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Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of
plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform
model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials.
The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative condi-
tioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenom-
enon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in
performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using
fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors.

Introduction

Synaptic plasticity underlying different kinds of behavioral plas-
ticity has been identified in many brain structures in both verte-
brates (Malenka and Bear, 2004) and invertebrates (Burrell and
Li, 2008; Szyszka et al., 2008). At its most basic, synaptic plasticity
involves experience-dependent changes in the strength of synap-
tic connectivity between neurons (Hebb, 1949). Two major
classes of learning include nonassociative (Lubow, 1973; Van
Slyke Peeke and Petrinovich, 1984) and associative learning
(Rescorla, 1988), which are referred to in the machine learning
literature as “unsupervised” (Hebbian) and “supervised”
(Bishop, 2006). However, despite their occurrence in the same
neuropils (Malenka and Bear, 2004), and even potentially oper-
ating at the same synapses (Cassenaer and Laurent, 2007, 2012),
these two forms of learning are commonly considered to operate
independently and to be governed by different learning rules.
How these two classes of learning could interact within the same
neuronal circuitry, and in such a way that they can account for the
trajectory of acquisition of conditioned responding in behavioral
experiments, remains largely unexplored.

We feel that this interaction is essential for explaining the
trajectory of learning behavior over a series of experiences. In
particular, animals frequently show an abrupt transition from
little or no response to a stable, high level of responding over the
course of only a few acquisition trials (Rock and Steinfeld, 1963;
Gallistel et al., 2004). Abrupt transitions contrast with the as-
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sumption in most models of conditioning of an incremental and
quasi-smooth increase in associative strength (Rescorla and
Wagner, 1972; Pearce and Hall, 1980).

Olfactory processing in the honeybee is an excellent model for
studying sensory processing and plasticity in this context. Both
unsupervised (Chandra et al., 2010; Locatelli et al., 2013) and
supervised (Faber et al., 1999; Miiller, 2002; Fernandez et al.,
2009) forms of plasticity have been identified in the honeybee
olfactory system in the brain. These different types of learning
have distinct parallels in olfactory processing in the mammalian
brain (Brennan and Keverne, 1997; Wilson and Linster, 2008;
Linster et al., 2009). While being commonly described as differ-
ent types of learning governed by different learning rules, these
two forms of learning may in fact represent subclasses of a generic
learning paradigm. For example, lack of explicit reward (unsu-
pervised learning) may be treated as a form of negative reinforced
learning when an expected positive reward is not delivered. This
is because, as we argue below, both unsupervised learning and
negative reinforced learning increase the strength of connections
to a neural center that prevents a response (in our example be-
low). Only unsupervised learning increases this strength weakly
relative to negative reinforcement. Both forms of learning can
therefore be described by similar learning rules, which may op-
erate on different timescales. In honeybees, for example, learning
about the lack of an association of an odor with nectar or pollen is
an important form of learning, and the presence of unrewarding
flowers has an important influence on choice behavior in freely
flying honeybees (Drezner-Levy and Shafir, 2007).

In this study we propose a set of generic learning rules that
together account for a variety of experimental data on reinforced
and unreinforced odor learning. These rules have been imple-
mented in a model of the honeybee olfactory system. Combina-
tion of these learning rules with mutual inhibition between the
output neurons was necessary to account for an abrupt shift in
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responsiveness as training progresses using smooth increments
in underlying synaptic weights, as required by a threshold-like
decision process (Gallistel et al., 2004). We show, using data from
an artificial odor sensor array based on metal oxide sensors
(Vergaraetal., 2012), that the model may not only reveal hypotheses
about neural function but also have applicability to engineered so-
lutions to odor detection (Muezzinoglu et al., 2008, 2009a).

Materials and Methods

Proboscis extension response conditioning

Methodologies for the data presented in Figures 1 and 2 have been re-
ported in detail by (Fernandez et al., 2009; Chandra et al., 2010). Probos-
cis extension response (PER) conditioning of individual honeybee
workers (all female) has been widely used as a procedure to assay learning
and memory (Bitterman etal., 1983; Smith et al., 2006). The advantage of
the PER procedure is that it allows for precise control over a variety of
parameters, e.g., interstimulus interval, intertrial interval, training and
testing intervals, and contingency between conditioning stimuli, that are
critical for associative conditioning (Bitterman et al., 1983; Rescorla,
1988). Briefly, honeybees are collected from the colony, brought into the
lab, and then restrained in small plastic or metal harnesses. The harnesses
allow bees to freely move their mouthparts ( proboscis) and antennae. An
odor “conditioned stimulus” is controlled by an automated delivery sys-
tem that can be programmed to deliver a constant stimulus for 4 s. A
conditioning trial consists of pairing an odor (conditioned stimulus)
with a small droplet (0.4 ul) of 0.5-1.5 M sucrose/water solution as the
unconditioned stimulus. The sucrose is first touched to the honeybee’s
antennae, which contain sucrose-sensitive taste receptors. This elicits
proboscis extension, upon which the sucrose is applied to the proboscis
and completely consumed. Many studies have evaluated the pairing con-
ditions necessary for producing robust associative conditioning
(Bitterman et al., 1983). Under optimal conditions, one to a few pairings
of odor with sucrose is usually sufficient to attain PER to odor, which is
the conditioned response. Many studies using appropriate control pro-
cedures have now shown that the odor response reflects associative pav-
lovian conditioning (Bitterman et al., 1983).

Latent inhibition. Latent inhibition (LI) is an important way that ani-
mals in general learn to not process information about stimuli that are
irrelevant (Lubow, 1973). We have recently worked out the conditions
needed to produce LTin honeybees (Chandra et al., 2010). Honeybees are
first “pre-exposed” to an odor without association with sucrose rein-
forcement. After a set number of pre-exposure trials the odor is associ-
ated with reinforcement in a way that produces robust associative
conditioning. As a result of pre-exposure animals typically learn about
the odor slowly relative to “novel” odors, which are conditioned identi-
cally either within animals on alternate trials (presented using the pseu-
dorandom sequence above) or in different animals.

Discrimination conditioning. Animals are exposed to two types of con-
ditioning trials (A and X) presented in a pseudorandomized sequence
(repetitions of AXXAXAAX until a desired number of A-type and X-type
trials is reached) (Smith et al., 1991; Fernandez et al., 2009). During one
type of trial an odor is associated with sucrose reinforcement. During the
other type of trial a different odor is presented without reinforcement.
The two types of trials are alternated as the A-type across animals, so that
half the animals start with a reinforced trial and the other half with an
unreinforced trial. Honeybees typically learn to respond with PER to the
reinforced odor and not to the unreinforced odor. The degree of diffi-
culty can be increased by lowering the concentration of odors or by using
binary odor mixtures that differ in the ratios of the two components (e.g.,
8:2vs 2:8).

Structural organization of the honeybee olfactory system

Olfactory processing in the honeybee brain (Mobbs, 1982; Rybak and
Menzel, 1993) is an excellent model for studying sensory processing and
plasticity in the context of decisions. Information distributed across
~50,000 olfactory sensory cell axons projects from the periphery to the
antennal lobe (AL) of the brain, where axons from cells that express the
same receptors converge onto the same area, called a “glomerulus.”
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There are ~160 glomeruli in the AL. Dendrites from five projection
neurons (PNs) innervate each glomerulus and send output via two tracts
to the mushroom bodies (MB) or the lateral protocerebrum (Kirschner
et al., 2006; Rossler and Zube, 2011). In addition, several different types
of excitatory and inhibitory local interneurons interconnect glomeruli to
transform the sensory input into a spatiotemporal output across the
~800 PN axons (Abel et al., 2001). These axons project onto ~170,000
intrinsic Kenyon cells (KCs) on the MB. Individual KCs require quasi-
simultaneous inputs from several PN axons to reach firing threshold, and
then they shut down quickly via recurrent, inhibitory feedback (Mazor
and Laurent, 2005). The projection of fewer axons onto far more numer-
ous dendrites of KCs, combined with intrinsic properties and fast shut-
down of the KCs, helps to transform the spatiotemporal input into a
distributed, spatial code for an odor identity (Huerta et al., 2004), and it
may increase the speed of odor classification (Strube-Bloss et al., 2012).
Finally, the 170,000 KC axons project to the a-lobes of the MB
(Strausfeld, 2002) where they synapse onto dendrites of ~400 extrinsic
neurons (ENs; Rybak and Menzel, 1993), which provide output to other
— possibly premotor - centers that control, among other things, condi-
tioned reflexes such as proboscis extension (described below). The AL,
MB, and ENs (Mauelshagen, 1993; Menzel and Manz, 2005; Okada et al.,
2007) have also been established as sites for biogenic amine-driven mod-
ulation related to both nonassociative and associative plasticity (Szyszka
etal., 2008; Fernandez et al., 2009; Locatelli et al., 2013). The latter type of
plasticity has been related specifically to a small group of modulatory
neurons, one of which (VUMmx1; Hammer, 1997) projects to both the
AL and MB.

Model
The model of the MB is described by (Garcia-Sanchez and Huerta,
2003; Huerta et al., 2004; Huerta and Nowotny, 2009) that uses a
simple McCulloch-Pitts approximation (McCulloch and Pitts, 1990)
of the KCs and the ENs of the MB. Given an odor-dependent activity
in the PNs of the AL by x, the activity in the KCs is given by y;
= 0 ]N;f cix; — b), where ©(.) is a nonlinear step function that
integrates the synaptic input from the AL given by the activity level x; N,
denotes the number of PN neurons in the AL; ¢ is the connectivity matrix
from the AL to the KCs; and b is the activation threshold. All these parame-
ters can be set up such that there is preservation of information from the AL
to the MB as described by (Garcia-Sanchez and Huerta, 2003). The next
processing layer is a population of EN's that readout the activity levels
of the KCs. As described in the text, the activity of ENs is given by
1

zi = @( fff Wil T N Ejiﬁ’””“‘ ﬁ’(f wf,y,-), in this case Ny is the
Extrinsic
number of KC neurons, and the second term in the equation reflects the
inhibition that arrives from the other ENs. This mechanism self-regulates to
provide 50% level of activation on the extrinsic cells to be able to have two
separate populations of ENs responding for the action of extension or retrac-
tion. Note that this model does not reflect the learning mechanisms yet. It
only provides the activity regulation through the processing layers. More-
over, since it is known that the default behavior of the honeybee is proboscis
retraction we use an initial probability of connection between the PN and the
KC neurons of 10% that leads to better overall performance in the classifi-
cation tasks in the simulation. The initial random connections of KCs to the
retraction group of ENs are set to 25% in contrast to the extensor group that
is set to a very low value such that the default behavior of the model in
response to odor stimulation is retraction, as it should be experimentally.
Proboscis extension and retraction is essential for feeding, and honey-
bees are fully capable of proboscis extension and retraction when they
first emerge as adults. Also, at this stage one of their first tasks for the
colony is to feed developing larvae (Ament et al., 2010), which involves
the need for extension and retraction. Therefore it is likely that the es-
sential extension and retraction networks are intact at emergence. There
is also considerable evidence that many brain structures, including the
MB intrinsic (Kenyon) cells, continue to change in the adult both as a
function of age and experience (Withers et al., 1995; Maleszka et al.,
2009). So it is possible that the extension and retraction networks are
influenced by both of these factors in the adult.
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Table 1. Description of precision, recall, and F measures applied to the latent
inhibition and discriminating conditioning task

PER

Extended Not extended

True positive (tp) False positive (fn)
Reinforced odor (A+) P1 PO

RT R

F10 FLE

False positive (tp) True negative (tn)
Unreinforced odor (X—) Pl PO

RO RO

FLO FO

Precision (P) = tp/(tp + fp); 1 increase; O no change; Recall (R) = tp/(tp + f); | decrease;F =2 X (P X
R)/(P + R). Level of inhibition of PER is relatively I0w|:|or relatively high l

The initial set of connections in the model was generated by a Ber-
noulli process such that with probability p a connections will be set to 1
and with probability (1 — p) will be 0. The learning rules that we apply
later allow increasing the connections by one unit with some given prob-
ability or reduce it by one unit. The connections cannot be negative in
this model.

Precision and recall as measures of performance

When determining how well a system has learned to discriminate be-
tween stimuli one may just measure how often the system gives the wrong
answer. In other words it would measure the error. This measure of how
well the system does might not be useful for situations in which we need
to characterize the performance of a system that by default provides a
negative answer ( proboscis retraction). The honeybee natural reaction to
novel odors is proboscis retraction. This implies that most of the re-
sponses of the honeybee will be negative with only a few positive ( pro-
boscis extension). If one measures error as defined above as a function of
the wrong answers, then the honeybee is always correct even without
learning because most of the time its response is negative. This, however,
would not adequately or accurately characterize learning performance.
This is the problem the field of information retrieval has encountered for
along time. The concepts of “precision” and “recall” avoid this ambigu-
ity. They are very useful in a large spectrum of applications in informa-
tion retrieval and machine learning (Hripcsak and Rothschild, 2005;
Olson and Delen, 2008).

Precision refers to the fraction of positive (extension) responses that
are correct. For example, when animals are trained to two stimuli with
one reinforced the other not (A+/X—), they should respond to A but not
to X. Precision is calculated as shown in Table 1, where tp is the number
of “true positive” responses to A and fp is the number of “false positive”
responses to X. Precision therefore ranges from alow of 0 (i.e., tp = 0) to
a maximum value of 1 (fp = 0).

Recall measures more directly how often an appropriate response oc-
curs to the rewarded alternative. Using the A+/X— example, recall is
calculated from the total number of tp and fn responses to A (Table 1).
Recall also ranges from alow of 0 (tp = 0) to a high of 1 (fn = 0) when an
animal always responds to A.

Precision and recall measure different things. A high precision value
approaching 1 means that when an animal responds the response is
correct. Few or no fp responses to X— occur. Clearly, an animal that
always responds to A but not to X has a high precision. However, an
animal may also have missed responding to A on several trials, which
would lead to a high fn. In the extreme, a single response to A over many
A trials and no response to X would also lead to high precision. So high
precision could also reflect low recall because precision is insensitive to
fn. Recall also has a shortcoming. An animal may have responded appro-
priately to A every time it occurred, but it may also have responded to X—
(fp > 0). Thus high recall could also mean low precision. Because of these
limitations, a more useful measure is F, which is the harmonic mean of
precision and recall (Table 1). F can separate conditions under which
both precision and recall are high from when one or both are low. The
harmonic measure can be generalized to give different weights to preci-
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sion and recall depending on the problem and the application. However,
that requires one to know the exposure of the honeybees in real environ-
ments to the odorants of interest. This requires a study of honeybee
behavior in natural environments.

Sensor array data

The ethanol and ethylene data were obtained using an artificial sensor
array of 16 metal oxide sensors in a controlled experimental manifold
using a fully computerized environment with minimal human interven-
tion with a constant total flow (Vergara et al., 2012). The full original
dataset is available at the University of California, Irvine (UCI) Machine
Learning Repository (Vergara et al., 2012).The odorants were delivered
to the sensors at different concentrations ranging from 10 particles per
million (ppm) to 600 ppm. The model presented here learns to discrim-
inate between the ethanol and ethylene at any of the available concentra-
tions. Features from the sensors are used as representative input to the
MBs as described by (Muezzinoglu et al., 2009a; Vergara et al., 2012).

Results

We first will analyze behavioral experiments to understand the
dynamics of unsupervised and supervised olfactory learning in
honeybees. To understand unsupervised learning we will revisit
experiments on LI (Chandra et al., 2010). To understand super-
vised learning we will analyze data in a discrimination task at
different levels of complexity (Fernandez et al., 2009). These two
experiments are the basis for the computational framework of
this study.

Activation and repression underlie a behavioral response

It is clear that the PER (see Materials and Methods) requires
activation of a neural network that controls a motor program
involved in extension of the proboscis. Therefore, it is reasonable
to assume in our model that such a network exists and is modified
by convergent, simultaneously active inputs from olfactory and
taste pathways. Modification of these networks via specific learn-
ing rules allows odor, which normally does not elicit PER, to
come to elicit PER.

A second assumption in our model is less intuitively obvious.
Specifically, it regards what happens when PER fails to occur. We
assume the existence of neural activity that inhibits PER in the
case of true and false negative responses (lack of PER to an unre-
warded and to a rewarded odor, respectively; Table 1). It also fails
to inhibit PER in the case of a false positive (PER to an unre-
warded odor). This assumption is supported in principle by two
reports. First, presentation of any odor during an ongoing PER
elicited by sucrose feeding can abruptly terminate PER (Dacher
and Smith, 2008). Second, association of sucrose stimulation of
the antennae, which unconditionally elicits PER in motivated
“hungry” honeybees, with electroshock in the context of a spe-
cific odor leads to withholding of the PER to both that odor and
to sucrose presented in the context of that odor (Smith et al.,
1991). Both procedures imply an active repression-like process
underlying either retraction of the proboscis after it is extended
(Dacher and Smith, 2008) or context-based withholding of PER
when it normally should occur (Smith et al., 1991). Finally, we
assume that plasticity can modify this inhibitory reflex under
conditions when the response is incorrect. A false positive re-
sponse (PER to an unrewarded odor) should strengthen this in-
hibition, whereas a false negative (lack of PER to a rewarded
odor) should weaken it.

We model these two networks as separate “extension” and
“retraction” centers. It may well be that these exist as distinct
neural networks in the honeybee brain. However, they do not
need to be distinct. They may be partially or completely overlap-



Bazhenov et al. ® Decision Making by Integration of Learning Rules

ping. The differences between extension and retraction in these
cases may involve differential activation of different components
of the network.

PER-based supervised and unsupervised learning in

the honeybee

To measure animal performance we will use three commonly
used measures in the information retrieval and pattern recogni-
tion literature (Olson and Delen, 2008; Table 1): precision, recall
and F. Precision characterizes the fraction of positive (PER) re-
sponses that are correct, while recall measures more directly how
often an appropriate response occurs to the rewarded odor. F is
the harmonic mean of precision and recall (see Materials and
Methods). The use of precision, recall, and F for behavioral anal-
yses has several advantages over the more traditional measures,
such as response probability. First, these measures are widely
used to compare performance of computer-based machine learn-
ing algorithms. Results from biological studies and machine
learning algorithms would therefore be more comparable and
help link experimental and engineering problems. Second, these
measures are independent of the method for scoring behavioral
data from many different animals and different behavioral pro-
tocols. Therefore, these measures provide a standardized way for
comparing data across different conditioning tasks and between
biological and machine learning experiments, particularly in re-
gard to difficulty of the task.

We have chosen two different types of learning, LI and dis-
crimination conditioning, which have been often studied using
PER conditioning in the honeybee because they are representa-
tive of the unsupervised and supervised aspects of learning in the
insect brain. When honeybees are presented with an odor several
times without reinforcement, they subsequently require several
more trials to learn this odor in excitatory PER conditioning than
they require to learn other odors they have not experienced
(Chandraetal., 2010). This process, L1, provides further evidence
that plasticity modifies some components of the circuitry be-
tween sensory inputs and motor centers to alter inhibition/re-
pression of the PER. The protocol that has been used to generate
LI in honeybees involves unreinforced pre-exposure to a target
odor (X—) for a number of trials. Pre-exposure treatment is fol-
lowed by a series of test trials that involve excitatory conditioning
of the same odor (X+). LI is evident when honeybees that re-
ceived pre-exposure learn slowly relative to how well they would
learn about X had it not been pre-exposed.

Chandra et al. (2010) exposed groups of honeybees to dif-
ferent numbers of pre-exposure trials (Fig. 1A). Groups dif-
fered from a low of zero pre-exposures (control group) to a
group that received 50 pre-exposures. In most cases, LI re-
quired 15-20 unreinforced presentations before it had an
effect on excitatory conditioning. Therefore, it is a slower pro-
cess than excitatory conditioning, which usually requires one
to a few trials to reach a robust response criterion (Menzel,
1990). Furthermore, the strength of LI increased rapidly with
an increase in the number of unreinforced trials above 20 and
reached a maximum at ~30 trials.

In the LI protocol it is only possible to calculate recall for the
test trials, because there is only a reinforced odor and we cannot
calculate the false positives, which is necessary to estimate preci-
sion. Therefore, there can only be true positive and false negative
responses. By definition, a PER to a reinforced odor is a true
positive response. Conversely, the lack of a PER to a reinforced
odor is a false negative. For example, over six reinforced trials
with an odor, a honeybee might fail to respond on the first four
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Figure 1.  Latent inhibition. A, Odor conditioning protocol for the LI experiments. The odor
was first presented from 0 to 50 times (preconditioning) in different groups of honeybees before
applying odor conditioning during the test phase. The protocol for the test phase produces
robust and long-lasting associative conditioning (Menzel, 1990). The number of responses
across six trials of the test phase, as a function of the number of preconditioning trials, is the
measure of LI. B, 3D plot of the recall value versus the number of pre-exposures and the number
of training presentations. Performance in honeybees that received 20—30 or more pre-
exposures is poorer relative to groups that received fewer pre-exposures. €, Proboscis extension
(black) versus no extension (light gray) after different numbers of pre-exposures to the odorant
(top to bottom 50, 40, 30, 20, 10, 5, to 1 pre-exposures). Each of the rows represents one
honeybee, and each figure shows mean levels of responding over a group of 15-20 honeybees.
D, An example of behavior in a subset of honeybees at the transition from not responding to
responding.

trials and then respond with PER on the last two (i.e., 000011
where 0 indicates no response and 1 a PER). The first four trials
would count as false negatives (fn = 4) and the last two as true
positives (tp = 2); by convention we count the first trial because
we analyze the evolution of recall over trials. For this example,
recall is 2/(2 + 4) = 0.33.

Behavioral data from (Chandra et al., 2010), now recast in
terms of recall, are shown in Figure 1B and C. These data show
mean recall across six reinforced trials with ~20 honeybees in
each group. In groups that received fewer than 20 pre-exposures,
mean recall rises rapidly in the first two or three trials toward a
maximum of close to 1.0 (perfect recall) by the fourth trial. There
is no indication in these groups that pre-exposure affected the
rate of excitatory conditioning, because the rate of increase in
recall is equivalent to the group that received zero pre-exposures.
With 20 or more pre-exposures the slope of recall declines, and
with 30 or more pre-exposures this decline is evident even in the
later conditioning trials. This delay in the increase as a function of
pre-exposure is LI. Moreover, there is a rapid onset of LI between
20 and 30 trials. This rapid, almost nonlinear, increase as honey-
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bees reach a threshold for responding will
be an important outcome of the model
below.

The acquisition curves shown in Fig-
ure 1B reflect at each trial the average re-
sponse across a group of 10-20
honeybees. The increase in response
across trials arises from the increase in the
percentage of bees in the group that begin
responding at each trial. Many honeybees
begin responding at a particular trial and
then show consistent responses on subse-
quent trials (Fig. 1C). However, other bees C
showed an inconsistent pattern at the time
of transition, which involved switching
back and forth one or more times from
not responding to responding (Fig. 1D).
This pattern is typical in a subset of hon-
eybees selected for PER conditioning
(Smith et al., 1991). The consistency in
switching in most honeybees and the brief
back-and-forth response patterns in a few
will be important for discussion of the
modeling results below.

Discrimination conditioning has been
widely used to assay how well honeybees
can perceptually distinguish two or more
stimuli (Smith et al., 2006), one associated
with reward (A+) and the other not (X—)
(Fig. 2A,B). In this case, all three values
(precision, recall, and F) can be calculated
because of the use of a reinforced and an
unreinforced stimulus on separate trials.
We have recast behavioral data from (Fer-
nandez et al., 2009), who conditioned
honeybees in PER to discriminate two
pure odors (hexanol and 2-octanone) or
binary mixtures of those two odors that
differed in ratios (9:1+ vs 1:9— or vice
versa). In these experiments, both recall and F increased rapidly
starting just after the first trial for easy tasks, such as discrimina-
tion of the pure odors. But F remained relatively lower for the
more difficult discrimination task involving discrimination of
the mixtures. In that case F remained low for the first few trials
then increased rapidly to an asymptotic value, where it remained
for the remainder of the trials. It is therefore clear that discrimi-
nation of the mixtures is more difficult than discrimination of the
more perceptually distinct pure odorants.

As with LI training, honeybees differed in the trial at which
they began to show a conditioned response (Fig. 2C). Further-
more, some honeybees began responding and then responded
consistently thereafter. For a few honeybees reliable extension of
proboscis was preceded by several trials when the animal
switched between extension and retraction (Fig. 2C, bees #13-17
and #22). This transitional switching behavior occurs much more
often during discrimination conditioning than for LI condition-
ing (Smith et al., 1991; Fernandez et al., 2009).

Discussion of these datasets, and recasting them in terms of
precision, recall, and F, has served three purposes. First, we could
easily compare performance on two different learning paradigms
(LI and discrimination conditioning), which would not be as
clearly possible with analysis of acquisition curves per se. For LI
there is only one curve (X+), whereas for discrimination condi-

Figure2.

extension protocol.
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Discrimination conditioning. 4, Recallin a discrimination task between hexanol and octanone, and a mixture of 9:1+
hexanol— octanone versus 1:9—. B, The harmonic mean of precision and recall (F-value; Table 1). After 2-3 training presentations
thereisa sharp transition in the performance in odor discrimination. The learning timescale, measuring in numbers of trials, is fairly
fast compared with the number of pre-exposures required for LI. €, Responses of 32 honeybees subjected to training. There are
three main types of behavior: (1) honeybees that are insensitive to training in that they never begin to respond to the rewarded
odor; (2) honeybees that fluctuate between extension or retraction (e.g., #13 and 14); and (3) honeyhees that learn very quickly the

tioning there are two (A+ and X—). Second, using a common
measure we can compare the task difficulty within a learning task
(mixtures vs pure components in discrimination conditioning)
or between tasks. In the latter case LI takes many more trials to
learn than discrimination conditioning. So the timescale for
learning differs between the two tasks. Third, learning in both
cases is nonlinear. LI and discrimination conditioning require
different numbers of trials to learn, but learning is rapid once a
threshold number of trials is reached. Finally, some bees begin
responding and consistently respond thereafter, whereas other
bees switch back and forth between responding and not respond-
ing before making a decisive switch.

Model of decision making in honeybee

To explain the behavioral responses of the honeybee for protocols
designed to explore unsupervised (LI) and supervised (discrimi-
nation conditioning) learning, we used a simple model of the in-
sect brain involving the AL and MB (Huerta et al., 2004). The AL
is the first synaptic contact for olfactory sensory cells in the insect
brain (Hildebrand and Shepherd, 1997). The neural networks in
the AL set up spatiotemporal response patterns that are distinct
for each odor (Stopfer and Laurent, 2000; Bazhenov et al., 2001;
Fernandez et al., 2009). The spatiotemporal patterned input from
the AL is converted to a distributed spatial pattern in the far more
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Figure3. Model of the MB. The PNs send afferentsinto the calyx of the MB, where they make
connections to KCs. KCs project to ENs with plastic connections w;. Initially, the weights of these
connections are strongest to the “retraction” group. The MB outputs can be divided into two
groups of output neurons that compete with each other via inhibitory connections. The exten-
sion group activates the proboscis and the retraction group either retracts it if it is extended or
holds it in the retracted state.

numerous cells of the MB (Perez-Orive et al., 2002, 2004; Szyszka
et al., 2005), and the MB is an important locus of memory con-
solidation in insects (Heisenberg, 2003). The construction of this
model is essential for our results, so we present first the general
idea behind the model design. Later we will show how this model
can explain the behavioral data.

The input to the model of the MB is the spatiotemporal pattern of
activity among PNs from the AL, x, which is transferred to the MBs,
¥, by means of a connection matrix, ¢ (Fig. 3). Each KC in the MB
integrates the synaptic inputas, y; = O(X} ¢;x; — b), where N,
is the number of PNs in the AL, b is set to determine the average level
of activity of the KCs as shown by (Huerta and Nowotny, 2009), and
the gain function of the neuron for this particular model is ®(u),
whichis 0if u = 0,and 1 if u > 0. The connectivity matrix was drawn
from a Bernoulli process such that the probability from a PN toa KC
is set to a 10% (Garcia-Sanchez and Huerta, 2003). Note that despite
these models are simplifications of a realistic model neurons, one can
show that the computational results obtained by these simplified
models can be reproduced by realistic spiking neurons (Nowotny et
al.,, 2005). Moreover, as we will show below, they are sufficient to
explain the behavioral experiments of LI and discrimination condi-
tioning outlined above.

We assume two functional populations of ENs (z) that receive
input from the KCs and project output to premotor centers. One
group represents proboscis extension, zZF = {z,, ..., Zy,,.. 2}
and another one retraction, z8 = {zy,,... 2415 - o ZNeiul>
where Ny, inic s the total number of ENs. These two populations
of neurons mutually inhibit each other; the neurons of the same
functional population inhibit each other as well. The ENs that
receive more synaptic input will fire, while the other ENs will be
silent (Huerta and Nowotny, 2009; Huerta et al., 2004, 2012). If
active ENs mostly belong to z (z°) the response would trigger
proboscis extension (retraction). The EN responses are medi-
ated by the synaptic integration of all the inputs from the KCs

Nextrinsic
asz = OEY wy;, — inh), with inh = > I wy,

Nearinse =1
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being the inhibition that is identical for all the output neurons,
and Ny is the total number of KCs (see Materials and Methods).
The inhibitory connections are not modified by plasticity.

Connections from the KCs to the ENs are plastic. The connec-
tions are w;;, which will be modified according to unsupervised
(Hebbian) learning rules as well as by supervised rules that indi-
cate what set of connections will be paired with reward, +1, or
punishment, — 1. The rules that are most effective in learning a
discrimination task require that the positive reward signal (su-
crose) depolarizes and evokes response in the extensor neurons,
while negative reward (no sucrose when they expected it) depo-
larizes the retractor neurons. With this approach the same basic
rules (but operating at different timescales) can be applied to
describe unsupervised and supervised learning. The rules consis-
tent with (Houk, 1995; Dehaene and Changeux, 2000; Huerta
and Nowotny, 2009) can be formalized as follows.

Rule 1

Unsupervised Hebbian learning operates all the times and
produces small changes of the weights as defined by parameter
n<<1:

W,‘}‘(t + 1)
wi(t) + 1 ify; > O0andz > 0 with probability w p,
= wi(t) — 1 ify; > 0andz = 0 with probability pp_
w;(1) otherwise
Rule 2

Positive reward. Reinforce the connections to the extension (E)
group and depress the connections to the retraction (R) group.

wi(t) + 1 ify, > 0andi e E with probability p,
= ¢ wy(® — 1 ify, > 0andieR with probability p_
w;(t) otherwise
Rule 3

Lack of an expected reward (punishment) because there was no
sucrose when proboscis is extended. Depress input to the E group
and enhance input to the R group:

wi(t) — 1 ify; > 0andi e E with probability p_
= { wy®) + 1 ify, > 0andieR with probability p.

w;i(1) otherwise
In a general sense Rule 2 implies that a positive reward leads to
activation of the extension group of neurons and suppression of
the retraction group. Rule 3 implies that a negative reward leads
to activation of the retraction group of neurons and suppression
of the extension group.

The rules can be compacted to resemble the model proposed
by (Houk, 1995; Dehaene and Changeux, 2000) in one single
mathematical form as follows:

wit + 1) = wy(t)

1 1
n [ i sgn(zi - E>R(e) with probablhtyP(e,sgn(z,- - E)) )

0 rest

where sgn() takes on either +1 or —1 and index e can take values
of R+ for positive reward, R— for negative reward, and NR for
no reward. With this notation z8* = {1,..., 1,0,..., 0},
2~ ={0,...,0,1,...,1},and z'® corresponds to any combina-
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tion of 0 and 1 induced by the stimulus x;.
Thus, the change in the reward signal,
R(R—)=1, reflects the model of (Dehaene
and Changeux, 2000), the evaluation of z{
implies the existence of synaptic tags, and

1
the transition rates P(e,sgn(zf - 2))

capture the timescales of the unsupervised
and supervised learning. In general the
unsupervised learning is a slower process
denoted by the parameter w << 1. It has
been shown by (Nowotny and Huerta,
2012; Huerta, 2013) that Equation (1) is
nearly equivalent to one of the most suc-
cessful algorithms in pattern recognition
called support vector machines.

Selection of a particular rule (e.g.,
Rule 2 vs Rule 3) can be achieved based
on coincidence of activities of presynap-
tic and postsynaptic neurons (near si-
multaneous activation is required for
facilitation and the lack of postsynaptic
activity leads to depression) assuming
that reward signal leads to selective activa-
tion of the extension group through specific
synaptic pathway (e.g., AMOA1 receptors
sensitive to octopamine; Sinakevitch et al.,
2011).

Latent inhibition

We first determined whether the model of
plasticity embodied in the equations (1) is
a qualitative valid description of LI. To
obtain realistic odor stimulation patterns,
we used output from an array of 16 artifi-
cial sensors stimulated by ethanol and
ethylene at concentrations from 10 to
1000 ppm (Vergara et al., 2010, 2012) col-
lected over a period of 36 months (data
public). This array includes several differ-
ent features, such as the relative change in
the conductance of the sensor during
odor stimulation and several dynamical
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Figure 4. Ll using artificial sensor array data. A, Features obtained by the artificial sensor array made of metal-oxide sensors

measuring ethanol and ethylene at various levels of concentrations ranging from 10 to 800 ppm. Each of the features are extracted
from the time series recorded from the sensors reflecting the relative change and rates of change of the conductance levels in the
sensors as described by Vergara et al. (2012). These data are available in at the UCI Machine Learning Repository (Vergara et al.,
2012). B, Percentage of KCs that are activated for ethanol (black) and ethylene (red) for the complete dataset recorded in the sensor
array. KC activity was ranked highest (left) to lowest (right) for responses to ethanol. Approximately 100 model KCs responded
equally strongly to both ethanol and ethylene (left side of the x-axis). The remaining KC responses differentiated one odor from the
other. In some cases the KC response to ethanol was higher than to ethylene (red dots below the black line), whereas in other cases
the response to ethanol was lower than to ethylene (red dots above black). (, Recall measure solving the LI task in the model using
the Hebbian rules described in the text. Note the qualitative similarities with Figure 1C; more pre-exposure reduces conditioning
performance. D, Evolution of the percentage of connections to the extensor group and the retraction group for pre-exposures
ranging from 0 to 50. The lines for the decreasing numbers of pre-exposures start farther to the right. All cells start at the same low
connectivity. During pre-exposure the number of connections into the extensor group (black) becomes reduced because of the
Hebbian rule. The connections to the retraction group (red), on the other hand, start spreading due to the repetitive coactivation of
the retraction group neurons and the KCs. Once the conditioning protocol starts, the connections into the extension group are
quickly reinforced, and connections to the retraction group are reduced. However, the starting points were a function of the
number of pre-exposures. More pre-exposure produced fewer connections in the extension group and more connections in the
retraction group. So the relative delay in conditioning with higher pre-exposures resulted from having to overcome the change in
connections to both groups of ENs. In these simulations we used N = 5000, . = 0.1, bis dynamically set to reach activity levels
of 5% in the KCs as indicated by (Huerta and Nowotny, 2009), the positive and negative learning rates p+ = 0.1 (but they can be
varied) and p— = 0.05; see more details by Huerta and Nowotny, 2009). Note that there is a broad range of parameter values that
lead to very similar qualitative results.

synaptic weights to the ENs that drive proboscis extension (Fig.

characteristics of the sensor responses (Muezzinoglu et al.,
2009b). We consider each of these features to represent an input
neuron for the model. Figure 4A shows average firing rates of all
sensor-based input neurons for two different odors: ethylene and
ethanol. Sensor responses to the two odors were statistically very
similar. However, despite the similarity each sensor pattern acti-
vated a different array of KCs with some degree of overlap (Fig.
4B). The odor was presented many times (trials) triggering plas-
ticity (as described above) at the KC output synapses. We will use
one of these two odors to simulate the LI experiment and then
below we will use both odors to model the discrimination
experiment.

In the first set of experiments we first presented N trials of
ethanol with no reward. Then we presented the same odor with a
simulated reward signal. N was varied between 0 and 50. Figure
4C shows recall versus training presentation number (followed
by reward) for different numbers of pre-exposures N. When the
number of pre-exposures was low, training stimuli led to imme-
diate increases in the extension response (Fig. 4C) and of the

4D). In contrast, when number of pre-exposures was high, the
model first showed no activity in the ENs. As training progressed,
a trial was reached when there was an abrupt increase in the
probability of the ENs becoming active. This result is similar to
the experimental observation shown in Figure 1, and it proposes
an explanation for what is happening when an animal is first
trained to a particular odor with no reward. Unsupervised learn-
ing requires co-occurrence of presynaptic and postsynaptic activ-
ity. In our model, the group of neurons that is responsible for
retraction is always active before learning. So when any stimulus
is present the neurons that are active in the calyx will get their
synapses potentiated on the retraction group. Therefore, accord-
ing to Rule 1, unreinforced pre-exposure leads to slow progres-
sive enhancement of the inputs to the group of neurons
responsible for proboscis retraction (Fig. 4D), and this synaptic
drive must first be overcome when the same odor becomes paired
with reward. While input to the group of neurons responsible for
proboscis extension is getting progressively stronger over first few
trials, it does not change the model response until it exceeds a critical
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model really learned general data, because
it is possible that the model over learns
and badly fails on the unseen data.

In Figure 5A we present the perfor-
mance results (evolution of F-measure) in
the test set, first, using ethanol as the pos-
itively reinforced odor and, second, ethyl-
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system starts to associate reliably ethanol
— (or ethylene) with the reinforcement. If
one tracks in parallel the evolution of the
percentage of the connections to the ex-
tension group (Fig. 5B), it can be seen that
a smooth change in the number of con-
nections can trigger the nonlinear jump in
learning after 3-5 trials such that the two
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Figure 5.

same parameter values as in Figure 4.

point when it becomes stronger (for a given odor) than the input to
the groups of neurons responsible for retraction. This compe-
tition between the extension and retraction group is the source
of the strong nonlinearity in proboscis extension as condition-
ing progresses.

Discrimination conditioning

Ethanol and ethylene trigger very similar responses in the artifi-
cial sensor array as can be seen in Figure 44, and they therefore
present a difficult discrimination problem. We thus used these
two odorants for the odor discrimination task in the model. In
these simulations a specific input (ethanol in the dataset) is
paired with sucrose and ethylene was followed by punishment
(see above, Model of decision making in honeybee, Rule 3). The
probability of synaptic changes p+ and p— was set to 0.1, al-
though there is a range of values that leads to the same effect (we
explored 0.05-0.2 with the same result). To determine the gen-
eralization ability of the learning process, one dataset (one trial of
sensor array response to an odor) was used for training and an-
other different and nonoverlapping dataset was used for testing.
The test set allowed us to track how the model was performing
throughout the training session. The model should change the
connections only if the odor belonged to the training set. In ma-
chine learning it is very important to test the performance of the
model with a set that has not been presented during training. It is

Discrimination conditioning using artificial sensor array data. 4, F-measure evolution of the model discriminating
ethanol +/ethylene — and ethylene +/ethanol — from the database collected using the artificial sensor arrays. Note the similar-
ities with Figure 2 A. B, The evolution of the probability of forming connections into the extension (black) and retraction groups
(red). C, The ratio between the number of connections to the extensor group divided by the connections to the retraction group. The
number of connections into the extensor group increases but it does not need to reach a 50% level to be able to accurately solve the
discrimination task. D, lllustration of the behavior in different iterations of the model. Some iterations showed a very consistent
transition (top) whereas others showed some degree of inconsistency. Thisis similar to the behavior data in Figure 10. We used the
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%)
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groups of competing neurons receive suf-
ficient input to quickly tilt the decision to-
ward extension. In fact, if one looks at the
changes of the relative ratio of connections
into the extensor and retractor group there
is no sharp boundary in the ratio of connec-
tions at the point of the behavioral transi-
tion (Fig. 5C). That is, there is no indication
from the ratio of connections that the out-
put from the model has switched from re-
traction to extension.

We also found that transition from re-
liable retraction to reliable extension was
characterized by the set of trials when the
model response changed back and forth
between extension and retraction. This
dynamics was most obvious in individual
runs (Fig. 5D) and corresponded to simi-
lar observation in behavior experiments
(Fig. 2). In the model this occurs in a sub-
set of runs because of the input variability across trials. Near the
transition point some inputs led to extension while others,
activating slightly larger fraction of retraction neurons, still
led to retraction.

Impact of each learning rule on discrimination conditioning
We then tested the specific impact on discrimination condition-
ing by removing different components of learning from Rules
1-3 (Fig. 6). We analyzed learning performance over 20 trials.
The model in effect describes two stages of acquisition. First, the
full model reaches an abrupt transition in responding after a few
(3-5) trials (Fig. 6A). Second, after this transition the perfor-
mance continues to increase slowly as the pattern of synaptic
connections is further refined. Extension of the trials beyond 20
would lead to a gradual increase to F-values near 1.0.

Without Rule 1 that provides unsupervised Hebbian learning
(no Hebbian; NH), there was no change in the performance in
the system for the discrimination task because the timescale of the
synaptic changes due to the unsupervised learning is at least
10-20 times slower than reinforcement learning. Hebbian learn-
ing plays an important role by preconditioning the circuit with-
out reward (e.g., LI experiment) but is far less important during
an odor discrimination task.

Alteration of the other rules produced more significant
changes in performance. Without the potentiation of retraction
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Figure 6. Dissection of the impact that different learning rules have on performance in
solving the discrimination task. A, Evolution of the performance in the discrimination task
between ethanol and ethylene as a function of the number of presentations during single runs
of the model. The black line (full) shows the performance using the full set of rules. The red line
(NH) shows the performance by eliminating the pure Hebbian rule, which is Rule 1. The green
line (NPR) shows the performance by eliminating the condition that activates connections into
the retraction group in the Rule 3. The blue line (NPE) eliminates the positive reinforcement to
the extensor group in Rule 2, which blocks learning completely. And finally the violet curve
shows the performance by eliminating the condition that removes the connections into the
retraction group (NDR) in Rule 3. B, The same as A, but taking the steady state reached after 20
presentations of learning. We also have the error calculated by running the simulations 10
times. We used the same parameter values as in Figure 4.

embodied in Rule 3 (no potentiation retraction; NPR), which in-
creases the connections to the retraction group during negative re-
inforcement, the performance remained at similar median levels as
the full rule. However, the ranges of performance after 20 trials as
shown in Figure 6B are twice the full rule, which means the learning
became less stable. Removal of Rule 2 in a situation when an animal
does not extend its proboscis to a reinforced odor (no depression
retraction; NDR) makes the learning less efficient, and the perfor-
mance reaches an absolute asymptote within 20 trials that is lower
than the full rule. At this point there was no further improvement in
performance in the absence of this component of Rule 2. Finally, the
component of Rule 2 that reinforces connections to the extension
group makes learning possible. Without it (no potentiation of exten-
sion; NPE) learning is impossible.

Finally, Equation 1, consistent with Houk (1995) and De-
haene and Changeux (2000), embodies a unified formalism ca-
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pable of embodying all the semisupervised and fully supervised
tasks described in this paper. This analysis shows that there is a
delicate balance in the way the learning rules can operate to-
gether. If we eliminate or tamper some of the rules the ability to
learn degrades and sometimes may disappear completely.

Discussion

Supervised and unsupervised forms of learning coexist in neuro-
nal circuits, which imply that they interact in some way. Both
forms of learning exist in parallel in several forms (Rescorla,
1988) in behavioral conditioning experiments. In the condition-
ing examples we have shown above, presentation of odor alone
(unsupervised; Rule 1) reduces the salience of that odor for sub-
sequent conditioning experiments. The same experience, odor
presentation, is present during reinforced (supervised) learning,
which produces a very different behavioral result (Rule 2). Fur-
thermore, after an odor has been associated with a specific rein-
forcement, presentation of odor with a reduced reinforcement,
or no reinforcement at all, can produce strong conditioned inhi-
bition (Rule 3; Rescorla, 1969; Stopfer et al., 1997). In this study
using a combination of behavioral experiments from honeybees
and computational modeling we developed a set of plasticity
rules that can account for a variety of experimental data with
learning protocols involving both unsupervised and supervised
learning.

How can these two forms of plasticity be integrated to account
for the behavioral changes and the temporal dynamics of the
change in responses? Let us first revisit the current models of
reinforced learning. One of the most important requirements is
the existence of “synaptic eligibility traces” (Houk, 1995) or “syn-
aptic tags” (Frey and Morris, 1997), which are necessary to
implement learning. Typically the conditioned stimulus is pre-
sented and followed by a reward (sucrose in the honeybee). Syn-
aptic tags or traces, at least at the presynaptic level, have to remain
elevated, even without electrical activity in the cell, such that it
can remember what output neuron to pair (unpair) when the
reward (punishment) arrives. The basic model (Houk, 1995) is
that when the stimulus is present and it elicits the correct behav-
ior, the delayed reward leads to release of neuromodulator such
as dopamine (mammals; Heisenberg, 2003; Schultz, 2010) or oc-
topamine (insects; Hammer, 1993; Farooqui et al., 2003;
Heisenberg, 2003) and the synaptic connections that have ele-
vated synaptic tags change their synaptic efficacy (Cassenaer and
Laurent, 2012). This basic model has been revised and has been
analyzed in several forms (Izhikevich, 2007). But the timescales
observed at the behavioral level to coordinate unsupervised and
supervised learning still have to be unified in a consistent frame-
work.

To characterize interaction between supervised and unsuper-
vised learning rules, we used two classical experimental proto-
cols. The first experiment, LI, involves pre-exposure of an odor
without reinforcement. To measure learning during pre-
exposure, this treatment is followed by trials with the same odor
accompanied by reward. More unrewarded pre-exposures led to
a requirement for more reinforced trials to reach a learning cri-
terion. The first part of this protocol (odor followed by no re-
ward) represents unsupervised learning but should be also
equivalent to supervised learning with odor followed by mild
punishment. In the second experiment, discrimination condi-
tioning, the task was to discriminate between two similar odors,
when one odor was followed by reinforcement and another one
was not.. The two behavioral experiments differ typically in how
long it takes for honeybees to begin to respond correctly; more
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trials are required for LI. Also, in both scenarios the increase at
the behavioral switching point was rapid. This rapid switch from
no response to response over a short subset of acquisition trials is
a general phenomenon in many conditioning experiments with a
wide array of animals (Gallistel et al., 2004).

As a framework to implement plasticity rules that could ac-
count for these experimental data, we developed a simplified
model of neural circuits in the MBs of the honeybee brain that
process olfactory sensory information and relate it to reinforce-
ment through identified modulatory pathways (Sinakevitch and
Strausfeld, 2006; Schroter et al., 2007; Sinakevitch et al., 2010).
KCs are the intrinsic cells in the MBs (Strausfeld et al., 2009). KC
dendrites receive input from the axons of PNs from the AL, which
is the first-order neural network that processes input from olfac-
tory receptor cells. The model assumes that axons from KCs proj-
ect to extrinsic premotor neurons that are organized into two
competing (through lateral inhibition) populations responsible
for proboscis extension and retraction. Activity in one of the two
groups of ENs represents a decision to withhold or extend the
proboscis.

Plasticity of synaptic connections was implemented as a set of
rules. (1) In the absence of reward, synaptic weights slowly decay
when presynaptic activity is followed by no response in the post-
synaptic cell (extension group) and slowly increase when presyn-
aptic activity leads to postsynaptic activation (retraction group).
(2) A positive reward is equivalent to activation of the extension
group of neurons and suppression of the retraction group. (3) A
negative reward is equivalent to activation of the retraction group
of neurons and suppression of the extension group. For both
Rules 2 and 3, the suppression of one or the other groups of
output neurons embodies Rule 1 but at a faster timescale. With
this approach we can use the same basic learning rule for super-
vised and unsupervised protocols simply by assuming the differ-
ence in the timescale across which the two forms of learning
operate.

The mechanism underlying decision making in our model is
relatively simple. Initially the majority of the connections from
the KCs of the MB are pointing into the retraction group of
neurons. As the training procedure starts to operate, specific con-
nections corresponding to the trained odor from the KCs to the
output neurons get increased, while the corresponding connec-
tions pointing to retraction are eliminated. The connections from
odors that have not been paired with sucrose are not strong
enough to activate the extension group, although there is always
some small probability of having false positives because of
overlap of patterns activated by similar odors. Once a critical
mass of connections into the extension group is achieved,
lateral inhibition provides the mechanism to shut down the
retraction neurons. The inhibitory mechanism combined with
the smooth modification of the balance of the synaptic weights
provides the nonlinearity of the switch in behavior from re-
traction to extension. Because the only requirement for this to
occur is competition between output groups of neurons, we
suggest that this may be a general phenomenon.

In addition, since there is a competition between the retrac-
tion and extension group, sometimes, the dynamics of the deci-
sion function fluctuates between both possible outcomes when
using odorant at concentration levels that are sitting near the
boundary of the decision function. Indeed, it is harder to discrim-
inate between odors at lower concentrations than at higher ones.
Since we are presenting odors at random concentrations some
the examples presented earlier on are more difficult to separate
from each other. From the statistical point of view, the more
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examples or odorants presented to the system the better is the
estimation of the decision function. The standard deviation asso-
ciated with the estimation of the synaptic weights of the optimal
decision function is going to be better with a larger number of
presentations. This fluctuation behavior during learning ob-
served in the model also matches experimental observations.

We found that this model was capable of consolidating spe-
cific observations from two major classes of behavioral experi-
ments. (1) In the case of LI, odor trials with no reward led to slow
enhancement of connections to the retraction group. Therefore,
when the stimulation protocol was changed to include a reward,
it took more trials to “unlearn” this effect and to enhance con-
nections to the extension group sufficiently to achieve the correct
response. (2) Discrimination conditioning involved alternating
presentation of rewarded and unrewarded odors. For similar
odors (that overlap significantly in respect to the active projec-
tions from KCs to ENs), enhancement of connections to the ex-
tension group during reinforced odor presentation was followed
by weakening of nearly the same set of connections during unre-
inforced odor presentation. Therefore, only a small subset of con-
nections to the extension group representing the difference
between these two odors remained enhanced. As a result it took
many trials for the extension group to win and to suppress activ-
ity in the retraction group. In contrast, for very different odors,
the enhancement of connections to the extension group during
rewarded odor trials occurred much faster, and it required fewer
trials before the extension group could win the competition with
the retraction group.

To conclude, our study combined, for the first time, super-
vised and unsupervised forms of learning in one simple set of
learning rules. We assumed that unsupervised learning is a con-
tinuous process occurring on the background of any learning,
and it is characterized by a slower timescale than supervised
learning. According to our model, the lack of reward for probos-
cis extension is classified as a punishment (negative reward) and,
therefore, the same set of rules was applied by at different time-
scales. A combination of these rules let us explain a range of
behavioral experiments. This model will help to refine engi-
neered solutions to odor detection and discrimination, and it
may also generalize to other problems in pattern recognition. It
also allows us to make hypotheses about the nature of interac-
tions among sensory and premotor centers in the brain, which are
testable in the honeybee brain using imaging (Szyszka et al., 2005;
Fernandez et al., 2009) and electrophysiological recordings
(Strube-Bloss et al., 2011). In fact, recordings from ENs of the
honeybee MB during differential conditioning, which we have
modeled here, have shown complex switching similar to what our
model would predict. Many ENs increase responses to the rein-
forced odor, whereas responses to the unreinforced odor show
both decreases and increases in different units (Strube-Bloss et
al., 2011). It remains to be determined how this switching behav-
ior might relate to premotor processing in our model.
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