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Abstract
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many
applications, and is of current interest to the larger statistics community. In many applications
including so-called the “large p small n” setting, the estimate of the covariance matrix is required
to be not only invertible, but also well-conditioned. Although many regularization schemes
attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we
propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned
estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed,
thus making our procedure more widely applicable. We demonstrate that the proposed
regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator,
and has a natural Bayesian interpretation. We investigate the theoretical properties of the
regularized covariance estimator comprehensively, including its regularization path, and proceed
to develop an approach that adaptively determines the level of regularization that is required.
Finally, we demonstrate the performance of the regularized estimator in decision-theoretic
comparisons and in the financial portfolio optimization setting. The proposed approach has
desirable properties, and can serve as a competitive procedure, especially when the sample size is
small and when a well-conditioned estimator is required.

Keywords
covariance estimation; regularization; convex optimization; condition number; eigenvalue;
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1 Introduction
We consider the problem of regularized covariance estimation in the Gaussian setting. It is
well known that, given n independent samples x1, …, xn ∈ ℝp from a zero-mean p-variate
Gaussian distribution, the sample covariance matrix
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maximizes the log-likelihood as given by

(1)

where det A and tr(A) denote the determinant and trace of a square matrix A respectively. In
recent years, the availability of high-throughput data from various applications has pushed
this problem to an extreme where in many situations, the number of samples, n, is often
much smaller than the dimension of the estimand, p. When n < p the sample covariance
matrix S is singular, not positive definite, and hence cannot be inverted to compute the
precision matrix (the inverse of the covariance matrix), which is also needed in many
applications. Even when n > p, the eigenstructure tends to be systematically distorted unless
p/n is extremely small, resulting in numerically ill-conditioned estimators for Σ; see
Dempster (1972) and Stein (1975). For example, in mean-variance portfolio optimization
(Markowitz, 1952), an ill-conditioned covariance matrix may amplify estimation error
because the optimal portfolio involves matrix inversion (Ledoit and Wolf, 2003; Michaud,
1989). A common approach to mitigate the problem of numerical stability is regularization.

In this paper, we propose regularizing the sample covariance matrix by explicitly imposing a
constraint on the condition number.1 Instead of using the standard estimator S, we propose
to solve the following constrained maximum likelihood (ML) estimation problem

(2)

where cond(M) stands for the condition number, a measure of numerical stability, of a
matrix M (see Section 1.1 for details). The matrix M is invertible if cond(M) is finite, ill-
conditioned if cond(M) is finite but high (say, greater than 103 as a rule of thumb), and well-
conditioned if cond(M) is moderate. By bounding the condition number of the estimate by a
regularization parameter κmax, we directly address the problem of invertibility or ill-
conditioning. This direct control is appealing because the true covariance matrix is in most
situations unlikely to be ill-conditioned whereas its sample counterpart is often ill-
conditioned. It turns out that the resulting regularized matrix falls into a broad family of
Steinian-type shrinkage estimators that shrink the eigenvalues of the sample covariance
matrix towards a given structure (James and Stein, 1961; Stein, 1956). Moreover, the
regularization parameter κmax is adaptively selected from the data using cross validation.

Numerous authors have explored alternative estimators for Σ (or Σ−1) that perform better
than the sample covariance matrix S from a decision-theoretic point of view. Many of these
estimators give substantial risk reductions compared to S in small sample sizes, and often
involve modifying the spectrum of the sample covariance matrix. A simple example is the
family of linear shrinkage estimators which take a convex combination of the sample

1This procedure was first considered by two of the authors of this paper in a previous conference paper and is further elaborated in
this paper (see Won and Kim (2006)).

Won et al. Page 2

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



covariance matrix and a suitably chosen target or regularization matrix. Notable in the area
is the seminal work of Ledoit and Wolf (2004) who study a linear shrinkage estimator
toward a specified target covariance matrix, and choose the optimal shrinkage to minimize
the Frobenius risk. Bayesian approaches often directly yield estimators which shrink toward
a structure associated with a pre-specified prior. Standard Bayesian covariance estimators
yield a posterior mean Σ that is a linear combination of S and the prior mean. It is easy to
show that the eigenvalues of such estimators are also linear shrinkage estimators of Σ; see,
e.g., Haff (1991). Other nonlinear Steinian-type estimators have also been proposed in the
literature. James and Stein (1961) study a constant risk minimax estimator and its
modification in a class of orthogonally invariant estimators. Dey and Srinivasan (1985)
provide another minimax estimator which dominates the James-Stein estimator. Yang and
Berger (1994) and Daniels and Kass (2001) consider a reference prior and hierarchical
priors, that respectively yield posterior shrinkage.

Likelihood-based approaches using multivariate Gaussian models have provided different
perspectives on the regularization problem. Warton (2008) derives a novel family of linear
shrinkage estimators from a penalized maximum likelihood framework. This formulation
enables cross-validation of the regularization parameter, which we discuss in Section 3 for
the proposed method. Related work in the area include Sheena and Gupta (2003),
Pourahmadi et al. (2007), and Ledoit and Wolf (2012). An extensive literature review is not
undertaken here, but we note that the approaches mentioned above (and the one proposed in
this paper) fall in the class of covariance estimation and related problems which do not
assume or impose sparsity, on either the covariance matrix, or its inverse (for such
approaches either in the frequentist, Bayesian, or testing frameworks, the reader is referred
to Banerjee et al. (2008); Friedman et al. (2008); Hero and Rajaratnam (2011, 2012); Khare
and Rajaratnam (2011); Letac and Massam (2007); Peng et al. (2009); Rajaratnam et al.
(2008)).

1.1 Regularization by shrinking sample eigenvalues
We briefly review Steinian-type eigenvalue shrinkage estimators in this subsection.
Dempster (1972) and Stein (1975) noted that the eigenstructure of the sample covariance
matrix S tends to be systematically distorted unless p/n is extremely small. They observed
that the larger eigenvalues of S are overestimated whereas the smaller ones are
underestimated. This observation led to estimators which directly modify the spectrum of
the sample covariance matrix and are designed to “shrink” the eigenvalues together. Let li, i
= 1, …, p, denote the eigenvalues of the sample covariance matrix (sample eigenvalues) in
nonincreasing order (l1 ≥ … ≥ lp ≥ 0). The spectral decomposition of the sample covariance
matrix is given by

(3)

where diag(l1, …, lp) is the diagonal matrix with diagonal entries li and Q ∈ ℝp×p is the
orthogonal matrix whose i-th column is the eigenvector that corresponds to the eigenvalue li.
As discussed above, a large number of covariance estimators regularizes S by modifying its
eigenvalues with the explicit goal of better estimating the eigenspectrum. In this light Stein
(1975) proposed the class of orthogonally invariant estimators of the following form:

(4)
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Typically, these estimators shrink the sample eigenvalues so that the modified
eigenspectrum is less spread than that of the sample covariance matrix. In many estimators,
the shrunk eigenvalues are required to maintain the original order as those of S: λ̂1 ≥ ··· ≥
λ̂p.

One well-known example of Steinian-type shrinkage estimators is the linear shrinkage
estimator as given by

(5)

where the target matrix F = cI for some c > 0 (Ledoit and Wolf, 2004; Warton, 2008). For
the linear estimator the relationship between the sample eigenvalues li and the modified
eigenvalues λ̂i is affine:

Another example, Stein’s estimator (Stein, 1975, 1986), denoted by Σ̂Stein, is given by λ̂i =
li/di, i = 1, …, p, with di = (n − p + 1 + 2li Σj≠i(li − lj)−1)/n. The original order in the
estimator is preserved by applying isotonic regression (Lin and Perlman, 1985).

1.2 Regularization by imposing a condition number constraint
Now we proceed to introduce the condition number-regularized covariance estimator
proposed in this paper. Recall that the condition number of a positive definite matrix Σ is
defined as

where λmax(Σ) and λmin(Σ) are the maximum and the minimum eigenvalues of Σ,
respectively. (Understand that cond(Σ) = ∞ if λmin(Σ) = 0.) The condition number-
regularized covariance estimation problem (2) can therefore be formulated as

(6)

An implicit condition is that Σ be symmetric and positive definite2.

The estimation problem (6) can be reformulated as a convex optimization problem in the
matrix variable Σ−1 (see Section 2). Standard methods such as interior-point methods can
solve the convex problem when the number of variables (i.e., entries in the matrix) is
modest, say, under 1000. Since the number of variables is about p(p + 1)/2, the limit is
around p = 45. Such a naive approach is not adequate for moderate to high dimensional
problems. One of the main contributions of this paper is a significant improvement on the
solution method for (6) so that it scales well to much larger sizes. In particular, we show that

2This problem can be considered a generalization of the problem studied by Sheena and Gupta (2003), who consider imposing either a
fixed lower bound or a fixed upper bound on the eigenvalues. Their approach is however different from ours in a fundamental sense in
that it is not designed to control the condition number. Hence such a solution does not correct for the overestimation of the largest
eigenvalues and underestimation of the small eigenvalues simultaneously.
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(6) reduces to an unconstrained univariate optimization problem. Furthermore, the solution
to (6), denoted by Σ̂cond, has a Steinian-type shrinkage of the form as in (4) with eigenvalues
given by

(7)

for some τ★ > 0. Note that the modified eigenvalues are nonlinear functions of the sample
eigenvalues, meet the order constraint of Section 1.1, and even when n < p, the nonlinear
shrinkage estimator Σ̂cond is well-conditioned. The quantity τ★ is determined adaptively
from the data and the choice of the regularization parameter κmax. This solution method was
first considered by two of the authors of this paper in a previous conference proceeding
(Won and Kim, 2006). In this paper, we give a formal proof of the assertion that the matrix
optimization problem (6) reduces to an equivalent unconstrained univariate minimization
problem. We further elaborate on the proposed method by showing rigorously that τ★ can be
found exactly and easily with computational effort of order O(p) (Section 2.1).

The nonlinear shrinkage in (7) has a simple interpretation: the eigenvalues of the estimator
Σ̂cond are obtained by truncating the sample eigenvalues larger than κmaxτ★ to κmaxτ★ and
those smaller than τ★ to τ★. Figure 1 illustrates the functional form of (7) in comparison
with that of the linear shrinkage estimator. This novel shrinkage form is rather surprising,
because the original motivation of the regularization in (6) is to numerically stabilize the
covariance estimate. Note that this type of shrinkage better preserves the eccentricity of the
sample estimate than the linear shrinkage which shrinks it toward a spherical covariance
matrix.

Other major contributions of the paper include a detailed analysis of the regularization path
of the shrinkage enabled by a geometric perspective of the condition number-regularized
estimator (Section 2.2), and an adaptive selection procedure for choosing the regularization
parameter κmax under the maximum predictive likelihood criterion (Section 3) and
properties thereof.

We also undertake a Bayesian analysis of the condition number constrained estimator
(Section 4). A detailed application of the methodology to real data, which demonstrates the
usefulness of the method in a practical setting, is also provided (Section 6). In particular,
Section 6 studies the use of the proposed estimator in the mean-variance portfolio
optimization setting. Section 5 undertakes a simulation study in order to compare the risk of
the condition number-regularized estimator to those of others. Risk comparisons in higher
dimensional settings (as compared to those given in the preliminary conference paper) are
provided in this Section. Asymptotic properties of the estimator are also investigated in
Section 5.

2 Condition number-regularized covariance estimation
2.1 Derivation and characterization of solution

This section gives the derivation of the solution (7) of the condition number-regularized
covariance estimation problem as given in (6) and shows how to compute τ★ given κmax.
Note that it suffices to consider the case κmax < l1/lp = cond(S), since otherwise, the
condition number constraint is already satisfied and the solution to (6) simply reduces to the
sample covariance matrix S.
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It is well known that the log-likelihood (1) of a multivariate Gaussian covariance matrix is a
convex function of Ω = Σ−1. Note that Ω is the canonical parameter for the (Wishart) natural
exponential family associated with the likelihood in (1). Since cond(Σ) = cond(Ω), it can be
shown that the condition number constraint on Ω is equivalent to the existence of u > 0 such
that uI ⪯ Ω ⪯ κmaxuI, where A ⪯ B denotes that B − A is positive semidefinite (Boyd and
Vandenberghe, 2004, Chap. 7). Therefore the covariance estimation problem (6) is
equivalent to

(8)

where the variables are a symmetric positive definite p×p matrix Ω and a scalar u > 0. The
above problem in (8) is a convex optimization problem with p(p + 1)/2 + 1 variables, i.e.,
O(p2).

The following lemma shows that by exploiting structure of the problem it can be reduced to
a univariate convex problem, i.e., the dimension of the system is only of O(1) as compared
to O(p2).

Lemma 1—The optimization problem (8) is equivalent to the unconstrained univariate
convex optimization problem

(9)

where

and

(10)

in the sense that the solution to (8) is a function of the solution u★ to (9), as follows.

with Q defined as in (3).

Proof: The proof is given in the Appendix.

Characterization of the solution to (9) is given by the following theorem.

Theorem 1—Given κmax ≤ cond(S), the optimization problem (9) has a unique solution
given by
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(11)

where α★ ∈ {1, …, p} is the largest index such that 1/lα★ < u★ and β★ ∈ {1, …, p} is the
smallest index such that 1/lβ★ > κmaxu★. The quantities α★ and β★ are not determined a
priori but can be found in O(p) operations on the sample eigenvalues l1 ≥ … ≥ lp. If κmax >
cond(S), the maximizer u★ is not unique but Σ̂cond = S for all the maximizing values of u.

Proof: The proof is given in the Appendix.

Comparing (10) to (7), it is immediately seen that

(12)

Note that the lower cutoff level τ★ is an average of the (scaled and) truncated eigenvalues,
in which the eigenvalues above the upper cutoff level κmaxτ★ are shrunk by a factor of 1/
κmax.

We highlight the fact that a reformulation of the original minimization into a univariate
optimization problem makes the proposed methodology very attractive in high dimensional
settings. The method is only limited by the complexity of spectral decomposition of the
sample covariance matrix (or the singular value decomposition of the data matrix). The
approach proposed here is therefore much faster than using interior point methods. We also
note that the condition number-regularized covariance estimator is orthogonally invariant: if
Σ̂cond is the estimator of the true covariance matrix Σ, then UΣ̂condUT is the estimator of the
true covariance matrix UΣUT, for U orthogonal.

2.2 A geometric perspective on the regularization path
In this section, we shall show that a simple relaxation of the optimization problem (8)
provides an intuitive geometric perspective on the condition number-regularized estimator.
Consider the function

(13)

defined as the minimum of the objective of (8) over a range uI ⪯Ω ⪯ vI, where 0 < u ≤ v.
Note that the relaxation in (13) above differs from the original problem in the sense that the
optimization is no longer with respect to the variable u. In particular, u and v are fixed in
(13). By fixing u, the problem has now been significantly simplified. Paralleling Lemma 1,
it is easily shown that

Recall that the truncation range of the sample eigenvalues is therefore given by (1/v, 1/u).
Now for given u, let α ∈ {1, …, p} be the largest index such that lα > 1/u and β ∈ {1,…, p}
be the smallest index such that lβ < 1/v, i.e., the set of indexes where truncation at either end

Won et al. Page 7

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the spectrum first starts to become a binding constraint. With this convention it is easily
shown that J(u, v) can now be expressed in simpler form:

(14)

(15)

where

(16)

Comparing (16) to (10), we observe that (Ω*)−1, the covariance estimate whose inverse
achieves the minimum in (13), is obtained by truncating the eigenvalues of S greater than 1/
u to 1/u, and less than 1/v to 1/v.

Furthermore, note that the function J(u, v) has the following properties:

1. J does not increase as u decreases and v increases simultaneously. This follows
from noting that simultaneously decreasing u and increasing v expands the domain
of the minimization in (13).

2. J(u, v) = J(1/l1, l/lp) for u ≤ 1/l1 and v ≥ 1/lp. Hence J(u, v) is constant on this part
of the domain. For these values of u and v, (Ω★)−1 = S.

3. J(u, v) is almost everywhere differentiable in the interior of the domain {(u, v) : 0 <
u ≤ v}, except for on the lines u = 1/l1,…, 1/lp and v = 1/l1,…, 1/lp. This follows
from noting the the indexes α and β changes their values only on these lines. Hence
the contribution to the three summands in (14) changes at these values.

We can now see the following obvious relation between the function J(u, v) and the original
problem (8): the solution to (8) as given by u★ is the minimizer of J(u, v) on the line v =
κmaxu, i.e., the original univariate optimization problem (9) is equivalent to minimizing J(u,
κmaxu). We denote this minimizer by u★(κmax) and investigate how u★(κmax) behaves as
κmax varies. The following proposition proves that u★(κmax) is monotone in κmax. This
result sheds light on the regularization path, i.e., the solution path of u★ as κmax varies.

Proposition 1—u★(κmax) is nonincreasing in κmax and v★(κmax), ≜ κmaxu★(κmax) is
nondecreasing, both almost surely.

Proof: The proof is given in the Appendix.

Remark: The above proposition has a very natural and intuitive interpretation: when the
constraint on the condition number is relaxed to allow higher value of κmax, the gap between
u★ and v★ widens so that the ratio of v★ to u★ remains at κmax. This implies that as κmax is
increased, the lower truncation value u★ decreases and the higher truncation value v★

increases. Proposition 1 can be equivalently interpreted by noting that the optimal truncation
range τ★(κmax), κmaxτ★(κmax) of the sample eigenvalues is nested.
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In light of the solution to the condition number-regularized covariance estimation problems
in (7), Proposition 1 also implies that once an eigenvalue li is truncated for κmax = ν0, then it
remains truncated for all κmax < ν0. Hence the regularized eigenvalue estimates are not only
continuous, but they are also monotonic in the sense that they approach either end of the
truncation spectrum as the regularization parameter κmax is decreased to 1. This
monotonicity of the condition number-regularized estimates gives a desirable property that
is not always enjoyed by other regularized estimators, such as the lasso for instance
(Personal communications: Jerome Friedman, Department of Statistics, Stanford
University).

With the above theoretical knowledge on the regularization path of the sample eigenvalues,
we now provide an illustration of the regularization path; see Figure 2. More specifically,
consider the plot of the path of the optimal point (u★(κmax), v★(κmax)) on the u–v plane
from (u★(1), u★(1)) to (1/l1, 1/lp) when varying κmax from 1 to cond(S). The left panel
shows the path of (u★(κmax), v★(κmax)) on the u–v plane for the case where the sample
eigenvalues are (21, 7, 5.25, 3.5, 3). Here a point on the path represents the minimizer of J(u,
v) on a line v = κmaxu (hollow circle). The path starts from a point on the solid line v = u
(κmax = 1, square) and ends at (1/l1, 1/lp), where the dashed line v = cond(S) · u passes (κmax
= cond(S), solid circle). Note that the starting point (κmax = 1) corresponds to Σ̂cond = γI for
some data-dependent γ > 0 and the end point (κmax = cond(S)) to Σ̂cond = S. When κmax >
cond(S), multiple values of u★ are achieved in the shaded region above the dashed line,
yielding nevertheless the same estimator S. The right panel of Figure 2 shows how the
eigenvalues of the estimated covariance vary as a function of κmax. Here we see that as the
constraint is made stricter the eigenvalue estimates decrease monotonically. Furthermore,
the truncation range of the eigenvalues simultaneously decreases and remains nested.

3 Selection of regularization parameter κmax

Sections 2.1 and 2.2 have already discussed how the optimal truncation range (τ★, κmaxτ★)
is determined for a given regularization parameter κmax, and how it varies with the value of
κmax. This section proposes a data-driven (or adaptive) criterion for selecting the optimal
κmax and undertakes an analysis of this approach.

3.1 Predictive risk selection procedure
A natural approach is to select κmax that minimizes the predictive risk, or the expected
negative predictive likelihood as given by

(17)

where Σ̂ν is the estimated condition number-regularized covariance matrix from independent
samples x1, ···, xn, with the value of the regularization parameter κmax set to ν, and X̃ ∈ ℝp

is a random vector, independent of the given samples, from the same distribution. We
approximate the predictive risk using K-fold cross validation. The K-fold cross validation

approach divides the data matrix  into K groups so that 
with nk observations in the k-th group, k = 1, …, K. For the k-th iteration, each observation
in the k-th group Xk plays the role of X̃ in (17), and the remaining K − 1 groups are used

together to estimate the covariance matrix, denoted by . The approximation of the
predictive risk using the k-th group reduces to the predictive log-likelihood
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The estimate of the predictive risk is then defined as

(18)

The optimal value for the regularization parameter κmax is selected as ν that minimizes (18),
i.e.,

Note that the outer infimum is taken since  is constant for ν ≥ cond(S[−k]),
where S[−k] is the k-th fold sample covariance matrix based on the remaining K − 1 groups.

3.2 Properties of the optimal regularization parameter
We proceed to investigate the behavior of the selected regularization parameter κ̂max, both
theoretically and in simulations. We first note that κ̂max is a consistent estimator for the true
condition number κ. This fact is expressed below as one of the several properties of κ̂max:

(P1) For a fixed p, as n increases, κ̂max approaches κ in probability, where κ is the
condition number of the true covariance matrix Σ.

This statement is stated formally below:

Theorem 2—For a given p,

Proof: The proof is given in Supplemental Section A.

We further investigate the behavior of κmax in simulations. To this end, consider iid samples
from a zero-mean p-variate Gaussian distribution with the following covariance matrices:

i. Identity matrix in ℝp.

ii. diag(1, r, r2, …, rp), with condition number 1/rp = 5.

iii. diag(1, r, r2, …, rp), with condition number 1/rp = 400.

iv. Toeplitz matrix whose (i, j)th element is 0.3|i−j| for i, j = 1, …, p.

We consider different combinations of sample sizes and dimensions of the problem as given
by n = 20, 80, 320 and p = 5, 20, 80. For each of these cases 100 replicates are generated and
κ̂max computed with 5-fold cross validation. The behavior of κ̂max is plotted in Figure 3 and
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leads to insightful observations. A summary of the properties of the κ̂max is given in (P2)–
(P4) below:

(P2) If the condition number of the true covariance matrix remains finite as p
increases, then for a fixed n, κ̂max decreases.

(P3) If the condition number of the true covariance matrix remains finite as p
increases, then for a fixed n, κ̂max converges to 1.

(P4) The variance of κ̂max decreases as either n or p increases.

These properties are analogous to those of the optimal regularization parameter δ̂ for the
linear shrinkage estimator (5), found using a similar predictive risk criterion (Warton, 2008).

4 Bayesian interpretation
In the same spirit as the Bayesian posterior mode interpretation of the LASSO (Tibshirani,
1996), we can draw parallels for the condition number regularized covariance estimator. The
condition number constraint given by λ1(Σ)/λp(Σ) ≤ κmax is similar to adding a penalty term
gmax(λ1(Σ)/λp(Σ)) to the likelihood equation for the eigenvalues:

The above expression allows us to qualitatively interpret the condition number-regularized
estimator as the Bayes posterior mode under the following prior

(19)

for the eigenvalues, and an independent Haar measure on the Stiefel manifold, as the prior
for the eigenvectors. The aforementioned prior on the eigenvalues has useful interesting
properties which help to explain the type of eigenvalue truncation described in previous
sections. We note that the prior is improper but the posterior is always proper.

Proposition 2
The prior on the eigenvalues in (19) is improper, whereas the posterior yields a proper
distribution. More formally,

and

where λ = (λ1,…, λp) and C = {λ : λ1 ≥ ··· ≥ λp > 0}.

Proof—The proof is given in Supplemental Section A.
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The prior above puts the greatest mass around the region {λ ∈ ℝp : λ1 = ··· = λp} which
consequently encourages “shrinking” or “pulling” the eigenvalues closer together. Note that
the support of both the prior and the posterior is the entire space of ordered eigenvalues.
Hence the prior simply by itself does not immediately yield a hard constraint on the
condition number. Evaluating the posterior mode yields an estimator that satisfies the
condition number constraint.

A clear picture of the regularization achieved by the prior above and its potential for
“eigenvalue shrinkage” emerges when compared to the other types of priors suggested in the
literature and the corresponding Bayes estimators. The standard MLE implies of course a
completely flat prior on the constrained space C. A commonly used inverse Wishart
conjugate prior Σ−1 ~ Wishart(m, cI) yields a posterior mode which is a linear shrinkage
estimator (5) with δ = m/(n + m). Note however that the coefficients of the combination do
not depend of the data X, and are a function only of the sample size n and the degrees of
freedom or shape parameter from the prior, m. A useful prior for covariance matrices that
yields a data-dependent posterior mode is the reference prior proposed by Yang and Berger
(1994). For this prior, the eigenvalues are inversely proportional to the determinant of the

the covariance matrix, as given by , and also encourages shrinkage of the
eigenvalues. The posterior mode using this reference prior can be formulated similarly to
that of condition number regularization:

An examination of the penalty implied by the reference prior suggests that there is no direct
penalty on the condition number. In Supplemental Section B we illustrate the density of the
priors discussed above in the two-dimensional case. In particular, the density of the
condition number regularization prior places more emphasis on the line λ1 = λ2 thus
“squeezing” the eigenvalues together. This is in direct contrast with the inverse Wishart or
reference priors where this shrinkage effect is not as pronounced.

5 Decision-theoretic risk properties
5.1 Asymptotic properties

We now show that the condition number-regularized estimator Σ̂cond has asymptotically
lower risk than the sample covariance matrix S with respect to entropy loss. Recall that the
entropy loss, also known as Stein’s loss, is defined as follows:

(20)

Let λ1, …, λp, with λ1 ≥ ··· ≥ λp, denote the eigenvalues of the true covariance matrix Σ and

Λ = diag(λ1, …, λp). Define λ = (λ1, …, λp), , and κ = λ1/λp.

First consider the trivial case when p > n. In this case, the sample covariance matrix S is
singular regardless of the singularity of Σ, and (S, Σ) = ∞, whereas the loss and therefore
the risk of Σ̂cond are always finite. Thus, Σ̂cond has smaller entropy risk than S.
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For p ≤ n, if the true covariance matrix has a finite condition number, it can be shown that
for a properly chosen κmax, the condition number-regularized estimator asymptotically
dominates the sample covariance matrix. This assertion is formalized below.

Theorem 3—Consider a class of covariance matrices (κ, ω), whose condition numbers
are bounded above by κ and with minimum eigenvalue bounded below by ω > 0, i.e.,

Then, the following results hold.

i. Consider the quantity Σ̃(κmax, ω) = Qdiag(λ̃1, …, λ̃p)QT, where

and the sample covariance matrix given as S = Qdiag(l1, …, lp)QT, Q orthogonal, l1
≥ … ≥ lp. If the true covariance matrix Σ ∈ (κmax, ω), then ∀ n, Σ̂(κmax, ω) has a
smaller entropy risk than S.

ii. Consider a true covariance matrix Σ whose condition number is bounded above by

κ, i.e., Σ ∈ ∪ω>0 (κ, ω). If , then as p/n → γ ∈ (0, 1),

where τ★ = τ★(κmax) is given in (12).

Proof: The proof is given in Supplemental Section A.

Combining the two results above, we conclude that the estimator Σ̂cond = Σ̂(κmax, τ★(κmax))
asymptotically has a lower entropy risk than the sample covariance matrix.

5.2 Finite sample performance
This section undertakes a simulation study in order to compare the finite-sample risks of the
condition number-regularized estimator Σ̂cond with those of the sample covariance matrix
(S) and the linear shrinkage estimator (Σ̂LS) in the “large p, small n” setting. The
regularization parameter δ for Σ̂LS is chosen as prescribed in Warton (2008). The optimal
Σ̂cond is calculated using the adaptive parameter selection method outlined in Section 3.
Since Σ̂cond and Σ̂LS both select the regularization parameters similarly, i.e., by minimizing
the empirical predictive risk (18), a meaningful comparison between two estimators can be
made. We consider two loss functions traditionally used in covariance estimation risk
comparisons: (a) entropy loss as given in (20) and (b) quadratic loss

.

Condition number regularization applies shrinkage to both ends of the sample eigenvalue
spectrum and does not affect the middle part, whereas linear shrinkage does this to the entire
spectrum uniformly. Therefore, it is expected that Σ̂cond works well when a small proportion
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of eigenvalues are found at the extremes. Such situations rise very naturally when only a few
eigenvalues explain most of the variation in data. To understand the performance of the
estimators in this context the following scenarios were investigated. We consider diagonal
matrices of dimensions p = 120, 250, 500 as true covariance matrices. The eigenvalues
(diagonal elements) are dichotomous, where the “high” values are (1 − ρ)+ ρp and the “low”
values are 1 − ρ. For each p, we vary the composition of the diagonal elements such that the
high values take only one (singleton), 10%, 20%, 30%, and 40% of the total number of p
eigenvalues. The sample size n is chosen so that γ = p/n is approximately 1.25, 2, or 4. Note
that for a given p, the condition number of the true covariance matrices is held fixed at 1 +
pρ/(1 − ρ) regardless of the composition of eigenvalues. For each of the simulation
scenarios, we generate 1000 data sets and compute 1000 estimates of the true covariance
matrix. The risks are calculated by averaging the losses over these 1000 estimates.

Figure 4 presents the results for ρ = 0.1, and represents a large condition number. It is
observed that in general Σ̂cond has less risk than Σ̂LS, which in turn has less risk than the
sample covariance matrix (entropy loss is not defined for the sample covariance matrix).
This phenomenon is most clear when the eigenvalue spectrum has a singleton in the
extreme. In this case, Σ̂cond gives a risk reduction between 27 % and 67 % for entropy loss,
and between 67 % and 91 % for quadratic loss. The risk reduction tends to be more
pronounced in high dimensional scenarios, i.e., for p large and n small. The performance of
Σ̂cond over Σ̂LS is maintained until the “high” eigenvalues compose up to 30 % of the
eigenvalue spectrum. Comparing the two loss functions, risk reduction of Σ̂cond is more
distinct in quadratic loss. We note that for quadratic loss with large p and large proportion of
“high” eigenvalues, there are cases that the sample covariance matrix can perform well.

As an example of a moderate condition number, results for the ρ = 0.5 case is given in
Supplemental Section C. General trends are the same as with the ρ = 0.1 case.

In summary, the risk comparison study provides a numerical evidence that condition number
regularization has merit when the true covariance matrix has a bimodal eigenvalue
distribution and/or the true condition number is large.

6 Application to portfolio selection
This section illustrates the merits of the condition number regularization in the context of
financial portfolio optimization, where a well-conditioned covariance estimator is necessary.
A portfolio refers to a collection of risky assets held by an institution or an individual. Over
the holding period, the return on the portfolio is the weighted average of the returns on the
individual assets that constitutes the portfolio, in which the weight associated with each
asset corresponds to its proportion in monetary terms. The objective of portfolio
optimization is to determine the weights that maximize the return on the portfolio. Since the
asset returns are stochastic, a portfolio always carries a risk of loss. Hence the objective is to
maximize the overall return subject to a given level of risk, or equivalently to minimize risk
for a given level of return. Mean-variance portfolio (MVP) theory (Markowitz, 1952) uses
the standard deviation of portfolio returns to quantify the risk. Estimation of the covariance
matrix of asset returns thus becomes critical in the MVP setting. An important and difficult
component of MVP theory is to estimate the expected return on the portfolio (Luenberger,
1998; Merton, 1980). Since the focus of this paper lies in estimating covariance matrices and
not expected returns, we shall focus on determining the minimum variance portfolio which
only requires an estimate of the covariance matrix; see, e.g., Chan et al. (1999). For this we
shall use the condition number regularization, linear shrinkage and the sample covariance
matrix, in constructing a minimum variance portfolio. We compare their respective
performance over a period of more than 14 years.
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6.1 Minimum variance portfolio rebalancing
We begin with a formal description of the minimum variance portfolio selection problem.
The universe of assets consists of p risky assets, denoted 1,…, p. We use ri to denote the
return of asset i over one period; that is, its change in price over one time period divided by
its price at the beginning of the period. Let Σ denote the covariance matrix of r = (r1,…, rp).
We employ wi to denote the weight of asset i in the portfolio held throughout the period. A
long position in asset i corresponds to wi > 0, and a short position corresponds to wi < 0. The
portfolio is therefore unambiguously represented by the vector of weights w = (w1,…, wp).
Without loss of generality, the budget constraint can be written as 1Tw = 1, where 1 is the
vector of all ones. The risk of a portfolio is measured by the standard deviation (wTΣw)1/2 of
its return.

Now the minimum variance portfolio selection problem can be formulated as

(21)

This is a simple quadratic program that has an analytic solution w★ = (1TΣ−11)−1Σ−11. In
practice, the parameter Σ has to be estimated.

The standard portfolio selection problem described above assumes that the returns are
stationary, which is of course not realistic. As a way of dealing with the nonstationarity of
returns, we employ a minimum variance portfolio rebalancing (MVR) strategy as follows.

Let , t = 1, …, Ntot, denote the realized returns of assets at time t (the
time unit under consideration can be a day, a week, or a month). The periodic minimum
variance rebalancing strategy is implemented by updating the portfolio weights every L time
units, i.e., the entire trading horizon is subdivided into blocks each consisting of L time
units. At the start of each block, we determine the minimum variance portfolio weights
based on the past Nestim observations of returns. We shall refer to Nestim as the estimation
horizon size. The portfolio weights are then held constant for L time units during these
“holding” periods, i.e., during each of these blocks, and subsequently updated at the
beginning of the following one. For simplicity, we shall assume the entire trading horizon
consists of Ntot = Nestim + KL time units, for some positive integer K, i.e., there will be K
updates. (The last rebalancing is done at the end of the entire period, and so the out-of-
sample performance of the rebalanced portfolio for this holding period is not taken into
account.) We therefore have a series of portfolios w(j) = (1T(Σ̂(j))−11)−1(Σ̂(j))−11 over the
holding periods of [Nestim +1+(j − 1)L, Nestim + jL], j = 1,…, K. Here Σ̂(j) is the covariance
matrix of the asset returns estimated from those over the jth holding period.

6.2 Empirical out-of-sample performance
In this empirical study, we use the 30 stocks that constituted the Dow Jones Industrial
Average as of July 2008 (Supplemental Section D.1 lists these 30 stocks). We used the
closing prices adjusted daily for all applicable splits and dividend distributions downloaded
from Yahoo! Finance (http://finance.yahoo.com/). The whole period considered in our
numerical study is from the trading date of December 14, 1992 to June 6, 2008 (this period
consists of 4100 trading days). We consider weekly returns: the time unit is 5 consecutive
trading days. We take
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To estimate the covariance matrices, we use the last Nestim weekly returns of the constituents
of the Dow Jones Industrial Average.3 The entire trading horizon corresponds to K = 48
holding periods, which span the dates from February 18, 1994 to June 6, 2008. In what
follows, we compare the MVR strategy where the covariance matrices are estimated using
the condition number regularization with those that use either the sample covariance matrix
or linear shrinkage. We employ two linear shrinkage schemes: that of Warton (2008) of
Section 5.2 and that of Ledoit and Wolf (2004). The latter is widely accepted as a well-
conditioned estimator in the financial literature.

Performance metrics—We use the following quantities in assessing the performance of
the MVR strategies. For precise formulae of these metrics, refer to Supplemental Section D.
3.

• Realized return. The realized return of the portfolio over the trading period.

• Realized risk. The realized risk (return standard deviation) of the portfolio over the
trading period.

• Realized Sharpe ratio. The realized excess return, with respect to the risk-free rate,
per unit risk of the portfolio.

• Turnover. Amount of new portfolio assets purchased or sold over the trading
period.

• Normalized wealth growth. Accumulated wealth yielded by the portfolio over the
trading period when the initial budget is normalized to one, taking the transaction
cost into account.

• Size of the short side. The proportion of the short side (negative) weights to the
sum of the absolute weights of the portfolio.

We assume that the transaction costs are the same for the 30 stocks and set them to 30 basis
points. The risk-free rate is set at 5% per annum.

Comparison results—Figure 5 shows the normalized wealth growth over the trading
horizon for four different values of Nestim. The sample covariance matrix failed in solving
(21) for Nestim = 15 because of its singularity and hence is omitted in this figure. The MVR
strategy using the condition number-regularized covariance matrix delivers higher growth as
compared to using the sample covariance matrix, linear shrinkage or index tracking in this
performance metric. The higher growth is realized consistently across the 14 year trading
period and is regardless of the estimation horizon. A trading strategy based on the condition
number-regularized covariance matrix consistently performs better than the S&P 500 index
and can lead to profits as much as 175% more than its closest competitor.

A useful result appears after further analysis. There is no significant difference between the
condition number regularization approach and the two linear shrinkage schemes in terms of
the realized return, risk, and Sharpe ratio. Supplemental Section D.4 summarizes these
metrics for each estimator respectively averaged over the trading period. For all values of
Nestim, the average differences of the metrics between the two regularization schemes are
within two standard errors of those. Hence the condition number regularized estimator
delivers better normalized wealth growth than the other estimators but without
compromising on other measures such as volatility.

3Supplemental Section D.2 shows the periods determined by the choice of the parameters.
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The turnover of the portfolio seems to be one of the major driving factors of the difference
in wealth growth. In particular, the MVR strategy using the condition number-regularized
covariance matrix gives far lower turnover and thus more stable weights than when using
the linear shrinkage estimator or the sample covariance matrix. (See Supplemental Section
D.5 for plots.) A lower turnover also implies less transaction costs, thereby also partially
contributing to the higher wealth growth. Note that there is no explicit limit on turnover. The
stability of the MVR portfolio using the condition number regularization appears to be
related to its small size of the short side (reported in Supplemental Section D.6). Because
stock borrowing is expensive, the condition number regularization based strategy can be
advantageous in practice.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank the editor and the associate editor for useful comments that improved the presentation of the paper. J.
Won was partially supported by the US National Institutes of Health (NIH) (MERIT Award R37EB02784) and by
the US National Science Foundation (NSF) grant CCR 0309701. J. Lim’s research was supported by the Basic
Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (grant number: 2010-0011448). B. Rajaratnam was supported in part by NSF
under grant nos. DMS-09-06392, DMS-CMG 1025465, AGS-1003823, DMS-1106642 and grants NSA
H98230-11-1-0194, DARPA-YFA N66001-11-1-4131, and SUWIEVP10-SUFSC10-SMSCVISG0906.

References
Banerjee O, El Ghaoui L, D’Aspremont A. Model Selection Through Sparse Maximum Likelihood

Estimation for Multivariate Gaussian or Binary Data. Journal of Machine Learning Research. 2008;
9:485–516.

Boyd, S.; Vandenberghe, L. Convex Optimization. Cambridge University Press; 2004.

Chan N, Karceski N, Lakonishok J. On portfolio optimization: Forecasting covariances and choosing
the risk model. Review of Financial Studies. 1999; 12(5):937–974.

Daniels M, Kass R. Shrinkage estimators for covariance matrices. Biometrics. 2001; 57:1173–1184.
[PubMed: 11764258]

Dempster AP. Covariance Selection. Biometrics. 1972; 28(1):157–175.

Dey DK, Srinivasan C. Estimation of a covariance matrix under Stein’s loss. The Annals of Statistics.
1985; 13(4):1581–1591.

Farrell, RH. Multivariate calculation. Springer-Verlag; New York: 1985.

Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics. 2008; 9(3):432–441. [PubMed: 18079126]

Haff LR. The variational form of certain Bayes estimators. The Annals of Statistics. 1991; 19(3):1163–
1190.

Hero A, Rajaratnam B. Large-scale correlation screening. Journal of the American Statistical
Association. 2011; 106(496):1540–1552.

Hero A, Rajaratnam B. Hub discovery in partial correlation graphs. Information Theory, IEEE
Transactions on. 2012; 58(9):6064–6078.

James, W.; Stein, C. Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability; Stanford, California, United States. 1961. p. 361-379.

Khare K, Rajaratnam B. Wishart distributions for decomposable covariance graph models. The Annals
of Statistics. 2011; 39(1):514–555.

Ledoit O, Wolf M. Improved estimation of the covariance matrix of stock returns with an application
to portfolio selection. Journal of Empirical Finance. 2003 Dec; 10(5):603–621.

Won et al. Page 17

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ledoit O, Wolf M. A well-conditioned estimator for large-dimensional covariance matrices. Journal of
Multivariate Analysis. 2004; 88:365–411.

Ledoit O, Wolf M. Nonlinear shrinkage estimation of large-dimensional covariance matrices. The
Annals of Statistics. 2012 Jul; 40(2):1024–1060.

Letac G, Massam H. Wishart distributions for decomposable graphs. The Annals of Statistics. 2007;
35(3):1278–1323.

Lin S, Perlman M. A Monte-Carlo comparison of four estimators of a covariance matrix. Multivariate
Analysis. 1985; 6:411–429.

Luenberger, DG. Investment science. Oxford University Press; New York: 1998.

Markowitz H. Portfolio selection. Journal of Finance. 1952; 7(1):77–91.

Merton R. On estimating expected returns on the market: An exploratory investigation. Journal of
Financial Economics. 1980; 8:323–361.

Michaud RO. The Markowitz Optimization Enigma: Is Optimized Optimal. Financial Analysts
Journal. 1989; 45(1):31–42.

Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models.
Journal of the American Statistical Association. 2009; 104(486):735–746. [PubMed: 19881892]

Pourahmadi M, Daniels MJ, Park T. Simultaneous modelling of the cholesky decomposition of several
covariance matrices. Journal of Multivariate Analysis. 2007 Mar; 98(3):568–587.

Rajaratnam B, Massam H, Carvalho C. Flexible covariance estimation in graphical Gaussian models.
The Annals of Statistics. 2008; 36(6):2818–2849.

Sheena Y, Gupta A. Estimation of the multivariate normal covariance matrix under some restrictions.
Statistics & Decisions. 2003; 21:327–342.

Stein, C. Technical Report 6. Dept. of Statistics, Stanford University; 1956. Some problems in
multivariate analysis Part I.

Stein, C. Estimation of a covariance matrix. Reitz Lecture, IMS-ASA Annual Meeting; 1975.

Stein C. Lectures on the theory of estimation of many parameters (English translation). Journal of
Mathematical Sciences. 1986; 34(1):1373–1403.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B (Methodological). 1996; 58(1):267–288.

Warton DI. Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance
Matrices. Journal of the American Statistical Association. 2008; 103(481):340–349.

Won, JH.; Kim, S-J. Maximum Likelihood Covariance Estimation with a Condition Number
Constraint. Proceedings of the Fortieth Asilomar Conference on Signals, Systems and Computers;
2006. p. 1445-1449.

Yang R, Berger JO. Estimation of a covariance matrix using the reference prior. The Annals of
Statistics. 1994; 22(3):1195–1211.

Appendix

Proof of Lemma 1
Recall the spectral decomposition of the sample covariance matrix S = QLQT, with L =
diag(l1,…, lp) and l1 ≥ … ≥ lp ≥ 0. From the objective function in (8), suppose the variable Ω
has the spectral decomposition RMRT, with R orthogonal and M = diag(μ1,…, μp), μ1 ≤ …
≤ μp. Then the objective function in (8) can be written as

with equality in the last line when R = Q (Farrell, 1985, Ch. 14). Hence (8) amounts to
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(22)

with the optimization variables μ1, …, μp and u.

For the moment we shall ignore the order constraints among the eigenvalues. Then problem
(22) becomes separable in μ1,…, μp. Call this related problem (22*). For a fixed u, the
minimizer of each summand of the objective function in (22) without the order constraints is
given as

(23)

Note that (23) however satisfies the order constraints. In other words, 
for all u. Therefore (22*) is equivalent to (22). Plugging (23) in (22) removes the constraints
and the objective function reduces to a univariate one:

(24)

where

The function (24) is convex, since each  is convex in u.

Proof of Theorem 1

The function  is convex and is constant on the interval [1/(κmaxli), 1/li]. Thus, the

function  has a region on which it is a constant if and only if

or equivalently, κmax > cond(S). Therefore, provided that κmax ≤ cond(S), the convex
function Jκmax (u) does not have a region on which it is constant. Since Jκmax (u) is strictly
decreasing for 0 < u < 1/(κmaxl1) and strictly increasing for u > 1/lp, it has a unique
minimizer u★. If κmax > cond(S), the maximizer u★ may not be unique because Jκmax (u)
has a plateau. However, since the condition number constraint becomes inactive, Σ̂cond = S
for all the maximizers.

Now assume that κmax ≤ cond(S). For α ∈ {1,…, p − 1} and β ∈ {2, …, p}, define the
following two quantities.
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By construction, uα,β coincides with u★ if and only if

(25)

Consider a set of rectangles {Rα,β} in the uv-plane such that

Then condition (25) is equivalent to

(26)

in the uv-plane. Since {Rα,β} partitions {(u, v) : 1/l1 < u ≤ 1/lp and 1/l1 ≤ v < 1/lp} and (uα,β,
vα,β) is on the line v = κmaxu, an obvious algorithm to find the pair (α, β) that satisfies the
condition (26) is to keep track of the rectangles Rα,β that intersect this line. To understand
that algorithm takes O(p) operations, start from the origin of the uv-plane, increase u and v
along the line v = κmaxu. Since κmax > 1, if the line intersects Rα,β, then the next
intersection occurs in one of the three rectangles: Rα+1,β, Rα,β+1, and Rα+1,β+1. Therefore
after finding the first intersection (which is on the line u = 1/l1), the search requires at most
2p tests to satisfy condition (26). Finding the first intersection takes at most p tests.

Proof of Proposition 1
Recall that, for κmax = ν0,

and

where α = α(ν0) ∈ {1,…, p} is the largest index such that 1/lα < u★(ν0) and β = β(ν0) ∈ {1,
…, p} is the smallest index such that 1/lβ > ν0u★(ν0). Then

and

Won et al. Page 20

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The lower and upper bounds u★(ν0) and v★(ν0) of the reciprocal sample eigenvalues can be
divided into four cases:

1. 1/lα < u★(ν0) < 1/lα+1 and 1/lβ−1 < v★(ν0) < 1/lβ.

We can find ν > ν0 such that

and

Therefore,

and

2. u★(ν0) = 1/lα+1 and 1/lβ−1 < v★(ν0) < 1/lβ.

Suppose u★(ν) > u★(ν0). Then we can find ν > ν0 such that α(ν) = α(ν0) + 1 = α
+ 1 and β(ν) = β(ν0) = β. Then,

Therefore,

or

which is a contradiction. Therefore, u★(ν) ≤ u★(ν0).
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Now, we can find ν > ν0 such that α(ν) = α(ν0) = α and β(ν) = β(ν0) = β. This
reduces to case 1.

3. 1/lα < u★(ν0) < 1/lα+1 and v★(ν0) = 1/lβ−1.

Suppose v★(ν) < v★(ν0). Then we can find ν > ν0 such that α(ν) = α(ν0) = α and
β(ν) = β(ν0) − 1 = β − 1. Then,

Therefore,

or

which is a contradiction. Therefore, v★(ν) ≥ v★(ν0).

Now, we can find ν > ν0 such that α(ν) = α(ν0) = α and β(ν) = β(ν0) = β. This
reduces to case 1.

4. u★(ν0) = 1/lα+1 and v★(ν0) = 1/lβ−1. 1/lα+1 = u★(ν0) = v★(ν0)/ν0 = 1/(ν0lβ−1).
This is a measure zero event and does not affect the conclusion.
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Figure 1.
Comparison of eigenvalue shrinkage of the linear shrinkage estimator (left) and the
condition number-constrained estimator (right).
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Figure 2.
Regularization path of the condition number constrained estimator. (a) Path of (u★(κmax),
v★(κmax)) on the u-v plane, for sample eigenvalues (21, 7, 5.25, 3.5, 3) (thick curve). (b)
Regularization path of the same sample eigenvalues as a function of κmax. Note that the
estimates decreases monotonically as the condition number constraint κmax decreases to 1.
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Figure 3.
Box plots summarizing the distribution of κ̂max for dimensions p = 5, 20, 80 and for sample
sizes n = 20, 80, 320 for the following covariance matrices (a) identity (b) diagonal
exponentially decreasing, condition number 5, (c) diagonal exponentially decreasing,
condition number 400, (d) Toeplitz matrix whose (i, j)th element is 0.3|i−j| for i, j = 1, 2,…,
p.
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Figure 4.
Average risks (with error bars) over 1000 runs with respect to two loss functions when ρ=
0.1. sample=sample covariance matrix, Warton=linear shrinkage (Warton, 2008),
CondReg=condition number regularization. Risks are normalized by the dimension (p).
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Figure 5.
Normalized wealth growth results of the minimum variance rebalancing strategy for various
estimation horizon sizes over the trading period from February 18, 1994 through June 6,
2008. sample=sample covariance matrix, LW=linear shrinkage (Ledoit and Wolf, 2004),
Warton=linear shrinkage (Warton, 2008), condreg=condition number regularization. For
comparison, the S&P 500 index for the same period (i.e., index tracking), with the initial
price normalized to 1, is also plotted.
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