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Abstract
Nitric oxide (NO) has many important physiological roles in the body. Since NO electrodes can
directly measure NO concentration in the nM range and in real time, NO electrode methods have
been generally used in laboratories for measuring NO concentration in vivo and in vitro. This
review focuses on the application of electrode methods in studies of NO diffusion and metabolic
kinetics. We have described the physical and chemical properties that need to be considered in the
preparation of NO stock solution, discussed the effect of several interfering factors on the
measured curves of NO concentration that need to be eliminated in the experimental setup for NO
measurements, and provided an overview of the application of NO electrode methods in
measuring NO diffusion and metabolic kinetics in solution and in biological systems. This
overview covers NO metabolism by oxygen (O2), superoxide, heme proteins, cells and tissues.
Important conclusions and physiological implication of these studies are discussed.
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1. Introduction
Nitric oxide (NO) is a potent vasodilator and plays an important physiological role in the
body [1, 2]. NO can be endogenously generated from NO synthases (NOS) or through other
enzyme [3-5] and non-enzyme pathways [6, 7] in tissues. The physiological role of NO is
dependent on the effective NO concentration or NO bioavailability. Lack of NO
bioavailability is associated with certain cardiovascular diseases, while excess NO
production may also cause tissue injury [8-10]. NO can be oxidized by O2 in solution, and
the rate of NO autoxidation is first-order with respect to [O2] and second-order with respect
to [NO] [11-14]. The half-life of NO in solution under a constant O2 concentration is
inversely proportional to the initial NO concentration. Based on the measured rate constant
of NO autoxidation, it can be predicted that the half-life of NO with a concentration below 1
μM should be longer than 10 minutes. However, NO half-life in tissues or in the body is
much shorter (0.09-2 seconds) [15-18], indicating that NO is very unstable in biological
systems. It is well known that NO can rapidly react with superoxide, hemoglobin (Hb),
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myoglobin (Mb), and some other heme proteins in the body [9, 19-23]. Therefore, the NO
bioavailability in the body is not only dependent on the rate of NO generation, but also
greatly affected by the rate of NO metabolism. In some cardiovascular diseases, lack of NO
bioavailability is mainly caused by the increased rate of NO consumption in the vascular
wall [24]. Studies of NO consumption and metabolism kinetics are critical for better
understanding the causes resulting in lack of NO bioavailability in cardiovascular diseases.

Various detection methods and techniques such as the Griess method, the fluorimetric
method, EPR, chemiluminescence and electrochemical sensing have been used in studies of
NO reaction kinetics [25-27]. The limits of different NO detection techniques have been
summarized in a recent review article [28]. Each technique has its own advantages and
disadvantages. The advantage of NO electrochemical sensors is the ability to directly detect
NO concentration in solution or in biological samples with the lowest detection limit of nM
or below [29]. This advantage allows NO electrodes to be an excellent tool for directly
measuring NO concentration. Previous review articles have described the design and
fabrication of NO electrodes and their applications in detections of NO generation in
biological systems [30]. This review will focus on the application of NO electrodes in
measuring NO metabolism kinetics. Accordingly, the experimental setup, possible
interference, and analysis of experimental data will be discussed.

2. Physical and chemical properties of NO in water and preparation of NO
stock solution
2.1. Solubility of NO in buffer and the concentration equilibrium between solution and gas
phase

NO is a colorless diatomic free radical. Its saturation concentration in water at 20-25 °C is
~2 mM [31] and 1.7-1.8 mM in buffer solution [31, 32] under 1 atm NO pressure (PNO).
Since NO can react with O2, it is important to remove O2 from the solution before
preparation of NO stock solution. In the absence of O2, the saturated NO concentration is
stable in a closed glass container [33] for several months without a significant decrease in
concentration. As a gas in the closed container, PNO in solution always tends to reach
equilibrium with PNO in the gas phase. If NO in gas phase is removed, there will be a net
rate of NO diffusion from the solution into the gas phase. In contrast, if PNO in the gas phase
increases, there will be a net rate of NO dissolution into the solution. Thus, even if NO is not
consumed in solution by a chemical reaction, NO concentration will change if PNO in the
gas phase is different from PNO in the solution.

2.2. Autoxidation of NO
When NO reacts with O2 in the gas phase, the final product is •NO2, as seen below [34]:

This reaction rate follows third-order kinetics:

ONOO• and N2O2 are involved as intermediates and other intermediates, such as N2O3,
ONOONO and N2O4 may be also formed [34, 35]. The final product of NO autoxidation in
aerated solution is nitrite. The overall reaction is:
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This reaction also follows third-order kinetics [11-14, 36]:

(1)

The intermediates ONOO•, •NO2, ONOONO, N2O4 and N2O3 are involved or suggested in
the reaction[14, 35]. In the presence of a constant concentration of O2, the rate of NO decay
is second-order with respect to [NO], so the relationship of [NO] with time t can be obtained
from Eq. (1):

(2)

The reported kNO at 37 °C is ~1×107 M-2s-1 at 37 °C [12, 33]. Assuming that O2
concentration is 200 μM, the apparent rate constant of NO autoxidation will be 2×103

M-1s-1. The half-life of NO autoxidation can be derived from Eq. (2):

(3)

The half-life of NO follows second-order kinetics and therefore, is inversely proportional to
the initial NO concentration. This means that NO half-life increases 10-fold when the initial
NO concentration decreases 10 times. If initial NO concentrations are 10 and 0.1 μM, their
half-life in the solution will be 50 and 5000 seconds, respectively. However, in actual
measurements, the half-life of 0.1 μM NO in the solution is much shorter than the predicted
half-life because NO can diffuse out of the solution.

2.3. Preparation of NO stock solution
While NO can be generated from NO donors [37, 38] or by mixing nitrite with sulfuric acid
[32] in the presence of KI [29], it is convenient to make NO stock solution from commercial
NO gas [16, 29, 39-41]. The setup for preparation of NO stock solution consists of a
container holding buffer solution and a bottle containing concentrated alkaline solution for
removing other nitrogen oxides from the commercial NO gas. The container and the bottle
are connected with a tank of NO gas and a tank of N2 or argon (Ar) gas as shown in Fig. 1.
The whole system is flashed by nitrogen or argon gas for 30 minutes to remove O2 from the
connecting tubing, the alkaline solution (NO-prewashing solution) in the bottle, and the
buffer solution in the container. Then, the gas switch is turned from nitrogen or argon gas to
NO gas allowing NO gas to flow through the alkaline solution and the buffer solution for
about 15-30 minutes. The commercial NO gas usually contains some other nitrogen oxides
such as NO2, N2O4 and N2O3 that can be dissolved into the solution to form nitrite (NO2

-),
nitrate (NO3

-) and proton (H+) to acidify the solution. In acidic solution, nitrite forms the
volatile nitrous acid HNO2, which will be carried away with the washed NO gas to enter the
NO stock solution and raise the nitrite level in the NO stock solution. Therefore, the highly
concentrated alkaline solution is required as the NO-prewashing solution to neutralize the
released H+. However, the NO-prewashing process cannot remove all other nitrogen oxides
from each NO gas bubble through the NO-washing solution. The remaining nitrogen oxides
may acidify the NO stock solution if distilled water (no buffer) is used for preparation of the
NO stock solution. Therefore, if one desires the NO stock solution to be in the neutral pH
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range, it is better to use a buffer solution instead of distilled water. The proper NO bubbling
time needs to be considered in the preparation of NO solution. If the bubbling time is too
short, NO is not saturated in the solution; however, if the bubbling time is too long, nitrite
and nitrate will be accumulated in the NO stock solution. Preparation of saturated NO stock
concentration is convenient for experiments because the concentration of NO in a saturated
solution at room temperature is known. In some cases, to minimize nitrite contamination in
the NO stock solution, the NO bubbling time can be reduced to 1 or 2 minutes to make an
unsaturated NO stock solution. The concentration of the unsaturated NO stock solution can
be calibrated with a known concentration of Hb or Mb on a UV/Vis spectrophotometer [42].

3. In vitro NO measurements: experimental setups and interfering factors
3.1. Experimental setups

Several experimental setups for measurements of NO reaction and/or diffusion in vitro
[43-47] and in vivo [48] have been illustrated in the literature. Fig. 2 shows a typical
experimental setup for measuring NO metabolism kinetics in vitro. This setup has a
magnetic stirrer that can stir the solution at a constant and controlled speed, a water
circulation bath to control the temperature of the solution, two ports for installing NO and
O2 electrodes, and three small tubes on the cap for sample injection, gas inlet and gas outlet.
Since O2 can penetrate most kinds of polymer tubing, it is better to use only glass or
stainless steel tubing and vessels and stainless steel tubing should be connected to glass
components in the experimental setup. Three-electrode systems have also been used in the
measurements of NO concentrations [39, 49, 50]. Design, fabrication, and analytical
performance characteristics of NO electrodes are not described here. Interested readers can
refer other review articles [29, 30, 51].

3.2. Interference factors in NO measurements
Constant potential amperometry is the main method used for continuously recording the
change of NO concentration with time. At this constant potential, NO is oxidized into nitrite
and then further oxidized into nitrate. Several different factors can interfere with the
detected currents. The interfering factors for NO detection in living systems have been
summarized in a review article [51]. The pitfalls and perils of applying electrochemistry to
measure another similar gas molecule, O2, in biological systems were discussed in a classic
reference [52]. When measurements of NO metabolism kinetics are performed in a chamber
in vitro, additional interfering factors may apply. To obtain good experimental data from an
in vitro experiment recording NO generation or decay in the solution, knowledge on how to
minimize these interfering factors needs to be acquired.

3.2.1. Background currents—When a constant potential is applied to a NO electrode, it
causes a large background current at the electrode even when there is no NO in the solution.
The background current consists of non-Faradaic currents such as capacitive charging
currents and Faradaic currents such as electrolysis of contaminates on the electrodes or in
the solution. This current rapidly decreases at the beginning, and then gradually slows down
its pace. After NO is added into the solution, the electrode current will be the sum of the NO
oxidation current and the background current. If the background current is nearly a constant,
the change in the electrode current will be mainly dependent on the changes of NO
concentration in the solution. However, if the change in magnitude of background current is
comparable to or greater than the change in magnitude of NO oxidation current, the recorded
change in electrode current may seriously deviate from the NO oxidation current. In this
case, it may not be possible to obtain correct reaction kinetic constants from the recorded
current curves. To record a qualified NO oxidation current, the slope of the baseline needs to
approach zero. Since the size of the NO electrode is small and the physiological NO
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concentration is usually below μM, the NO oxidation current at the NO electrode is usually
in the range of low nA or sub nA (Fig. 3). The process of stabilizing the electrode for the
first measurement of NO concentration on each day requires ten minutes to a several hours
depending on the electrodes used.

3.2.2. Stirring and sample injection in test solutions—When injecting a sample
solution into the chamber containing the test solution, the injected solution causes a local
and transient convection in the test solution. This transient convection can affect the
thickness of the effective diffusion layer surrounding the electrode and may generate an
artificial current peak in amperometric measurements, especially when the electrode
response time is quick. If NO stock solution is slowly injected into the aerated test solution
at a location far from the detection electrode without significantly stirring the test solution,
the injected NO will have a high local concentration in the test solution that can be quickly
oxidized by O2 before reaching the NO electrode. Thus, the injected NO may not be
detectable by the NO electrode unless the injection location is close to the detection
electrode [53]. Rapidly stirring the solution with a magnetic bar at a constant speed can
largely reduce the interference of sample injection. The rapid stirring not only quickly and
uniformly distributes the added sample in the whole solution, but also forces the solution to
move at a relatively high constant speed so that the solution movement caused by the
injection of samples can be ignored [33]. Maintaining a constant stirring speed during
measurements of NO is important [47, 51, 54, 55], because the stirring speed can affect the
thickness of the diffusion layer in the test solution adjunct to the electrode, which may
significantly change the amplitude of electrode current (Fig. 4).

3.2.3. NO volatilization from the solution—To obtain a stable NO concentration in the
solution, one needs not only to remove O2 from the chamber including the solution and the
gas phase but also to maintain a constant PNO in the gas phase or eliminate the space of the
gas phase in the chamber [33, 56]. When PNO in the gas phase is smaller than PNO in the
solution, more NO will volatilize into the gas phase. The rate constant (kd) of NO
volatilization out of the solution is proportional to the surface of the solution and inversely
proportional to volume of the solution [12]. Stirring the solution can increase kd. NO
volatilization may become the main cause of NO loss in the solution when there is no O2
and other NO scavengers in the solution or when low concentration of NO (below μM) is in
aerated solution. In stirred aerated solution, the half-life of NO volatilization may be in the
low minutes [33], but the half-life of 100 μM NO autoxidation is less than 10 seconds. In
this situation, the main NO consumption is attributed to NO autoxidation. However, if NO
concentration is in the μM range or below, the rate of NO autoxidation will be close to or
even slower than the rate of NO volatilization. In this case, NO volatilization will have a
significant effect on the concentration curve of NO decay. NO volatilization can be largely
prevented by eliminating the headspace above the test solution [33].

3.2.4. Temperature Changes—Electrode current is sensitive to temperature change. If
temperature in a test chamber is held at a value different from room temperature by a
circulating water bath, replacing solution in the chamber after a measurement may cause
temperature changes in the test solution. Additionally, adding a large amount of sample
solution to the chamber and/or if the sample solution has a large temperature difference from
the test solution in the chamber may also cause temperature changes. (Fig. 5).
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4. Measurements of NO diffusion and metabolism kinetics
4.1. Measurements of NO autoxidation in solution and biological membrane

Shibuki reported the measurement of NO autoxidation in aerated solution using an
electrochemical microprobe similar to a miniature O2 electrode [43]. In this experiment, NO
was pre-dissolved in a syringe at a given concentration and then pumped into a chamber.
This flowing system is not suitable for a long time recording because the volume of the
syringe that is pumped to the chamber limits the recording time. The NO concentration in
the chamber was measured every few minutes. This was the first measurement of NO
autoxidation in an aerated solution by an electrode method. However, even though the
autoxidation-induced NO consumption was observed, the experimental data was not suitable
for determining the kinetics and rate constants of most NO reactions because of the large
time intervals. Taha, et al., used a porphyrin-coated microelectrode to measure NO
consumption in solution in a chamber [39]. The whole NO decay curve can be recorded after
NO is injected into the chamber. Importantly, it was found that more NO was consumed by
cells in the presence of O2. However, the stirring process in the test solution was not
described and emphasized. If the test solution is not stirred quickly in the experiment or if
the injection is too close to the NO electrode, a transient current of NO oxidation at the
electrode will be detected and the amplitude of the detected current is dependent on the
injection location. Stirring the test solution during the measurements of NO reaction kinetics
has been emphasized in later studies [40, 54, 57]. After carefully considering the effect of
sample injection and NO volatilization on the measured currents, electrode techniques can
be used to measure autoxidation kinetic curves of NO in the low μM range or even in the
sub μM range [56]. The experimental results show that the decay of low NO concentrations
(low μM or sub μM) in aerated water are caused by NO autoxidation and NO volatilization.
If NO volatilization is blocked or the rate of NO volatilization in the total NO decay is
corrected, NO autoxidation retains its third-order kinetic characteristics. In biological
systems, NO autoxidation not only occurs in the extracellular and intracellular fluid, but the
main sites of NO autoxidation are in cellular and intracellular membranes [58, 59],
suggesting that biological membranes are important locations for nitrosative chemistry,
which occurs upon NO autooxidation, such as formation of nitrosothiol, DNA damage, and
genotoxicity, as well as formation of nitrosamine and lipid peroxide [60-63].

4.2. The effect of superoxide on NO decay kinetics
Superoxide (O2

•-), the one electron reduction product of O2, can be generated in the body
from different sources. For example, after O2 is breathed into the lungs and is bound by Hb
in red blood cells, a small portion of the bound O2 can accept one electron from Hb to form
O2

•- that is released from the heme [64]. In the blood, the activated leukocyte NADPH
oxidases use NADPH as the electron donor to donate an electron to O2, generating a large
amount of O2

•- [65, 66]; in the vascular wall and tissues, many flavin enzymes, such as
vascular NAD(P)H- oxidases [67, 68], xanthine oxidase [69, 70] and NO synthases [71], can
reduce O2 into O2

•-. In mitochondria, a large amount of O2 is metabolized to H2O but a
small portion (1-2%) of O2 is converted to O2

•- [72]. An excess O2
•- production is associated

with cardiovascular disease and many other diseases. O2
•- is unstable in solution. Its decay

follows second-order self-dismutation kinetics with a rate constant ksd ≈5×105 M-1s-1 at pH
7.4 and room temperature [73]. The half-life of O2

•- self-dismutation is inversely
proportional to its decay rate constant and initial concentration as follows:
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If the initial superoxide concentration , its half-life in the solution will be
t1/2=20 seconds, implying that superoxide concentration decreases to 50 nM in 20 seconds.
Superoxide dismutase (SOD) plays an important role in tissues to very efficiently remove
excess superoxide. In the presence of SOD, kinetics of superoxide decay converts from

second-order with respect to  into first-order with respect to both  and SOD with a
rate constant ksod≈2×109 M-1s-1 [73, 74]. The half-life of superoxide is inversely
proportional to SOD concentration. When SOD concentration is as low as 12 nM, the half-

life of superoxide is <30 ms. For initial superoxide concentration  at 100 nM, it will
decrease to 1.2×10-8 nM in 1 second. SOD concentration in tissues is in the μM range [75,
76], so superoxide concentration in the body must be very low under normal physiological
conditions. The reaction of NO with superoxide is extremely rapid with a rate constant
4.3-6.7×109 M-1s-1 [77, 78]. The product of this reaction is peroxynitrite, which is a potent
oxidant (Fig. 6). Using a Clark-type NO electrode, Mayer and Schmidt, et al., demonstrated
the effect of superoxide on NO concentrations generated from NO synthases (NOS) [79].

4.3. NO metabolism by Hb
On the inner surface of blood vessels, eNOS generates NO that diffuses into the vascular
wall to regulate vascular tone and maintain vascular homeostasis [80, 81]. One of the main
pathways for NO metabolism in the body is the reaction of NO with different heme proteins.
Blood contains nearly 8 mM heme in the form of Hb. Each heme contains an iron ion
normally in the ferrous form Fe2+ (>99%) or the ferric form Fe3+ (<1%) [82]. Both O2 and
NO can bind on the ferrous deoxyHb (or Hb(Fe2+)) to form Hb(Fe2+-O2) (oxy form) and
Hb(Fe2+-NO) respectively at a rate of 1-10×107 M-1s-1 at room temperature[83-86]. It has
been reported that NO can be also transported on Cys93 of Hb β-chain to form S-
nitrosohemoglobin (SNO) [87]. The reaction of NO with Hb(Fe2+-O2) has a rate constant on
the same order of magnitude as NO binding to ferrous Hb [22, 23]. Products of this reaction
are ferric Hb (metHb) and nitrate, shown as follows:

This reaction is called NO dioxygenation, which is very rapid with a rate constant in the
range from 2.5×107 to 8.9×107 M-1s-1 at 20 °C [22, 23, 83]. In contrast, the reaction of O2
with Hb(Fe2+-NO) is very slow, which mainly depends on the rate of NO dissociation from
the heme [88]. Since deoxyHb or Hb(Fe2+-O2) reaction with NO is very rapid , almost all
the endothelium-generated NO will be scavenged if the 8 mM heme directly exists in the
blood plasma. However, enough endothelium-generated NO actually diffuses from the
endothelium to its target cells in the vascular wall. One can questions why deoxyHb or
Hb(Fe2+-O2) is less efficient in trapping NO in blood compared to its in vitro effects in
solution? OxyHb in blood is not free in the blood plasma but is enclosed in red blood cells in
the blood, NO consumption by the Hb enclosed in RBCs is much slower than by cell-free
Hb because the process of extracellular diffusion limits the rate of NO consumption by
RBC-enclosed Hb. This has been tested in experiments using a NO microelectrode
technique [57]. It was observed that NO consumption by RBC-enclosed Hb is nearly 3
orders of magnitude slower than that by cell-free Hb. This slower rate of NO consumption
by RBC-enclosed Hb has also been explained in other ways [89, 90], but lines of convincing
evidence have shown that the slow rate of NO consumption by RBCs is largely due to the
limit of NO diffusion in the extracellular solution while other sources of resistance may have
some small contributions [91-94].
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4.4. NO consumption by other heme proteins
Besides oxyHb and oxyMb, other oxy-globins such as oxy-neuroglobin (oxyNgb) and oxy-
cytoglobin (oxyCygb) can also dioxygenize NO at a rate constant similar to oxyHb and
oxyMb [95]. Hb mainly exists in red blood cells. Mb is mainly expressed in cardiac
myocytes and oxidative skeletal muscle and its concentration is in hundreds of μM. Ngb is
mainly expressed in brain and retina, and Cygb is mainly expressed in fibroblasts and related
cell types [96, 97]. Unlike Hb and Mb, both Ngb and Cygb have low (μM) cellular
concentrations except in retina where Ngb concentration is ~100 μM. Thus, Ngb and Cygb
may not function as O2 carriers for delivering O2 from blood to tissue like Hb or for the
storage of O2 like Mb. Recent evidence shows that Cygb is expressed in vascular adventitial
fibroblasts and in vascular smooth muscle cells [98]. Considering that Cygb at low
concentration in the presence of cellular reductants (such as ascorbate or cytochrome P450
reductase with NADPH) and O2 can continuously consume NO in an O2-dependent manner
and at a much slower rate that is limited by the reduction of the ferric Cygb to ferrous Cygb
[98-100], Cygb may function as an O2 sensor to regulate the rate of NO consumption in an
O2-dependent manner. By measuring the rate of NO consumption at different O2
concentrations using an NO electrode and an O2 electrode, it was observed that the rate of
NO consumption by Cygb is largely regulated by O2 when [O2] is less than 50 μM. This
result suggests that Cygb may efficiently regulate the vascular tone for controlling blood
flow by adjusting the rate of NO consumption in response to changes of O2 concentration
[101]. A proposed reaction scheme for the Cygb-mediated O2-dependent NO metabolism is
shown in Fig. 7.

4.5. Hydrogen peroxide-induced NO consumption in biological systems
NO does not directly react with hydrogen peroxide in water. However, if heme proteins such
as Hb and Mb are present in the solution, the heme proteins may mediate NO oxidation by
H2O2 [102-104]. For example, H2O2 can oxidize deoxyMb to ferryl Mb (MbFeIV=O) and
oxidize metMb to MbFeIV=O and ferryl porphyrin cation radical [105-107]. The latter is
unstable, which can convert to MbFeIV=O. The reaction of NO with MbFeIV=O forms ferric
Mb and nitrite. This reaction is very fast with a rate constant 1.8×107 M-1s-1 at pH 7.5 and
20 °C [104]. The reaction of NO with HbFeIV=O has a similar rate constant [103]. The
H2O2-induced NO oxidation by heme globins can be easily measured by a NO electrode.
Fig. 8 demonstrates four typical experimental curves. The three solid lines are the NO decay
curves after 1 μM NO is injected into the buffer solution alone, or containing 0.5 μM Mb, or
containing 10 μM H2O2. The dotted curve is obtained by adding 1 μM NO into the buffer
solution containing 0.5 μM Mb and 10 μM H2O2 is added after the peak of NO oxidation
current. H2O2 markedly increases NO decay in the presence of Mb. Catalase is a heme
protein whose primary role is to break down H2O2 into O2 and H2O. The reaction of H2O2
with catalase forms an intermediate heme(FeIV=O). By using an NO sensor, it was
demonstrated that H2O2 induces NO consumption by catalase due to the reaction of NO with
heme(FeIV=O) [108].

4.6. NO diffusion and metabolism in cells and tissues
4.6.1. Earlier studies on the NO diffusion-reaction transport in the aortic wall
—It has been well documented that NO is consumed by cells and tissues [16, 109-111].
Therefore, the rate of biotransport of NO in the tissue will not be only affected by the NO
diffusion rate but also by the NO consumption rate in the body [112, 113]. Using an NO
microelectrode, Taha et. al. examined NO diffusion in the aortic wall. In their experiments, a
segment of rabbit aortic ring was placed in an organ chamber vertically. The tip of the NO
microelectrode was put down and inserted in the aortic wall in the direction parallel to the
inner and outer surface of the aortic ring at the location ~100 μm from the inner surface of
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the aortic ring. The thickness of the rabbit aortic wall is ~200 μm [114]. The NO
concentration distribution between inner surface and the microelectrode was simulated by
the Fick's equation. The NO diffusion coefficient (DNO) in the aortic wall was assumed as
3.3×10-5 cm2s-1. By comparing the measured time course of NO concentration with the
simulated time course of NO concentration, the authors observed a delay in the measured
NO concentration, suggesting that NO is consumed in the aortic wall.

4.6.2. Measurement of NO diffusion and reaction kinetic parameters in brain—
Using o-phenylenediamine-modified carbon fiber electrodes, Friedemann et. al measured
DNO in rat brain [115]. In the measurements, NO stock solution was loaded into a single-
barrel micropipette. The micropipette was attached to an o-PD electrode with a tip
separation (d) of ~350 μm. The electrode-pipette assembly was then inserted into discrete
areas of the cortex and striatum of the rat brain. After a small volume of NO solution was
ejected from the micropipette, the current at the electrode was recorded. DNO was calculated
from the measured d and the time (T) for the measured current to reach maximal amplitude
based on a theoretical equation assuming that the volume of the injected NO solution is as
small as a dimensionless point. The measured DNO in brain is 1.2×10-5 cm2s-1, which is
~40% of DNO (3.0-3.4×10-5 cm2s-1) measured in water [31, 93, 116]. A similar detection
technique has been also used to measure the rate of NO consumption and DNO in brain in
vivo recently [18, 48]. The measured rate constant of NO decay k in brain is 0.67-0.84 s-1. A
theoretical equation considering the actual volume of the injected NO solution was applied
to analyze experimental data. The equation assumes that DNO and the NO decay rate
constant in the injected NO solution and in the surrounding brain tissue are the same. In the
data analysis, it was also assumed that the injected NO solution forms a spherical volume
surrounding (model A) or beneath (model B) the tip of the pipette. Computer simulations
showed that the values of DNO determined from the two models have some differences. The
value of DNO in agarose gel determined from model A is a constant, but DNO determined
from model B increases with the injected volume of NO solution. In brain, DNO determined
from the model A decreases as the injected NO volume increases, but DNO determined from
model B is found to be constant. Existence of these differences between the two models is
reasonable if it is considered that (i) the distance from the electrode to the center of the
spherical solution increases with the volume of the spherical solution in model B but not in
model A, and (ii) DNO and k in the injected spherical solution and the surrounding brain
tissues may be markedly different. The diffusion reaction kinetic parameters reported in
these studies are important for computer simulations of NO biotransport in the brain.

4.6.3. Oxygen-dependent NO metabolism by cells—Thomas et al measured the rate
of NO metabolism by parenchymal cells (hepatocytes) using an NO electrode method [16].
It was demonstrated that the rate of NO metabolism by hepatocytes is regulated by both the
NO concentration and O2 concentration. With a mathematical model considering the O2-
dependent NO consumption in cells and the NO-inhibited O2 consumption by mitochondria,
they predicted the distribution of NO and O2 concentrations in the extravascular tissue space
and found that the interaction between NO and O2 in parenchymal cells extends the
diffusion distance of NO and O2 from the vessel and dramatically blunts the effects of
increased tissue work on the development of hypoxic distal regions. Gardner et al examined
NO consumption by different mammalian cells [109]. They observed that NO metabolism
by mammalian cells is O2-dependent. Since the NO consumption by these cells is inhibited
by heme and flavoenzyme inhibitors, they suggested that the NO consumption by these
mammalian cells was caused by an efficient mammalian heme and flavin-dependent NO
dioxygenase.
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4.6.4. Measurement of NO diffusion and metabolism in the vascular wall—
Recently,an electrode method was developed to measure NO diffusion coefficient in the
aortic wall in our laboratory. The aorta is the largest artery in the body. To measure the NO
diffusion coefficient, an aorta holder was installed outside of a Clark-type electrode (Fig. 9).
The tip surface of the Clark-type electrode was aligned on the same plane with the surface of
the aorta holder to form a large planar surface. A segment of aortic ring was longitudinally
opened and flatly placed on the co-plane of the electrode tip, and metal pins used to fix the
aortic wall. It was observed that the NO diffusion coefficient in the aortic wall is 0.85×10-5

cm2s-1, which is about ~25% of the NO diffusion coefficient in water [117]. It was also
found that NO is consumed in the aortic wall in an O2-dependent manner and that the rate
constant of the vascular NO consumption is 4×103 M-1s-1 [17]. Computer simulations show
that this O2-dependent vascular NO consumption is large enough to regulate vascular NO
levels in response to the change in O2 concentration.

5. Summary
The NO electrode technique is a unique tool in measurements of NO diffusion and
metabolism kinetics because this technique can directly measure NO concentration in
solution with a detection limit in the nM range and a response time in under seconds.
However, to obtain a high quality experimental curve of NO concentration change, several
interfering factors such as background currents, injection-induced solution convection, and
temperature must be carefully eliminated. Using NO electrode techniques, researchers have
measured NO reaction and diffusion kinetics in solution, in biological membrane, in cells,
and in tissues. These studies are very helpful to better understand how blood, heme proteins,
O2 and reactive oxygen species regulate NO bioavailability in the body. Combining
mathematical models and novel NO electrode techniques, researchers are able to directly
examine NO diffusion and metabolism kinetics within the vascular wall and other tissues.
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Overview of electrode measurements of NO diffusion & metabolism kinetics is provided.

Important conclusions and physiological implications of these studies are discussed.

Methods for eliminating interfering factors in electrode measurements are proposed.
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Fig. 1.
Illustration of the setup for preparation of NO stock solution in the Septum Port Gas
Sampling Tube. A gas-washing bottle containing alkaline solution is placed between the gas
tanks and the gas sampling tube. The whole system is flushed with N2 or Ar gas for 30
minutes to remove O2 from connecting tubing, the alkaline solution (NO-prewashing
solution) in the bottle and the buffer solution in the gas sampling tube. Then the gas switch
is turned from N2 or Ar gas to NO gas allowing NO gas to go through the alkaline solution
in the gas-washing bottle and the buffer solution in the gas-sampling tube for about 15-30
minutes.
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Fig. 2.
Illustration of the water-jacketed chamber for measuring NO and O2 concentration in the
solution. The solution is stirred with a stirring bar that is controlled by a magnetic stirrer
underneath. A water circulation bath connects to the chamber to control and maintain a
constant temperature of the test solution. O2 gas, N2 gas or O2/N2 gas mixture can be
introduced into the chamber through the gas inlet on the cap of the chamber to control and
maintain a certain O2 partial pressure in the chamber. An O2 electrode and a NO electrode
are inserted in the test solution to monitor the O2 and NO concentrations in the solution.
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Fig. 3.
Effect of background current on the detected NO oxidation current at a NO electrode. NO (1
μM) was repeatedly injected into the test solution during the baseline stabilization.
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Fig. 4.
Effect of stirring on the detected NO oxidation current at a carbon cylindrical electrode (200
μm in diameter). After the stirring is stopped, the detected current is reduced by 80%.
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Fig. 5.
Effect of temperature on the detected current by a NO electrode. When the temperature of
the test solution increases from 22 °C to 37 °C, the electrode current is raised by nearly 3
fold.

Liu and Zweier Page 22

J Electroanal Chem (Lausanne Switz). Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
The reaction scheme of superoxide in the presence of NO and SOD. Reactions of superoxide
with NO and SOD are extremely quick and much greater than the self-dismutation of
superoxide.
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Fig. 7.
The reaction scheme for the oxygen-dependent NO consumption mediated by Cygb. The
reaction is limited by the reduction of Cygb(Fe3+) into Cygb(Fe2+). O2 and NO compete
with each other to bind on Cygb(Fe2+). More Cygb(Fe2+-O2) will be formed at high O2
concentration, and more Cygb(Fe2+-NO) will be formed at low O2 concentration. Since the
reaction of Cygb(Fe2+-O2) with NO is very quick and the reaction of Cygb(Fe2+-NO) with
NO is very slow, the oxygen concentration can significantly regulate the rate of NO
consumption by Cygb in the presence of a cell reductant.
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Fig. 8.
H2O2-induced NO consumption in the presence of Mb. The solid lines represent the NO
decay curves after 1 μM NO was injected into the buffer solution, in the buffer solution
containing 0.5 μM Mb, and in the buffer solution containing 10 μM H2O2. When 1 μM NO
was injected into the solution in the presence of 0.5 μM Mb and the peak of the NO
oxidation current was reached, the injection of 10 μM H2O2 greatly increased the rate of NO
decay (dotted line).
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Fig. 9.
The Clark-type NO electrode with an aorta holder as attachment for measuring the NO
diffusion coefficient in the aortic wall. A segment of aortic ring is longitudinally opened and
flatly placed on the co-plane of the electrode tip, and metal pins are used to fix the aortic
wall.
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