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Abstract
Previously we proposed two simplified models of early HIV-1 evolution. Both showed that under
a model of neutral evolution and exponential growth, the mean Hamming distance (HD) between
genetic sequences grows linearly with time. In this paper we describe a more realistic continuous-
time, age-dependent mathematical model of infection and viral replication, and show through
simulations that even in this more complex description, the mean Hamming distance grows
linearly with time. This remains unchanged when we introduce recombination, though the
confidence intervals of the mean HD obtained ignoring recombination are overly conservative.
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1. Introduction
The theory of population genetics has been applied to a vast number of organisms, from
primates to bacteria and virus. Combined with coalescent theory and phylogenetic methods,
it can trace back in time the dynamics and evolution of species. Previously (Lee et al., 2009;
Giorgi et al., 2010), we developed an intra-host evolutionary model for HIV-1 during early
infection, and tested the genetic diversity of early HIV-1 samples against a null model of
neutral evolution. The method allows one to distinguish infections that are established by a
single virus from those initiated by multiple viruses. It also allows one to estimate the time
since infection and the onset of immune selection. Though the model is now widely used
and performs well on different datasets (Keele et al., 2008; Wood et al., 2009; Keele et al.,
2009), including very large ones obtained through 454 sequencing (Fischer et al., 2010), the
viral lifecycle described in Lee et al. (2009) was a simplification of the underlying biology.
Here we study a more realistic model of HIV replication and how the new approach affects
the results.

Following in Sewall Wright’s footsteps, Kimura (1968) used the Fokker-Planck equation to
develop a continuous time model of population genetics. This was later expanded by
Gillespie (1984) who developed explicit simulation frameworks for continuous time
stochastic models in population genetics.
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In the first part of this paper, we develop a continuous time, age-dependent model to
describe the genetic drift in a growing viral population. We use a deterministic approach and
derive a model using the Von Foerster equation and renewal condition with age-dependent
birth and death rates. We then expand this into a completely stochastic model using the
Fokker-Planck equation and follow, through simulation, the variation in genetic distances
across a finite population of viral sequences. We measure genetic distances in the sample
using Hamming distances (HD), defined as the number of base positions at which two
sequences differ. Model simulations show that even in this fully randomized model, the
growth in mean HD, averaged over multiple runs, is linear in time, and that different choices
of birth and death rates only affect the rate of the growth but not this behavior.

In the second part of the paper we study how recombination affects the results. Genetic
recombination takes place when a newly constructed nucleic acid molecule arises from
multiple template strains. Recombination events in HIV-1 are common (Onafuwa-Nuga et
al., 2009; Robertson et al., 1995; Wooley et al., 1997; Sabino et al., 1994) and result from
multiple infections of the same target cell (Chen et al., 2005; Dang et al., 2004; Jung et al.,
2002; Levy et al., 2009). A number of studies have indicated that the HIV recombination
rate is several times larger than its mutation rate (Batorsky et al., 2011; Jetzt et al., 2000;
Levy et al., 2009; Shriner et al., 2004; Suryavanshi et al., 2007; Neher et al., 2010; Zhang et
al., 2010), and that recombinants reach fixation and undergo a rapid expansion in the
population, thus representing an evolutionary shortcut (Ramirez et al., 2008).

Previous recombination studies have suggested that recombination affects a virus’s ability to
escape CTL responses (Mostowy et al., 2011) and has a significant impact on the emergence
of drug resistance (Althaus et al., 2005; Fraser, 2005; Kouyos et al., 2009; Moutouhet al.,
1996; Vijay et al., 2008). In Vijay et al. (2008) the authors use a simulation to study the
effects of recombination on the changes in mean Hamming distance with time. However, in
the works cited above, it is assumed that the host’s immune response plays a major role in
defining the fitness of the viral strains. In this paper, we address recombination in our
original model of exponential viral growth with no positive selection pressure from the
environment, a scenario that is relevant to early dynamics of viral growth in the acute phase
of HIV infection prior to the initiation of an effective adaptive immune response. Under this
scenario, we see that recombination does not affect the linearity in time of the mean HD
growth, though it does change the growth of the variance of the HD distribution.

2. Results
2.1. Continuous time model of viral evolution

In Lee et al. (2009) we described two simplified models of viral evolution, where cell
infection and cell death happen at fixed, discrete times. In this section we present a more
realistic model based on a continuous time birth and death process. We also introduce age-
dependency in the model, where age represents the time since a cell was infected. The
corresponding stochastic formulation is presented in Appendix A.

As stated in Lee et al. (2009), we assume that one unique genetic strain, called the
transmitted/founder virus, initiates the infection. In general, it takes some time before the
host’s immune response kicks in, and since during the early phase of the infection the viral
population is much smaller than the target cell population, we assume that viral evolution is
initially driven by exponential growth and random accumulation of mutations at allowed
sites (Ribeiro et al., 2010). Genetic diversity can also be achieved through recombination,
which takes place when two or more distinct strains infect one cell and give rise to new,
recombined genomes. However, when the viral population is sufficiently small with respect
to the target cell population, the effect of recombination during this initial phase of the
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infection should be negligible. Under these hypotheses, mutations from the founder strain
accumulate randomly following a Poisson distribution (Lee et al., 2009).

In all our analyses, we ignore the presence of proteins such as APOBEC, which results in
hypermutated sequences and can modify the mutation rate. We have included the capability
to identify and exclude APOBEC mediated hypermutation in previous implementations of
our model (Giorgi et al., 2010).

Once a virion enters a cell, the HIV enzyme reverse transcriptase transcribes the viral RNA
into DNA, which is then integrated into the host genome. A viral genome integrated into the
DNA of the host cell is called a provirus. The time from viral entry into a target cell until the
first virions start budding out (called the eclipse phase) has been estimated to last about 24
hours (Perelson et al., 1996; Markowitz et al., 2003), although in some cases the virus can
lie dormant inside the cell for years. The infected cell will on average survive another 24
hours while producing virus (Markowitz et al., 2003), and during this time it will produce
tens of thousands of new viral particles (Chen et al., 2007). HIV is rapidly cleared from
circulation, with an average half-life of roughly 45 minutes (De Boer et al., 2010;
Ramratnam et al., 1999), and on average, in early infection, between 6 and 10 virions go on
to successfully infect new cells (Ribeiro et al., 2010). The number of virions that
successfully infect new cells in this initial phase is called the basic reproductive ratio,
usually denoted R0.

In all that follows, we neglect the time a virus spends outside a cell and choose to follow
provirus instead. We only consider mutations that may occur during reverse transcription,
and neglect the extremely rare mutations that happen after integration in the cell’s genome.

Given this framework, we let I(a, g, t) be the number of infected cells that at time t are of
age a (i.e. a represents the time elapsed since the cell was infected) and generation g (i.e. the
genome it carries has undergone g infection cycles since the transmitted virus, with one
reverse transcription event occurring at each infection). Here a and t are non-negative, real
variables, and g is a non-negative integer.

We assume that both the birth rate α(a) (the number of cells infected by each cell of age a
per unit time) and death rate β(a) (the number of cells of age a that die per unit time) are
functions that depend only on the age of the infected cell, a, and not on time t. Notice that
α(a) is in fact an infection rate. Here we choose to call it birth rate to show that the classic
birth and death process provides a good infection model when neglecting the time the virus
spends outside the cell. Let Λ denote the lag before new virions start budding out of the
infected cell (i.e. the length of the eclipse phase) and impose that α(a) = 0 for a ≤ Λ. In the
discussion that follows, we implicitly assume that all functions evaluate to zero on negative
arguments.

It has been shown (Von Foerster, 1959; Nisbet et al., 1982; Huddleston et al., 1983) that the
dynamics of an age-structured birth and death system is determined by the following
differential equations, called the Von Foerster equation and the renewal condition,
respectively:

(1)

with initial conditions
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(2)

The first equation in (1) describes how infected cells are lost via death, whereas the second
one describes how newly infected cells are formed via births. This is a classic age-structured
birth and death system (Murray, 2002; Kevorkian, 2002), with the addition of the parameter
g for generation cycles. Such models are called age-maturity structured and have been
described in the context of cell kinetics, where the parameter g in that case represents the
number of cell divisions (Bernard et al., 2003; Zilman et al., 2010).

Let . Notice that  can be interpreted as the expected fraction of
cells whose age at death is greater than a. Therefore, f(a) represents the expected rate at
which an infected cell survives up to age a and starts new infections. Let f̃ be the Fourier
transform of f, i.e.

(3)

We assume that β(a) is a strictly positive function with lima→∞ β(a) ≠ 0 and such that
lima→∞ f (a) = 0. It follows (see Appendix B) that a closed solution of Eq. (1) is given by

(4)

2.2. Mean Hamming Distance
In Keele et al. (2008) we attained plasma samples from HIV-1 subjects early after infection,
from which viral sequences were derived. Roughly 80% of those subjects were infected by a
single viral strain, and we called those infections homogeneous. Under our model of neutral
exponential growth, mutations from the founder strain accumulate randomly following a
Poisson distribution due to reverse transcription errors introduced when the virus infects a
cell. As mutations accumulate, the mean of the Poisson distribution grows with time.
Therefore, given a sample of viral sequences taken from a homogeneously infected subject,
it is possible to count the number of mutations across all pairs of sequences, fit a Poisson
distribution to the frequency counts, and use the mean of the Poisson to estimate how much
time has elapsed since the beginning of the infection.

The Hamming distance (HD) between two genetic sequences is defined as the number of
bases at which the two differ. In our original model (Lee et al., 2009; Giorgi et al., 2010), we
showed that for homogeneous infections, in the absence of selection, the mean HD is given
by

(5)

where ε is the viral mutation rate per base per generation, NB is the length of the sequences,
and g is the number of generation steps since the most recent common ancestor, or MRCA.
PBinom(d; n, p) is the binomial distribution with parameters n and p:
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Here we are neglecting the possibility of multiple mutations at the same site, as these are
expected to be very rare in early HIV infection (Lee et al., 2009).

In the synchronous infection model described in Lee et al. (2009), we assume that each
provirus produces R0 new proviruses and that all infected cells are of the same generation

and are born and die synchronously. We calculated Eq. (5) for  (synchronous
model) and for a slightly more complicated, but still simplified, scenario in which cells
produce virions in two synchronous bursts, as a first approximation to an asynchronous
infection. In both cases we saw that the mean HD (calculated over all pairs of sequences in a
given sample) grows linearly with time and is proportional to 2gεNB. In Lee et al. (2009) we
showed that the MRCA is at most a couple of generations away from the transmitted/
founder strain, and it coincides with the transmitted/founder strain in most cases. Since, in
HIV infections, one replication cycle is roughly two days (Markowitz et al., 2003), we can
use this result to estimate the time since the MRCA in early homogeneous infections (Keele
et al., 2008; Wood et al., 2009; Keele et al., 2009).

We now show that the linearity in time of the mean HD growth remains unchanged when
substituting the more general expression of I(g, t) from Eq. (4) into Eq. (5). We first derive
the expression of the mean HD at generation g when the death rate is constant, i.e. β(a) = β0
for all a > 0, and the birth rate is a piecewise linear function in age of the form α(a) = 0 for
all a ≤ Λ, and α(a) = α0(a − Λ) for all a > Λ. Expanding Eq. (4) using these particular birth
and death rates, one obtains

(6)

Given the biological properties of HIV infection, we can impose the condition that both β
and α be positive, analytic, and asymptotically constant functions, and, in addition, that α(a)
be null both at 0 and at infinity. We can then extend the above derivation of I(g, t) for
general death and birth rates by noting that a bounded death rate function β(a) can always be
approximated with a step function (a function that is constant on a given partition), and f̃ in
Eq. (4) can be calculated for a generic birth rate from Eq. (3) using the Taylor expansion of
α.

Finally, we use a simulation based on equations (4) and (5) to generate I(g, t) for different
choices of piecewise linear death rate functions and a piecewise linear birth rate function as
defined above. For these choices of birth and death rate functions, we generate the full
population of infected cells, out of which we randomly sample N0 sequences at each day
since the start of infection. At any given time t, we assume that each infected cell in I(g, t)
carries one proviral strain that has undergone exactly g infection cycles from the MRCA.
Therefore, for each one of the N0 sequences, knowing how many infection cycles it has
undergone, we randomly draw from a Poisson distribution the number of mutations it has
accumulated from the MRCA. We then calculate the mean intersequence HD assuming a
star phylogeny, in other words, for any two given sequences s1 and s2 in the sample, HD[s1,
s2] = HD0[s0, s1] + HD0[s0, s1], where s0 is the MRCA, and HD0 is the Hamming distance
from the MRCA. Finally, we calculate the mean HD over all pairs and average over 10,000
runs. In Figure 1 we show the results when both death and birth rates are linear functions of
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age. Different choices of birth and death rates do not change the linearity in growth of the
mean HD, but only affect the rate at which the mean HD grows (results not shown). This
result confirms what we have previously shown in Lee et al. (2009) using a discrete
generation model, namely that the mean HD is proportional to 2εgNB.

2.3. Recombination
We now discuss the effect of recombination on the growth of the mean HD. We start with
the same scenario described in Lee et al. (2009): a single infecting strain establishes
infection, no selection, exponentially growing viral population, and a negligible probability
of observing doubly mutated sites (we show in Lee et al. (2009) that the probability of back

mutations is , which is negligible in our scenario of early infections). This is an apt
description of early, heterosexually transmitted, HIV infections (Keele et al., 2008), and,
under this scenario, prior to the onset of selection, the HD frequency counts follow a Poisson
distribution. However, while in a Poisson model the mean HD of a sample of N sequences
should approximately equal the HD variance times , the HD variance was 4.7% lower
than expected when averaging across all homogeneous subjects described in Keele et al.
(2008). This difference fell within the 95% CI and was not statistically significant.
Nonetheless, given the current advances in sequencing technology and the availability of
larger sample sizes (i.e. 454 sequencing (Margulies, 2005)) it’s interesting to investigate
whether this difference is due to recombination, which we neglected in our original model.

We now show that in the presence of recombination the HD frequency counts no longer
follow a Poisson distribution, thus explaining possible divergences between the variance and
the mean. As discussed in the previous section, in the absence of recombination, our
simulation results show that both the continuous and stochastic models yield the same basic
results as the previous simplified discrete generation model, namely that the mean HD is
proportional to 2εgNB.

Preliminary phylogenetic analyses conducted on viral samples attained at serial time points
from early, homogeneous infections suggest that the mutation rate ε may vary greatly across
patients (Wallstrom et al., 2010). Therefore, in all that follows, we revert to our simplified,
synchronous infection model and assume that changes in the mean HD growth rate caused
by possible divergences from such a simplified model are folded into the parameter ε, which
needs to be measured in each patient individually.

To allow for the possibility of multiple strains infecting the same cell and possibly giving
rise to a recombinant strain, we introduce a recombination rate 0 < ρ < 1. As a
simplification, at each generation we let each viral strain either undergo a mutation event or
a recombination (not both) with probabilities ρ and (1 − ρ)ε respectively. The more general
case can easily be solved using the same methods. We assume ρ is constant in time and, for
simplicity, we also assume that the parental strains recombine at a single position θ, which is
a uniformly distributed random variable between 0 and the length NB of the genome. Given
the MRCA s0, let HD0(s, t) be the Hamming distance of sequence s from s0, where s was
sampled at time t. For sufficiently small sample sizes, early homogeneous infections follow
a star-like phylogeny and both the HD0 and the intersequence HD follow a Poisson
distribution (Lee et al., 2009; Keele et al., 2008). In particular, the expectations are related,
i.e. E[HD] = 2E[HD0]. Under these assumptions, the HD0 probability distribution at time t +
dt is given by

(7)
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where Pε and Pρ are the probability of a genome being at distance d from s0 after a mutation

or a recombination event, respectively. Suppose that Pρ has mean μρ and variance .

Similarly, we denote by με and  the mean and variance of Pε. Then

(8)

and

(9)

where μ2,ε and μ2,ρ indicate the second moments of Pε and Pρ, respectively. When ρ = 0,

we get  and when ρ = 1, . Notice also that when με = μρ one has

(10)

In what follows, we suppress the variable t when it is clear from the context. When viral
genomes undergo mutation

(11)

where Pm(k; dt) is the probability of having k mutations appear in a time interval dt.
Assuming the independence of P ̃ and Pm, we can use the fact that cumulants add under
convolution. Let dλ be the mean of the distribution Pm in the time interval dt (for example,
in a discrete, synchronous model, it would be the mutation rate times the sequence length).
Then, omitting O(dλ2) terms,

(12)

2.4. Recombination alone
In order to compute Pρ, it is useful to first envision a scenario in which an initial, genetically
diverse population of I0 sequences is allowed to grow exponentially with no accumulation of
mutations. In other words, we set ε = 0 and ρ = 1. Suppose the HD0 distribution of the I0

sequences has initial mean μ0 and variance . At each generation a recombination position
θ is drawn randomly from a uniform distribution, with θ = 0, …, NB, where the two parental
strings split and recombine. If θ = 0, then the recombinant is exactly the first sequence,
whereas if θ = NB, the recombinant is the second sequence. Under this scenario it is easy to
see that the mean Hamming distance of a population of sequences will remain unchanged
from the initial μ0, whereas the total variance in the population will decline. As we show in
Appendix C, at any generation g, the expectation values of the mean HD0, μ(g), and the
estimator of the variance s2(g) are given by
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(13)

and

(14)

where μ0 and  are the mean and variance HD0 of the initial population of I0 sequences, Nj
is the size of the population at generation j, and NB is the total sequence length.

In order to test the formulae in (14), we devised a simulation based on the previously
described synchronous infection model (Lee et al., 2009) where no site is mutated more than
once (infinite site assumption). We start at generation g = 0 with I0 sequences, each with an

initial HD0 drawn from a probability distribution with mean and variance μ0 and 

respectively (in the simulations shown in the figures we used ). At each later

generation we resample  sequences from the previous population of size , and
introduce recombination and mutation events as described below.

We first tested the scenario where ρ = 0 and ε = 0.003 (we used a much larger value than the
estimated 10−5 HIV-1 mutation rate in order to make mutations accumulate faster since by
the time we reach a population size of 210 or larger the simulation becomes computationally
intensive). In the mutation only scenario, we randomly draw the number of positions to
mutate from a Poisson distribution with mean εNB, where NB is the length of the sequences.
If HD0(s, g − 1) is the HD0 of a sequence s at generation g − 1, and d is randomly drawn
from Pois(λ = εNB), then HD0(s, g) = HD0(s, g − 1)+d, and the d positions where these
mutations take place are drawn randomly from a uniform distribution. Conversely, in the
recombination only scenario, i.e., when ρ = 1 and ε = 0, at every generation g, for every
sequence s in the sample, we draw the two parents from the previous generation and a
recombination position θ uniformly and form s as the recombinant child.

In Figures 2 and 3 we show the mean HD0 and variance HD0 for the two scenarios
respectively, averaged over 10,000 runs. The simulation is represented by the black dots,
and the theoretical results are shown in the red dashed line. 95% confidence intervals are
shown in gray, though in Figure 2 they are barely visible. In both scenarios the simulation
results fall within the 95% confidence intervals from the theoretical expectations. Note that
in Figure 3, since the fluctuations at different times are positively correlated, all points
remain above the mean, following a large fluctuation in the first generation.

2.5. Mutations and Recombination
In Appendix C we generalize the methods used to derive Eq. (14) and find recursive
formulae for the general case when both ρ and ε are non-zero. For the mean HD0 we obtain

(15)

This shows that even in the presence of recombination, the mean HD0 grows linearly like in
the mutation only scenario. The slope of the linear growth here is diminished by a factor 1 −
ρ, which reflects the fact that in our model a recombining sequence does not mutate.
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Let ξ = (1 − ρ)ε, and let x and y be any given positions in the genome. In Appendix D we
derive the following expressions for the HD0 mean μx at position x, the HD0 variance

estimator  at position x, and the HD0 covariance estimator sxy between any two positions x
and y:

(16)

(17)

(18)

By summing Eqs. (16), (17), and (18) across all positions x and y we get the mean HD0 and
the variance estimator s2(g) in the general case when both mutation and recombination are
present. Again, we verified these theoretical derivations against numerous simulation runs.
The simulation was designed as follows.

For a fixed recombination rate ρ and mutation rate ε, we first draw the number of
recombination events from a binomial distribution with probability ρ. Subsequently, for
each sequence s in the new generation, if s is a recombinant, we uniformly draw the two
parents and a recombination position θ, and form s as the recombinant child. Else, we
randomly draw a number of mutated positions from a Poisson distribution with mean εNB,
where NB is the length of the sequences. If HD0(s, g − 1) is the HD0 of a sequence s at
generation g − 1, and d is randomly drawn from a Poisson distribution with mean εNB, then
HD0(s, g) = HD0(s, g − 1) + d, and the d positions where these mutations take place are
drawn randomly from a uniform distribution.

Because of computational limitations, we limited the number of generations to 6–8 and
simulated 10,000 sets, then averaged the HD0 means and variances and compared the results
to the theoretical results discussed in the previous sections. Instead of simulating from the
very beginning of the infection, we started at generation g = 0 with I0 = 100 sequences, each
proviral sequence with an HD0 from the founder strain randomly drawn from a Poisson
distribution with mean λ = 10. The code was written in R (R Development Core Team,
2010).

In Figures 4, 5, and 6 we compare the simulation results with the theoretical derivations. The
simulation results are denoted with the black dots and the theoretical derivations with the red
dashed lines. Notice that because Eq. (D.3) and Eq. (D.4) were obtained up to terms of the
order N−2, where N is the sample size, when we carry the summation over all positions to
obtain the general expression for s2(g), the fluctuations become of the order N−1. In Figure 6
we omit the comparison with the theoretical derivation for the first two generations. In fact,
for these, the sample size is small enough that fluctuations are sizable. However, starting
from g = 3, theory and simulation overlap almost perfectly.

We performed a simulation with parameters taken from the early homogeneous sample
SUMA, previously described in Keele et al. (2008) and Lee et al. (2009) (Figure 7). This
time the initial population consisted of a single infecting strain and, at each generation, we
sampled N = 35 sequences, which was the sample size of the original alignment. Under this
particular scenario, on average, the HD variance was lower than the mean HD. This was
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consistent with what observed across all homogeneous patients in Keele et al. (2008), for
whom the HD variance was, on average, 4.7% lower than what expected from a Poisson
model. According to our original Poisson model, SUMA was estimated to be 5 generations
into the infection, which was consistent with a Fiebig stage II. In Figure 7 we show that
adding recombination to the model does indeed cause the HD frequency counts to no longer
follow a Poisson distribution, but the effect is so small that the estimate attained through our
original model still remains valid.

3. Conclusions
We developed a model to study the rates of evolution and genetic diversification in acute
HIV-1 infection. We used the model to examine the effects of recombination in acute HIV
infection sampled prior to the onset of selection and during the exponential growth of the
viral population. Previously, we neglected recombination and used a simplified model of
infection where all infected cells produced virions and died synchronously (Lee et al., 2009).
Using this model we showed that the mean intersequence HD grows linearly with time as
E(HD) ∝ 2εNBg, where ε is the mutation rate, NB is the length of the sequences, and g is the
generation number. We applied this model to homogeneously infected subjects (Keele et al.,
2008; Wood et al., 2009) and, using the linearity in time of the mean HD, for each
homogeneously infected subject, were able to estimate the time since the most recent
common ancestor.

In this paper, we explored a more complex model of HIV replication. This was motivated by
the fact that in general, our estimates in Keele et al. (2008) were well correlated with the
time since the infection obtained from clinical data. However, in a Poisson model, we expect
the mean HD0 to be equal to the variance of the HD0 times , where N is the sample size.
Even though not statistically divergent from a Poisson distribution, all homogeneous
subjects presented in Keele et al. (2008) had a variance HD that was on average 4.7% lower
than the expected theoretical value had the distribution been a Poisson. Here we showed that
even in an age-dependent continuous model of infection, the mean HD0 still grows linearly
with time, and this continues to hold in a fully stochastic model. While recombination did
not affect the linearity of the mean HD0 growth, in the presence of recombination the HD0
distribution is no longer Poisson. In this paper we modeled the new dependency of the
variance HD0 with time, as it no longer equals that of the mean HD0. We also showed how
this new framework helps explain some of the divergence between mean and variance HD in
homogeneous samples previously described in Keele et al. (2008). Furthermore, because the
effect is small, our work validates our previous methods that estimate the time of infection
based on a Poisson model.

This work suggests that our previous, simplified model (Lee et al., 2009) provides
reasonable estimates of the time and number of generations since a founder strain initiates
the infection even in the presence of in vivo recombination. It is also robust against
instances of in vitro recombination (Salazar-Gonzales et al., 2008), which becomes a
relevant issue particularly when using 454 deep sequencing (Fischer et al., 2010). For 454
samples in particular, where sample sizes can reach the tens of thousands, our method
provides a robust alternative to computationally intense methods such as those employed in
the software package BEAST (Drummond et al., 2007).

Finally, we notice that the mathematical framework developed here can be used in cell
division models where it is relevant to keep track of the number of divisions cells undergo
(generations) (Zilman et al., 2010; Bernard et al., 2003).
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Appendix A. Stochastic model
We present a stochastic formulation of the continuous model presented in Section 2.1. In all
that follow we use the same mathematical framework developed for birth and death
stochastic processes, with the added parameter g for generation. To keep the discussion
more general, we will use the word “births” instead of “new infections.” Clearly, when
applied to the infection model described in this paper, new births are newly infected cells.

Denote U = ℝ+ × ℤ+ the space of all pairs u = (a, g), as defined in Section 2. We define a
state of the system as a function I: U → ℤ+ that associates to every u ∈ U a positive integer
I(u) = I(a, g), the number of infected cells of age a and generation g.

Let  be the space of all functions I: ℝ+ × ℤ+ → ℤ+. At any given time t ∈ ℝ+, and for any
given state I ∈ , let P (I; t) be the probability of the system being described by the state I at
time t. Even though P:  × ℝ+ →[0, 1], for simplicity we omit the dependency in time and
consider P as an element in S( ), where S( ) = {  → [0, 1]}, the space of all operators
from  into [0, 1].

To better illustrate the derivation, we first show how to obtain the master equation
discretized in time increments Δt. Define Δ: ℝ+ ×  →  as follows. Given τ ∈ ℝ+, I ∈

, and (a, g) ∈ U, then Δτ I(a, g) = I(a + τ, g) − I(a, g). From the above notice that for every
I ∈  and every (a, g) ∈ U, (I + Δτ I)(a, g) = I(a + τ, g). Δτ I represents the difference
between state I at time t + τ and state I at time t when cells age only (e.g. no deaths nor
births). It follows that, given It+τ, the state at time t is It+τ − Δτ I.

We also define the Kroenecker Delta operator as δ: U →  as follows. Given u0 ∈ U, δu0∈
 is defined so that for every u ∈ U such that u ≠ u0, δu0 (u) = 0 and δu0(u0) = 1.

Suppose now that at a given time t, the system is completely described by the state I. We
wish to compute the probability P(I, t + Δt). In other words, we want to see how the system
evolves after an increment in time of Δt. There are three possible contributions to the term
P(I, t + Δt). In what follows we assume that for every age a and generation g, out of all
infected cells I(a, g) only one can die or be born at the time. Hence, the contributions are:
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1. No deaths, no births, cells can only survive. The contribution in this case is

(A.1)

2. One cellu0 dies. The contribution (summed over all possible u0 ∈ U ) is

(A.2)

3. One cellu0 is born. The contribution (summed over all possible u0 ∈ U ) is

(A.3)

We expand each of the above terms in Δt and neglect terms in O(Δt2) to obtain, for each
piece respectively:

1.

(A.4)

2.

(A.5)

3.

(A.6)

The first order master equation of the process, discretized in time, is therefore

(A.7)

To obtain the continuous master equation we have to take the limit for Δt → 0 on both sides
of Eq. (A.7). In order to do so, we use an approximation that is a direct consequence of the
definition of functional derivative (Gelfand et al., 1963): given x, y ∈  and f ∈ S( ), the
following holds

(A.8)

Using the above, the left-hand side of Eq. (A.7) becomes
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(A.9)

Notice that in the absence of births and deaths (i.e. α = β = 0), the above reduces to

(A.10)

which describes the survival of all cells present at time t = 0.

In order to expand the right-hand side (RHS) of Eq. (A.7), we collect the terms in β together,
and similarly for the terms in α. We approximate to the first order in Δt and let Δt → 0.

(A.

11)

In the limit the above becomes

(A.12)

By expanding RHS(α) in a similar way, one obtains the continuous master equation

(A.13)

where ∂U = {u = (a, g) ∈ U|a = 0, g > 0}. In all that follows we assume that newborn cells
cannot give birth, which implies that α|∂U = 0. As a consequence, the second term on the
RHS is null. We now use the following two claims to re-write the above equation.

Claim Appendix A.1
Let u ∈ U. We define a map S( ) → S( ) that to every P ∈ S( ) associates a P̃u ∈ S( )
so defined: P̃u(I) = I(u)P (I). Then

(A.14)

Proof
Given ε > 0 and u0 ∈ U, define δu0,ε ∈  as the following Kroencker delta: δu0,ε(u) = ε δ(u
− u0). Then

(A.

15)
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By dividing by ε and letting ε → 0 we get the assert.

Claim Appendix A.2
Given u0 ≠ u, we have

(A.16)

As a consequence, we can rewrite the master equation as follows

(A.17)

where u0 = (0, g + 1).

Eq. (A.17) reduces to well known results when the birth and death rates are both constant, in
which case, if we integrate both sides over the domain  = {I ∈ |∫U I = Nt}, where Nt is
the total number of cells at time t, and N0 is the initial number of cells. we obtain

(A.18)

which is the master equation of the classic linear birth and death process. This is fully
discussed in Reichl (1998), where a solution is given in terms of the generating function F(z;
t) = ΣNtP (Nt; t) zNt by

(A.19)

Here N0 is the initial number of infected cells.

Appendix B. Continuous model, closed form solution
We now develop the closed form solution to Eq. (1). One can verify that, given a smooth
function ε(g, x) such that ε(g, x) = 0 when x < 0, then

(B.1)

satisfies the first equation in (1). Substituting into the renewal condition, one gets that ε
should also satisfy

(B.2)

Given the initial population of I0 cells, at any given time t, the only cells at g = 0 are the
survivors from the initial population. In other words:
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(B.3)

It follows that for g = 0, ε is completely determined by ε(0, t − a) = δ(t − a)I0, where δ(t − a)
is the singular density. When g = 1

(B.4)

and therefore one can show recursively that for g ≥ 1

(B.5)

By reordering the above and substituting f with its Fourier transform f̃ one obtains

(B.6)

Substituting Eq. (B.6) in Eq. (B.1), one gets Eq. (4):

(B.7)

which reduces the problem to a quadrature.

Appendix C. HD variance for an exponentially growing population in the
presence of recombination alone

We now illustrate how to obtain expressions for the mean HD0 and the expected value of the
variance of HD0 as functions of generation g in the case where the population grows
exponentially, the mutation rate is ε = 0, and the recombination rate is ρ = 1.

For every position x between 1 and NB, we compute both the mean HD0 and the HD0
variance at that position across all sequences, and for every pair of positions x and y, we will
compute the covariance across all sequences, and finally we will obtain the total mean HD0
and HD0 variance by summing across all positions.

Since there are no new mutations, at any generation g, the mean HD at d position x is given

by , and hence

(C.1)

An unbiased estimator of the variance at position x is given by
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(C.2)

Here, for simplicity of notation, we have omitted the dependency in g. So, if  is the
expected variance at generation g + 1, summing over all sequences s we obtain

(C.3)

This is not quite the total variance as we still need to add in the contribution from the
covariance between every pair of positions x and y.

To understand how the expected covariance sx,y between any two sites x and y changes with
generation g, we make the following observation: if the split position θ falls between the
two positions, then x and y will be inherited independently to the next generation. If, on the
other hand, θ does not split the two positions, then the new covariance will be a random
variate with expectation the second cumulant of the covariance at the previous distribution.
In order to use this observation, we split the set of sequences in two groups: the ones derived
from two parent sequences which recombined somewhere between x and y, and those
derived instead from a recombination split outside x and y.

Let N1 be the number of sequences in the first group, and N2 the number of sequences in the
second group, so that N1 + N2 = Ng (when clear from the context, we omit the dependency

in g for simplicity of notation). We define  and  and  the cumulants of the
HD in the i-th group at a fixed generation g. An unbiased estimator of the covariance is
given by

(C.4)

where Ng is the total number of sequences at generation g, HDx and HDy are the Hamming

distances at positions x and y respectively, and  and  their means. By splitting the
summation over sequences in N1 and sequences in N2, one gets

(C.5)

where si is the variance over subset Ni, and  and  are the means at positions x and
y respectively within group Ni. Taking expectations on both sides of the above equation, one
obtains

(C.

6)

Giorgi et al. Page 18

J Theor Biol. Author manuscript; available in PMC 2014 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Notice that the first term on the right hand side is the weighted average of the ’s, and the

second one is the weighted covariance between  and .

The first cumulants are the mean of the corresponding distribution, hence  at all

times, whereas with the above definitions of N1 and N2, we get  (the split position
separates x and y and hence the number of mutations at each site become independent

variables), and . Furthermore, . Therefore, substituting all of
the above into Equation (C.6), we obtain

(C.7)

By adding across all positions we get

(C.8)

With these recursive relations, we have reduced the problem to computing the initial

quantities  and sx,y(0). Consider the initial population to be made of I0 sequences such
that the HD0 of any given sequence s from the founder strain s0 is a random variable from a
probability distribution P with mean and variance μ0 and σ0 respectively. Then the moment
generating function M of the HD0 distribution is given by

(C.9)

Here NB is the length of the genomes, and u1, … uNB−1 are independent variables
representing the positions in the genome (there’s a total of NB positions, but only NB − 1 are
independent due to the constraint that the initial mean is μ0). Taking the first and second
derivatives, we find

(C.10)

and

(C.11)

It’s easy to verify that summing the above two equations over all positions, one gets the

initial variance .

Combining equations (C.8), (C.10), and (C.11), we get the expression for the total HD
variance at generation g > 0:
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(C.12)

where we have used the following relationship:

(C.

13)

Appendix D. HD variance for an exponentially growing population when
both recombination and mutation rate are non-null

We now extend the methods used to derive Eq. (14) and find recursive formulae for the
general case when both ρ and ε are non-null. Eq. (C.6) can be generalized to an indefinite
number of partitions Ni such that Σi Ni = Ng, the total number of sequences at generation g.
We use this to find analogous recursive formulae for the cumulants of the mean HD0
distribution when both recombination and mutation events are present.

Fix positions x and y and choose N1 to be the number of sequences derived from a
recombination event that split positions x and y; N2 the number of sequences derived from
either a recombination event that did not split positions x and y, or from a division with no
mutation; and, finally, denote Nk, with k = 3, 4 or 5 the number of sequences such that only
the x position has mutated, only the y position, or both, respectively. Like before, let

. Assume that mutations happen with a rate ε (per site, per generation), and
recombination events happen with a rate ρ. Given this set-up, we notice that

(D.1)

Let ξ = ε(1 − ρ). Carrying out similar computations as sketched in the previous section, one
notices that, for every positions x and y

(D.2)

(D.3)

(D.4)
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By summing Eq. (D.2) over all positions x one obtains Eq. (15). Similarly, by summing Eq.
(D.3) and Eq. (D.4) across all positions, and noticing that we can still use the same initial
values we used in Appendix C, one obtains the general expression for s2(g).
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Highlights

• We describe a continuous time, age-dependent model of early HIV infection.

• We show that the new model yields the same results as a simplified model we
published in 2009.

• We introduce recombination in the model.

• We show how recombination affects the results compared to our previous
model.
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Figure 1.
We generated I(g, t) using the continuous, age-dependent model described in Section 1.
Here NB = 2, 600 base pairs, α(a) = α0(a − Λ) for a > Λ, and β(a) = β0a. At each day we
sampled N0 = 30 sequences, calculated the mean HD and then averaged over 10,000 runs.
The blue dots shot the mean HD for one particular run, the red dots the average over all
runs, and the black dashed line underneath shows the mean HD calculated from the
theoretical framework. The vertical dashed lines are the 95% confidence intervals.
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Figure 2.
Comparison between theory (red dashed line) and simulation (black dots) for an
exponentially growing population with ρ = 0 (no recombination) and ε = 0.003. Mean and
variance of the HDs are averaged over 10,000 runs. At generation g = 0 the initial
population is made of 100 sequences with HD mean and variance λ0 = 10. Confidence
intervals (±1.96 times the standard deviation over runs) are represented by vertical gray
segments, which are smaller than the size of the symbols in the figure and hence are not
visible.
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Figure 3.
Comparison between theory (red dashed line) and simulation (black dots) for an
exponentially growing population with ρ = 1 and ε = 0 (recombination only). Mean and
variance of HD are averaged over 10,000 runs. At generation g = 0 the initial population is
made of 100 sequences with HD mean and variance λ0 = 10. Confidence intervals (±1.96
times the standard deviation over runs) are represented by vertical gray segments. Errors at
different time points are positively correlated.
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Figure 4.
Comparison between theory (red dashed line) and simulation (black dots) of the contribution
of each position (denoted x and y, located at one third and two thirds of the genome) to the
variance of HD0 for an exponentially growing population. Here ρ = 0.5 and ε = 0.003. These
results were obtained from 10,000 independent simulation runs with the same initial
conditions, as described in the main text. The simulation is represented by the black dots,
and the theory by the dashed red line. Confidence intervals (±1.96 times the standard
deviation over runs) are represented by vertical gray segments. Notice that the errors are
positively correlated.
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Figure 5.
Comparison between theory (red dashed line) and simulation (black dots) of the contribution
of each position pair (denoted x and y, which here we took to be one third and two thirds of
the genome) to the variance of HD0 for an exponentially growing population. Here ρ = 0.5
and ε = 0.003. These results were obtained from 10,000 independent simulation runs with
the same initial conditions, as described in the main text. The simulation is represented by
the black dots, and the theory by the dashed red line. Confidence intervals (±1.96 times the
standard deviation over runs) are represented by vertical gray segments.
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Figure 6.
Comparison between theory (red dashed line) and simulation (black dots) of the mean and
variance HD0 for an exponentially growing population with ρ = 0.5 and ε = 0.003. The left
panel represents the mean, and the right panel the variance, both averaged over 10,000 runs.
Like before, at generation g = 0 the initial population is made of 100 sequences with HD
mean and variance λ0 = 10. The simulation is represented by the black dots, and the theory
by the dashed red line. Confidence intervals (±1.96 times the standard deviation over runs)
are represented by vertical gray segments. In the right panel, the first few generations are
omitted. The theory we developed neglects early stochastic events, which are of the order

, where Ng is the population size at generation g. Hence, we find that only when the
population size is large enough, do theory and simulation overlap.

Giorgi et al. Page 28

J Theor Biol. Author manuscript; available in PMC 2014 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Simulation runs based on the patient SUMA (Keele et al., 2008). Assuming a single strain
initiated the infection, at every generation we sampled N = 35 sequences, calculated the HD
mean and HD variance, and then repeated 10,000 times. The top panels represent the
simulation run in the absence of recombination, the bottom panels represent the simulation
when recombination was present (ρ = 2 × 10−5, as estimated in Neher et al. (2010)). The red
dots represent the HD mean (left) and HD variance (right) averaged over 10,000 runs. The
black vertical bars represent the 95 % CIs. Finally, the purple diamond denotes SUMA’s HD
mean (left) and HD variance (right). As one can see, the effect of recombination is so small
that both models fit the data well, thus validating our previous approach.
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