas scFv-CD3ζ + (132),(133)

VEGF-R2 Tumor neovasculature scFv-CD3ζ - (134)

Biotinylated molecules Various tumors-ovarian BBIR-z/CD28z + (135)
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