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SUMMARY

This paper considers semiparametric estimation of the Cox proportional hazards model for
right-censored and length-biased data arising from prevalent sampling. To exploit the special
structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator,
which can handle time-dependent covariates and is consistent under covariate-dependent censor-
ing. Simulation studies show that the proposed estimator is more efficient than its competitors.
A data analysis illustrates the methods and theory.
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1. INTRODUCTION

When studying the natural history of a disease, the time from disease onset to an event or fail-
ure is usually the focus. An incident cohort approach, which studies initially disease-free subjects
from disease onset to failure, can be very inefficient, especially if the disease is uncommon. A
prevalent sampling design, which only includes diseased subjects who have not experienced the
failure event at the time of recruitment, can be much more efficient. However, the observed sur-
vival time is subject to left truncation: those who have experienced the failure event before the
recruitment time are not observable. Thus, individuals in the prevalent cohort tend to have slower
progression of the disease than those in a typical incident study. As a result, statistical methods
such as the Kaplan–Meier estimator that fail to account for left truncation can lead to substantial
overestimation of the survival time.

In the case of stable disease, that is, the occurrence of disease onset follows a stationary Poisson
process, the survival time in the prevalent cohort is a biased sample of that in the incident popu-
lation, where the sampling weight is proportional to the length of the survival time. Similarly, the
truncation time, from disease onset to recruitment, in the prevalent cohort is also a biased sam-
ple of the uniform truncation time in the incident population, and its distribution is related to the
underlying survival distribution in a known fashion. We use the term length-biased sampling for
left truncation under the assumption of stationary disease incidence. Examples of length-biased
sampling include studies of cancer screening trials (Zelen & Feinleib, 1969; Zelen, 2004), HIV
prevalent cohort studies (Lagakos et al., 1988) and unemployment duration (Lancaster, 1979;
de Una-Alvarez et al., 2003).

This paper focuses on semiparametric estimation of the Cox proportional hazards model for
right-censored survival data under length-biased sampling. Intuitively, efficient estimation can be
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achieved by maximizing the full semiparametric likelihood with respect to the regression parame-
ter and the baseline hazard function. The maximum likelihood approach, however, involves high-
dimensional maximization, and hence may cause computational concerns for large sample sizes.
Estimation of a finite-dimensional parameter in the presence of an infinite-dimensional nuisance
parameter has been studied by a number of authors. In particular, Severini & Wong (1992) and
Zucker (2005) generalized the profile likelihood method by replacing the nuisance parameters
in the full likelihood or the partial likelihood with a consistent estimator that may depend on the
parameter of interest. In this paper, we follow their idea to propose a semiparametric estimation
procedure for the Cox model under length-biased sampling. Specifically, we replace the hazard
function in the full likelihood with a Breslow-type estimator for the hazard function to obtain
a pseudo-profile likelihood function. Thus, a consistent estimator of the regression parameters
can be easily derived by maximizing the pseudo-profile likelihood. Unlike other bias-adjusted
risk-set methods, including Ghosh (2008), Tsai (2009) and Qin & Shen (2010), the proposed
estimation procedure does not involve estimation of the censoring distribution, so it is expected
to be more stable when the censoring proportion is high.

2. MODEL AND ESTIMATION METHODS

2·1. Data and model set-up

For subjects in the target disease population, let T 0 denote the time from the disease incidence
to the failure event of interest, W 0 denote the calendar time of the disease incidence and X0 denote
a p × 1 vector of covariates. Assume that the sampling time, ξ , is independent of (W 0, T 0, X0).
An individual would be qualified to be sampled at time ξ only if T 0 + W 0 � ξ � 0. Denote by
(W, T, X) the random variables from the prevalent population. The probability distribution of
(W, T, X) is the same as the probability distribution of (W 0, T 0, X0) conditional on T 0 + W 0 �
ξ � W 0.

In practice, the observation of failure time T in the prevalent cohort is subject to right censor-
ing due to the study ending or premature dropout. The censoring time measured from recruitment,
C , is usually assumed to be independent of (T, A) given X . However, the total censoring time
A + C and the survival time T are correlated, as they share the same A. Let Y = min(T, A + C)
denote the follow-up time until failure or censoring, and let �= I (T � A + C) be the indi-
cator of failure. For subject i ∈ {1, . . . , n}, denote by xi the covariate vector, by yi and ai the
observed survival time and truncation time, and by δi the indicator of an uncensored event time.
The observed data (yi , ai , δi , xi ) for i = 1, . . . , n are assumed to be independent and identically
distributed realizations of (Y, A,�, X).

Denote by f (t | x) and S(t | x) the conditional density function and survival function of T 0 = t
given X0 = x , and let μ(x)= ∫∞

0 u f (u | x) du be the conditional mean of T 0 given X0 = x . We
impose the following conditions for incident population random variables.

Assumption 1. The variable (T 0, X0) is independent of when the disease incidence
occurs, W 0.

Assumption 2. Disease incidence occurs over calendar time at a constant rate.

Under Assumptions 1 and 2, the joint density function of (A, T ) given X = x evaluated at
(a, t) is f (t | x)μ(x)−1 I (t > a > 0) (Lancaster, 1990, Ch. 3), and the survival time T given
X = x has a length-biased density function t f (t | x)μ(x)−1.

We assume that the survival time T 0 in the incident population follows the Cox (1972) propor-
tional hazards model λ(t | x)= λ(t) exp(β ′x), where λ(t) is an unspecified, continuous baseline
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hazard function and β is a vector of p × 1 regression parameters. Let �(t)= ∫ t
0 λ(u) du be the

cumulative baseline hazard function. Under Assumptions 1 and 2 and the independence of C and
(T, A) given X , the full likelihood function is proportional to

L(β,�)=
n∏

i=1

f (yi | xi )
δi S(yi | xi )

1−δi

μ(xi )
=

n∏
i=1

{λ(yi ) exp(β ′xi )}δi exp{−�(yi ) exp(β ′xi )}∫∞
0 exp{−�(u) exp(β ′xi )} du

.

(1)

2·2. Brief review of existing methods

The likelihood (1) can be re-expressed as the product of the truncation likelihood conditional
on A and the marginal likelihood of A:

L(β,�)=LT(β,�)× LM(β,�)=
n∏

i=1

{
f (yi | xi )

δi S(yi | xi )
1−δi

S(ai | xi )

}
×

n∏
i=1

{
S(ai | xi )

μ(xi )

}
.

Written in this way, we see that there is information about the regression parameter β in
LM(β,�). The truncation likelihood LT can be further decomposed as the product of the partial
likelihood (Kalbfleisch & Lawless, 1991)

LP(β)=
n∏

i=1

{
exp(β ′xi )∑n

j=1 exp(β ′x j )I (a j � yi � y j )

}δi

,

and the residual likelihood LR(β,�). Wang et al. (1993) showed that LP is fully efficient with
respect to LT. However, under length-biased sampling the maximum partial likelihood estimator
is expected to be inefficient, because it ignores information in LM(β,�).

Various methods that better exploit the special structure of length-biased survival data have
been proposed in the literature. Let G(t) be the survival function of the censoring time C ,
and let Ĝ(t) be the Kaplan–Meier estimator of G(t) based on {(yi − ai , 1 − δi ) : i = 1, . . . , n}.
Qin & Shen (2010) proposed to solve the weighted estimating equation

U1(β)=
n∑

i=1

δi

[
xi −

∑n
j=1 δ j x j exp(β ′x j ){y j Ĝ(y j − a j )}−1 I (y j � yi )∑n

j=1 δ j exp(β ′x j ){y j Ĝ(y j − a j )}−1 I (y j � yi )

]
= 0,

where the contribution of a subject in the risk set is inversely weighted by the probability of the
subject being sampled and uncensored. This estimating method, however, might be unstable as
the weight function y−1

j Ĝ(y j − a j )
−1 involves estimation of the tail probability of the censoring

distribution. As an alternative, Qin & Shen (2010) considered solving the estimating equation

U2(β)=
n∑

i=1

δi

[
xi −

∑n
j=1 δ j x j exp(β ′x j ){ŵc(y j )}−1 I (y j � yi )∑n

j=1 δ j exp(β ′x j ){ŵc(y j )}−1 I (y j � yi )

]
= 0,

with ŵc(y)=
∫ y

0 Ĝ(u) du. The weight function ŵc(y j )
−1 is the integral of the censoring survival

function, which is more stable than the weight function y−1
j Ĝ(y j − a j )

−1 in U1. A major restric-
tion of the two estimating equation-based methods is that the censoring time must not depend on
the covariates. Moreover, the estimating equations only use covariate information from uncen-
sored individuals, suggesting that there is still room for efficiency gains.
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2·3. Maximum pseudo-profile likelihood estimator

The maximum likelihood estimator could be obtained by applying the semiparametric profile
likelihood method (Murphy & van der Vaart, 2000) to deal with the nuisance parameter �. For
length-biased sampling data, however, maximizing L with respect to � for fixed β is computa-
tionally difficult becauseL involves� in a complicated way. Instead of profiling out the nonpara-
metric component � in L, we propose to replace �(t) with a simple estimate that is consistent
and has a n1/2-convergence rate. This approach has been used in various contexts under vari-
ous names, including pseudo- and estimated-likelihood estimation (Gong & Samaniego, 1981;
Pepe & Fleming, 1991; Severini & Wong, 1992; Zucker, 2005).

Our simple estimate is based on profiling the truncation likelihood LT(β,�). Specifically, for
fixed β, the truncation likelihood LT(β,�) is maximized by the Breslow-type estimator

�̂β(t)=
∫ t

0

d{∑n
j=1 δ j I (y j � u)}∑n

j=1 exp(β ′x j )I (a j � u � y j )

in the class of nondecreasing right-continuous functions which jump only at uncensored failure
times. Note that �̂β(t) can be generalized to handle time-varying covariates. Profiling out �
from the truncation likelihoodLT(β,�) yields the partial likelihood, that is,LT(β, �̂β)=LP(β).
Replacing � with �̂β in the full likelihood L, we obtain a pseudo-profile likelihood function,

L(β, �̂β)=LT(β, �̂β)× LM(β, �̂β)=LP(β)×
n∏

i=1

exp{−�̂β(ai ) exp(β ′xi )}∫∞
0 exp{−�̂β(u) exp(β ′xi )} du

.

We propose to estimate the regression parameter β by maximizing the pseudo-profile likelihood.
Assume that T 0, and hence T , has a finite maximal support τ , where τ = sup{t : pr(T 0 �

t) < 1}<∞. Then τ is also the maximal support for the truncation time random variable A,
as A given T has a uniform distribution on [0, T ]. We further assume that C is not degen-
erate at 0, that is, pr(C > 0) > 0. Then it can be shown that max�i Yi → τ as n → ∞. Thus,
�(t) is estimable on the interval [0, τ ]; as a result, the conditional mean of T 0 given X
is also estimable. Let Ni (t)= δi I (yi � t) be the counting process of observed failure events
for subject i , and denote N̄ (t)= n−1∑n

i=1 Ni (t) and Fu(t)= pr(�= 1, Y � t). Define the
functions S(k)(u, β)= n−1∑n

i=1 x⊗k
i exp(β ′xi )I (ai � u � yi ) (k = 0, 1, 2), and letS(k)(u, β)=

E{X⊗k exp(β ′X)I (A � u � Y )} be the expectations. Assume that X is bounded, that the
two classes of functions {�I (Y � t) : t ∈ [0, τ ]} and {X⊗k exp(β ′X)I (A � t � Y ) : t ∈ [0, τ ],
β ∈	} are both Glivenko–Cantelli, as the class of indicator functions and the class of bounded
monotone functions are Glivenko–Cantelli (van der Vaart & Wellner, 1996, Theorems 2.4.1 and
2.7.5). Moreover, because S(0)(t, β) is bounded away from zero, we can show that supt∈[0,τ ],β∈	 |
�̂β(t)−�β(t) |→ 0 almost surely as n → ∞, where

�β(t)=
∫ t

0

d Fu(u)

S(0)(u, β) . (2)

The limit �β(t) of �̂β(t) defines a smooth mapping in β, and it passes through the true
baseline cumulative hazard function �(t) when β equals the true parameter value. If we regard
(2) as a known function of β, the function L(β,�β) can be viewed as the full likelihood function
derived under an induced parametric submodel λ(t | x)= λβ(t) exp(β ′X).
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Replacing � with �̂β in L(β,�), we obtain a log pseudo-profile likelihood function 
(β)=

P(β)+ 
M(β), where


P(β)=
n∑

i=1

∫ τ

0
[β ′xi − log{S(0)(u, β)}] d Ni (u)

is the log partial likelihood obtained by profiling out � from the truncation likelihood LT, and


M(β)= −
n∑

i=1

{�̂β(ai ) exp(β ′xi )+ log μ̂β(xi )},

with μ̂β(xi )=
∫∞

0 exp{−�̂β(u) exp(β ′xi )} du. We show in the Appendix that, in a com-
pact neighbourhood of the true regression parameter, 
(β) can be approximated by

̃(β)= 
̃P(β)+ 
̃M(β), where 
̃P(β)=

∑n
i=1

∫ τ
0 [β ′xi − log{S(0)(u, β)}] d Ni (u), 
̃M(β)=

−∑n
i=1{�β(ai ) exp(β ′xi )+ logμβ(xi )} and μβ(xi )=

∫∞
0 exp{−�β(u) exp(β ′xi )} du. Thus, 


and 
̃ have similar local behaviour in the compact neighbourhood, and the asymptotic properties
of the maximum pseudo-profile likelihood estimator can be investigated through 
̃.

Define the limit function γ (β)= limn→∞ n−1
̃(β)= limn→∞ n−1{
̃P(β)+ 
̃M(β)}. We
denote the true parameter values of the proportional hazards model by {β0, λ0(·)}, and define
�0(t)=

∫ t
0 λ0(u) du. Theorem 1 summarizes the consistency and asymptotic normality of β̂ that

maximizes the log pseudo-profile likelihood function 
(β), with proofs given in the Appendix.

THEOREM 1. Assume the following conditions hold: (a) β0 lies in the interior of a known
compact set	 in R

p; (b) X is bounded; (c) pr(Y � t) is a continuous function for t ∈ [0, τ ] and
(d) ∂2γ (β0)/∂β

′∂β is nonsingular. Then β̂ → β0 in probability as n → ∞. Moreover, n1/2(β̂ −
β0) converges in distribution to a zero mean multivariate normal distribution with variance-
covariance matrix (β0), where (β0) is specified in the Appendix.

While the asymptotic variance(β0)may be estimated by its empirical version, the computa-
tion is quite complicated. Since we have established the asymptotic normality, it is computation-
ally more convenient to use the bootstrap method. The performance of the proposed estimator is
evaluated in § 3 via simulations.

2·4. Efficiency considerations

To investigate the potential efficiency gains in the proposed pseudo-profile likelihood estima-
tor, we first consider the case that � is parameterized by a vector of q × 1 parameters ν, that is,
�(t)=�(t, ν). For model identifiability, we assume without loss of generality that E(X)= 0.
Define the log truncation likelihood function 
T = log(LT). The proposed method is equiva-
lent to solving the system of estimating equations ∂
T/∂β + ∂
M/∂β = 0 and ∂
T/∂ν = 0. Let
η= (∂
T/∂β, ∂
T/∂ν, ∂
M/∂β) be a vector of score functions. Define(

a11 a12
a′

12 a22

)
= −E

(
∂2
T/∂β

′∂β ∂2
T/∂β
′∂ν

∂2
T/∂β∂ν
′ ∂2
T/∂ν

′∂ν

)
,

and let b1 = −E(∂2
M/∂β
′∂β) and b2 = −E(∂2
M/∂β

′∂ν). Denote ν∗ = (β, ν). Then the
optimal linear combination of estimating functions is

E

(
∂η

∂ν∗

)′
var(η)−1η=

(
a11 a12 b1
a′

12 a22 b′
2

)⎛⎝a11 a12 0
a′

12 a22 0
0 0 b1

⎞
⎠

−1

η=
(

Ip 0 Ip

0 Iq b′
2b−1

1

)
η, (3)
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where, for convenience, 0 denotes a matrix of 0s of appropriate dimensions and Ip is a p × p
identity matrix. It can be verified that, when evaluated at the true parameter values, b2 = n/2 ×
E(X exp(2β ′X)× ∂/∂ν′[�(A)2 − E{�(A) | X}2]). Hence, if b2 = 0, the system of estimating
equations ∂
T/∂β + ∂
M/∂β = 0 and ∂
T/∂ν = 0 is the optimal linear combination of estimating
equations based on η. The partial likelihood method solves the system of estimating equations
∂
T/∂β = 0 and ∂
T/∂ν = 0, which also belongs to the class of linear combinations of estimating
equations based on η. Thus, the proposed method is more efficient than the partial likelihood
method when b2 = 0.

When the baseline hazard function λ is of infinite dimension, the proposed pseudo-profile
likelihood method solves the system (van der Vaart, 1998, § 25.12)

Pn(∂
T/∂β + ∂
T/∂β)= 0, Pn�h − P�h = 0, (h ∈ H),

where � is the score operator (Begun et al., 1983) for � based on the truncation likelihood

T = logLT and H is a infinite-dimensional class of direction h from which paths of one-
dimensional submodels for � may approach the true parameter. We use Pn to denote the empir-
ical measure, and use P for the probability measures. Let L2(μ) denote the Hilbert space
that contains square integrable functions with the inner product 〈g, h〉μ = ∫ g(u)h(u) dμ(u) for
g, h ∈ L2(μ). It is easy to see that H⊂ L2(�). Applying a similar argument as in van der Vaart
(1998, § 25.12.1), we can show that the score operator � : L2(�)→ L2(Pβ,�) for � is given
by �(h)= ∫ τ0 h(u) d M(u). Let H̄ be a Hilbert space containing H. The adjoint operator �∗ :
L2(Pβ,�)→ H̄ of �, which satisfies E{�(g)h} = ∫ τ0 g(u)�∗(h)(u) d�(u) for all g ∈ H̄ and
h ∈ L2(Pβ,�), can be shown to be �∗(g)(t)= E{gd M(t)}/d�(t). It can be further shown that
�∗�(h)(t)= E{h(t) exp(β ′X)I (Y � t � A)} and�∗(∂
T/∂β)(t)= nE{X exp(β ′X)I (Y � t �
A)} (Murphy & van der Vaart, 2000).

By a similar argument as above, we show in the Supplementary Material that the score
operator � : L2(�)→ L2(Pβ,�) for � based on the marginal likelihood 
M is
�(h)= − ∫ τ0 [h(u)X exp(β ′X){I (A � u)− pr(A � u | X)}] d�(u). The adjoint operator
�∗ : L2(Pβ,�)→ H̄ of � can be shown to be �∗(g)(t)= −E[g{I (A � t)− pr(A � t |
X)} exp(β ′X)]. Moreover, the adjoint operator �∗ satisfies �∗�(h)(t)= E[

∫ τ
0 h(u){I (A �

u)− pr(A � u | X)}d�(u){I (A � t)− pr(A � t | X)} exp(2β ′X)] and �∗(∂
M/∂β)(t)=
nE[{I (A � t)− pr(A � t | X)}{�(A)− E(�(A) | X)}X exp(2β ′X)].

Analogous to (3) for parametric models, the optimal combination of estimating functions
based on the score operators ∂
T/∂β, ∂
M/∂β and � is given by Pn(∂
T/∂β + ∂
T/∂β)= 0
and (Pn − P)�h + (b∗

2)
′b−1

1 ∂
T/∂β = 0, h ∈ H , where b1 = −E(∂2
M/∂β
′∂β) and b∗

2 =∫ τ
0 �

∗(∂
M/∂β)(t) d�(t)= nE([�(A)2 − E{�(A) | X}2]X exp(2β ′X)). Hence, if b∗
2 = 0, the

proposed pseudo-partial likelihood method is the most efficient estimator in the class of linear
combinations of estimating functions based on ∂
T/∂β, ∂
M/∂β and �. The weight (b∗

2)
Tb−1

1

can be estimated by replacing � with �̂ in the corresponding empirical estimators. In general,
solving the optimal combination of estimation equations is computationally intensive, and hence
is impractical. Moreover, there is no guarantee that it works better than the proposed method for
small samples.

3. SIMULATIONS AND DATA ANALYSIS

3·1. Monte-Carlo simulations

We conducted simulations to assess the performance of the proposed methods. In each simu-
lation, 2000 studies were generated, each with n = 400. The sampling time ξ was set to be 100,
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and the time of disease onset, W 0, was simulated from a uniform distribution over [0, 100] to
mimic the incidence of a stable disease. For each subject, we generated X0

1 from the Bernoulli
distribution with pr(X0

1 = 1)= pr(X0
1 = 0)= 0·5 and generated X0

2 from the standard normal
distribution. The survival time T 0 was independently generated from one of the three models:
(I) an exponential distribution with hazard function 2 exp(X0

1 + X0
2), (II) a Weibull distribu-

tion with hazard function 2t exp(X0
1 + X0

2) or (III) a Weibull distribution with hazard func-
tion 0·5(t − 2)2 exp(X0

1 + X0
2). Thus, we simulated failure time distributions with constant,

increasing and U-shape hazards. To form a prevalent cohort of sample size n, realizations of
(W 0, T 0, X0

1, X0
2) were generated repeatedly until there were n subjects satisfying the sampling

constraint W 0 + T 0 � τ . The time from enrolment ξ to loss to follow-up was generated from a
uniform distribution so that the censoring rate was approximately 0, 30 and 50%.

We compared the finite-sample performance of the proposed pseudo-profile likelihood
method with those of the weighted estimating equation methods studied in Qin & Shen (2010)
and of the popular partial likelihood method for truncated survival time data. By applying these
methods to estimate the Cox model λ(t | X1, X2)= λ0(t) exp(β1 X1 + β2 X2), we evaluated the
relative efficiency by comparing the bootstrap variance of the maximum partial likelihood esti-
mator to that of the other methods. Table 1 summarizes the empirical bias, empirical standard
error and the relative efficiency of these four estimation methods. All four estimators are close to
their estimands. In the absence of censoring, the pseudo-profile likelihood method has a similar
efficiency gain as the weighted estimating equation methods in Qin & Shen (2010). Overall, the
relative efficiency of the proposed estimator increases with censoring rate. When the censoring
proportion reaches 50%, the pseudo-profile likelihood estimator yields a significant improve-
ment over the maximum partial likelihood estimator, with an efficiency gain greater than 50% in
the exponential and Weibull cases, and an efficiency gain greater than 20% in the U-shape haz-
ard function scenario. In the presence of censoring, the proposed pseudo-profile method always
outperforms its competitors. In some scenarios, weighted estimating equation methods fail to
show improvement, as these methods only use covariate information from uncensored subjects.

In addition to better efficiency, another advantage of the proposed pseudo-profile likelihood
method is that it does not involve estimation of the censoring distribution. When this distribu-
tion depends on the covariate, the estimating equation methods may yield biased estimation.
For demonstration, we simulated survival time data under Model (II). The censoring times for
subjects with observed covariates X1 = 1 and X2 < 0 were generated from an exponential distri-
bution with mean 5 exp(−X2), while the censoring times for other subjects were generated from
a uniform distribution. The overall censoring proportion was set at approximately 30 and 50%.
As summarized in Table 2, the estimating equation-based methods yield biased estimators, while
the bias of the pseudo-profile estimators remains small.

3·2. Analysis of Canadian Study of Health and Aging

In this section, we report the results of data analysis for a cohort of prevalent cases in one of
the largest epidemiologic studies of dementia, the Canadian Study of Health and Aging. From
February 1991 to May 1992, an extensive survey was carried out and a total of 1132 persons
aged 65 and older with dementia were identified in this first phase of the study. For each study
subject, a diagnosis of possible Alzheimer’s disease, probable Alzheimer’s disease, or vascular
dementia was assigned, and the date of dementia onset was determined by interviewing care-
givers. Information on mortality were collected between January 1996 and May 1997.

We considered a subset of the study data by excluding those with missing date of onset
or missing dementia subtype classification. Moreover, as in Wolfson et al. (2001), those with
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Table 1. Summary statistics for the estimated regression parameters under independent
censoring

Proportion censored Estimated Partial WEE-1 WEE-2 Profile
coefficient Bias SE Bias SE Bias SE Bias SE RE

Scenario I: λ0(t)= 2
0% β̂1 6 133 −1 98 −1 98 −2 98 1·84

β̂2 5 83 0 65 0 65 −2 65 1·60
30% β̂1 6 151 −46 136 2 120 1 108 1·98

β̂2 6 94 −57 90 2 82 4 77 1·50
50% β̂1 10 171 −113 189 10 157 12 122 1·96

β̂2 6 112 −125 115 2 98 10 90 1·53
Scenario II: λ0(t)= 2t
0% β̂1 4 118 0 98 0 98 −1 97 1·45

β̂2 2 74 0 63 0 63 −1 63 1·40
30% β̂1 3 132 −21 137 9 121 3 105 1·58

β̂2 5 89 −28 90 4 80 2 73 1·46
50% β̂1 6 159 −101 206 10 154 5 118 1·82

β̂2 8 100 −97 118 6 96 5 79 1·62
Scenario III: λ0(t)= 0·5(t − 2)2

0% β̂1 6 112 5 104 5 104 5 104 1·17
β̂2 6 69 5 65 5 65 5 64 1·14

30% β̂1 10 134 10 143 10 130 9 122 1·21
β̂2 7 82 0 85 3 80 4 77 1·14

50% β̂1 9 151 −34 216 7 154 6 134 1·27
β̂2 7 97 −35 123 7 98 5 88 1·20

Partial, the maximum partial likelihood estimator; WEE-1 and WEE-2, estimators derived by solving U1(β)= 0
and U2(β)= 0; Profile, the maximum pseudo-profile likelihood estimator; Bias and ES, empirical bias (×1000)
and empirical standard deviation (×1000) of 2000 regression parameter estimates; RE, the empirical variance of
the maximum partial likelihood estimator divided by that of the maximum pseudo-profile likelihood estimator.

Table 2. Empirical bias and standard error of estimators of estimated regression parameters
under covariate dependent censoring

Proportion Estimated Partial WEE-1 WEE-2 Profile
censored coefficient Bias SE Bias SE Bias SE Bias SE RE

30% β̂1 7 132 −388 135 −127 119 2 105 1·56
β̂2 8 87 48 84 30 79 4 73 1·44

50% β̂1 10 166 −819 175 −252 161 −2 128 1·69
β̂2 8 103 82 107 51 97 6 80 1·64

See Table 1 for abbreviations.

observed survival times greater than or equal to 20 years were excluded because these subjects
are considered unlikely to have Alzheimer’s disease or vascular dementia. As a result, a total
of 807 dementia patients were included in our analysis. Among them 388 had a diagnosis
of probable Alzheimer’s disease, 249 had possible Alzheimer’s disease and 170 had vascu-
lar dementia. In the second phase of the study, a total of 627 deaths were recorded, among
whom 302 had a diagnosis of probable Alzheimer’s, 189 had possible Alzheimer’s and 136 had
vascular dementia.

The stationarity assumption that the incidence of dementia is constant over time was found
to be reasonably met for this data using the method suggested in Wang (1991). To compare
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Table 3. Estimated regression coefficients for the Canadian study
β1, probable Alzheimer’s β2, vascular dementia

Method Estimate SE 95% CI Estimate SE 95% CI

Partial 0·030 0·089 (−0·142, 0·203) 0·113 0·109 (−0·103, 0·323)
EE-1 0·130 0·095 (−0·058, 0·312) 0·278 0·107 (0·070, 0·497)
EE-2 0·157 0·088 (−0·022, 0·328) 0·257 0·121 (0·038, 0·519)
Profile 0·150 0·068 (0·016, 0·278) 0·241 0·088 (0·066, 0·419)

Partial, maximum partial likelihood estimator; EE-1 and EE-2, estimators derived by solving U1(β)= 0
and U2(β)= 0; Profile, the pseudo-profile likelihood estimator; SE, the empirical standard deviation of
2000 regression parameter.

the risk of death between different diagnoses, we fit a Cox proportional hazards model for the
length-biased survival time data, with indicators of probable Alzheimer’s and vascular demen-
tia as covariates. We applied the pseudo-profile likelihood method, the two weighted estimating
equation methods in Qin & Shen (2010), and the partial likelihood method. The estimated regres-
sion coefficients are summarized in Table 3. The proposed method yields similar estimates of
the regression parameters as do the estimating equation methods, and the bootstrap standard
errors of the proposed estimator are smaller than those of its competitors. The proposed pseudo-
profile likelihood method estimates a significant higher risk of death in patients with probable
Alzheimer’s and those with vascular dementia. Specifically, as compared with patients with pos-
sible Alzheimer’s, the risk of death increased by 16% among those with probable Alzheimer’s
and by 27% among those with vascular dementia. For β1, the variance ratio for the competitors
to the proposed method is always at least 1·67. This suggests that if a competitor method were
used in lieu of the proposed method, the study would need to recruit at least 760 more subjects
to achieve the same precision.

4. REMARK

The validity of the proposed method relies on the assumption of stable disease. When the
stationarity assumption fails to hold, it is not uncommon that knowledge about the distribution
of disease incidence can be obtained from other sources. If H denotes the distribution of the
truncation time in the disease population, then the transformed survival time H(T 0) is trun-
cated by a uniformly distributed random variable. Thus, it follows from the fact that the Cox
model is invariant under monotone transformation, that the regression coefficients in the Cox
model can be consistently estimated by applying the proposed method to the transformed data
{H(ai ), H(yi ), δi } (i = 1, . . . , n).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the derivation of the score
operator � and the adjoint operator �∗ based on the marginal likelihood function 
M.
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APPENDIX

Proofs

We begin by establishing the consistency of β̂. In view of the proof of van der Vaart (1998,
Theorem 5.7), it suffices to show that, as n → ∞, supβ∈	 | n−1
(β)− γ (β) |→ 0 almost surely and that
β0 is the unique maximizer of γ (β) in a compact neighbourhood of β0.

We first show that, for sufficiently large n, 
(β) has similar local behaviour to 
̃(β) in the
compact neighbourhood	. Because {exp(β ′ X)I (A � t � Y ) : t ∈ [0, τ ], β ∈	} is Glivenko–Cantelli and
the logarithmic transformation is monotone, log{S(0)(t, β)} − log{S(0)(t, β)} converges to 0 uniformly
over β ∈	 and t ∈ [0, τ ]. Hence, supβ∈	 | n−1
P(β)− n−1
̃P(β) |→ 0 almost surely. Following the

result that �̂β(t) converges to �β(t) uniformly over β ∈	 and t ∈ [0, τ ], exp{�̂β(t) exp(β ′ X)}
converges to exp{�β(t) exp(β ′ X)} uniformly over β ∈	 and t ∈ [0, τ ]. Hence, μ̂β(x) con-
verges to μβ(x) uniformly over β ∈	. For a δn > 0 with δn → 0 as n → ∞, define the class
F = [ f (t)= {g(t)−�β(t)} exp(β ′ X), where β∈	, g is nondecreasing and nonnegative and supt∈[0,τ ] |
g(t)−�β(t) |� εn]. Thus, by definition, sup f ∈F | P f |� εn × supβ∈	 | exp(β ′ X) |. Moreover, it
follows from van der Vaart & Wellner (1996, Theorems 2.7.5 and 2.4.1) that F is Glivenko–Cantelli.
Hence, sup f ∈F | Pn f − P f |→ 0 almost surely. For a sufficiently large n, | n−1

∑n
i=1{�̂β(ai )−

�β(ai )} exp(β ′ Xi ) |� sup f ∈F | P f | + sup f ∈F | Pn f − P f |. Thus, we show that supβ∈	 | n−1
∑n

i=1

{�̂β(ai )−�β(ai )} exp(β ′ Xi ) |→ 0 almost surely. By a similar argument, we can show that supβ∈	 | n−1∑n
i=1{μ̂β(xi )− μβ(xi )} |→ 0 almost surely, and hence n−1
M(β)− n−1
̃M(β)→ 0 uniformly over

β ∈	. Thus, 
(β)= 
P(β)+ 
M(β) and 
̃(β)= 
P(β)+ 
̃M(β) have similar local behaviour in 	.
Next, because 	 is compact and the function m(β)= ∫ τ0 [β ′ X − log{S(0)(u, β)}] d N (u)−

�β(A) exp(β ′ X)− logμβ(X) is continuous and dominated by an integrable function, the class of
functions {m(β) : β ∈	} is Glivenko–Cantelli (van der Vaart, 1998, Example 19.8). It follows from a
uniform law of large numbers (Pollard, 1990) that supβ∈	 | n−1
̃(β)− γ (β) |→ 0 almost surely. Thus,
supβ∈	 | n−1
(β)− γ (β) |→ 0 almost surely as n → ∞.

Below we prove that β0 is the unique maximizer in a neighbourhood of β0 by showing that
∂γ (β0)/∂β = 0 and ∂2γ (β0)/∂β

′∂β is negative definite at β = β0. Following the fact that the partial
score function has expectation zero when evaluated at β = β0 and that E[∂{�β(A) exp(β ′ X)}/∂β |β=β0 ] =
−E{μβ(X)−1∂μβ(X)/∂β |β=β0} by double expectation, we can show that ∂γ (β)/∂β = 0 when β = β0.
Write Sβ(u | x)= exp{−�β(u) exp(β ′ X)}. The second derivative of γ (β) is

∂2γ (β)

∂β ′∂β
= E

[
�

{S(1)(Y, β)⊗2

S(0)(Y, β)2 − S(2)(Y, β)
S(0)(Y, β)

}]
(A1)

− E

[
∂2

∂β ′∂β
{�β(A) exp(β ′ X)}

]
(A2)

+ E

[∫ τ

0

Sβ(u | X)

μβ(X)

∂2

∂β ′∂β
{�β(u) exp(β ′ X)} du

]
(A3)

− E

(∫ τ

0

Sβ(u | X)

μβ(X)

[
∂

∂β
{�β(u) exp(β ′ X)}

]⊗2

du

)
(A4)

+ E

([∫ τ

0

Sβ(u | X)

μβ(X)

∂

∂β
{�β(u) exp(β ′ X)} du

]⊗2
)
. (A5)

By applying the double expectation technique, it can be shown that (A2)+ (A3)= 0 for β = β0. Moreover,
by the Cauchy–Schwarz inequality, both (A1) and (A4)+ (A5) are negative semidefinite. Hence, it follows
regularity condition (d) that ∂2γ (β)/∂β ′∂β is negative definite at β = β0. Because the function γ (β) is
continuous in β, there exists a compact neighbourhood 	0 of β0 that β0 is the unique maximizer γ (β) in
	0. This completes the proof of consistency.
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We now prove the asymptotic normality of the maximum pseudo-profile likelihood estimator. A Tay-
lor series expansion yields 0 = ∂
(β)/dβ |β=β̂= ∂
(β)/∂β |β=β0 +∂2
(β)/∂β ′∂β |β=β∗ (β̂ − β0), where

β∗ lies between β̂ and β0. Thus, by consistency of β̂, one has β∗ → β0 in probability and

n1/2(β̂ − β0)= −
{

n−1 ∂
2
(β)

∂β ′∂β

∣∣∣∣
β=β0

}−1{
n−1/2 ∂
(β)

∂β

∣∣∣∣
β=β0

}
+ op(1).

In what follows, we show that

n−1/2

{
∂
M(β)

∂β
− ∂
̃M(β)

∂β

}
= −n−1/2

n∑
i=1

∂

∂β
[{�̂β(ai )−�β(ai )} exp(β ′xi )] (A6)

− n−1/2

{
n∑

i=1

1

μ̂β(xi )

∂μ̂β(xi )

∂β
− 1

μβ(xi )

∂μβ(xi )

∂β

}
(A7)

has an asymptotic independent and identically distributed representation. Let H be the joint probability
measure of (A, X) and let Ĥ be the corresponding empirical measure for H . Then the right-hand side of
(A6) can be expressed as

− n1/2 ∂

∂β

∫ ∞

−∞

∫ τ

0

[{
d N̄ (u)

S(0)(u, β)
− d Fu(u)

S(0)(u, β)
}

exp(β ′ X)I (u � a � τ)

]
d Ĥ(a, x)

= −n1/2 ∂

∂β

∫ ∞

−∞

∫ τ

0

[
d N̄ (u)− d Fu(u)

S(0)(u, β) − d Fu(u)

S(0)(u, β)2 {S(0)(u, β)− S(0)(u, β)}
]

× exp(β ′ X)I (u � a � τ) d Ĥ(a, x)+ op(1)

= −n−1/2
n∑

i=1

∂

∂β

∫ ∞

−∞

∫ τ

0

[{
d Ni (u)

S(0)(u, β) − exp(β ′xi )I (ai � u � yi ) d Fu(u)

S(0)(u, β)2
}

× exp(β ′ X)I (u � a � τ)

]
d H(a, x)= −n−1/2

n∑
i=1

φ1i (β)+ op(1).

Next, applying the functional delta method, we have n1/2{μ̂β(x)− μβ(x)} = n−1/2
∑n

i=1 ψi (β, x)+
op(n−1/2), where

ψi (β, x)

=
n∑

i=1

∫ τ

0

∫ τ

0

[
Sβ(u | x) exp(β ′ X)

{
d Ni (v)

S(0)(v, β)−
d Fu(v)

S(0)(v, β)2 exp(β ′xi )I (ai � v � yi )

}]
du.

Thus, (A7) can be expressed as

n1/2
∫ ∞

−∞

∫ τ

0

[
1

μβ(x)

{
∂μ̂β(x)

∂β
− ∂μβ(x)

∂β

}
− 1

μβ(x)2
∂μβ(x)

∂β

{
μ̂β(x)− μβ(x)

}]
d Ĥ(a, x)+ op(1)

= n−1/2
n∑

i=1

∫ ∞

−∞

∫ τ

0

[
1

μβ(x)

{
∂ψi (β, x)

∂β
− ψi (β, x)

μβ(x)

∂μβ(x)

∂β

}]
d H(a, x)+ op(1)

= n−1/2
n∑

i=1

φ2i (β)+ op(1).
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Finally, applying the functional delta method, we can obtain the asymptotic representation for the partial
score function: n−1/2∂
P(β0)/∂β = n−1/2

∑n
i=1 φ3i (β0)+ op(1), where

φ3i (β0)=
∫ τ

0

{
xi − S(1)(u, β0)

S(0)(u, β0)

}
{d Ni (u)− exp(β ′

0xi )I (ai � u � yi ) d�0(u)}.

Let φi (β0)= φ1i (β0)+ φ2i (β0)+ φ3i (β0). We have n−1/2∂
(β)/∂β |β=β0= n−1/2
∑n

i=1 κi (β0)+ op(1),
where κi (β0)= φi (β0)− [∂{�β(ai ) exp(β ′xi )}/∂β + μβ(xi )

−1∂μβ(xi )/∂β] |β=β0 . Arguing as in the proof
of consistency, we can show that, as n → ∞, n−1{∂2
(β)/∂β ′∂β} |β=β0→ {∂2γ (β)/∂β ′∂β} |β=β0 almost
surely. Define �(β0)= E{κi (β0)

⊗2}. Hence, under the regularity conditions, as n → ∞, n1/2(β̂ − β0)

converges weakly to a zero mean multivariate distribution with variance-covariance matrix (β0)=
{∂2γ (β0)/∂β

′∂β}−1�(β0){∂2γ (β0)/∂β
′∂β}−1.
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