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Abstract
List-mode processing provides an efficient way to deal with sparse projections in iterative image
reconstruction for emission tomography. An issue often reported is the tremendous amount of
computation required by such algorithm. Each recorded event requires several back- and forward
line projections. We investigated the use of the programmable graphics processing unit (GPU) to
accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets
expectation-maximization for positron emission tomography (PET). We designed a reconstruction
approach that incorporates resolution kernels, which model the spatially-varying physical
processes associated with photon emission, transport and detection. Our development is
particularly suitable for applications where the projection data is sparse, such as high-resolution,
dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times
faster than an equivalent CPU implementation while image quality and accuracy are virtually
identical. This paper describes in details how the GPU can be used to accelerate the line projection
operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying
resolution kernels are used. A quantitative evaluation is included to validate the correctness of this
new approach.
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I. Introduction
Over the years, the number of lines-of-response (LORs) (or detector pairs) in modern
positron emission tomography (PET) systems has increased by orders of magnitude (Fig.
1(a) and [1]). This trend has been driven by smaller detector crystals, more accurate 3-D
photon positioning, larger solid angle coverage, and 3-D acquisition. These advances have
boosted the spatial resolution and the photon sensitivity of PET systems. However, they
have made the task of reconstructing images from the collected data more difficult. The
demand in computation and memory storage for high-resolution PET has exploded,
outpacing the advances in memory capacity and processor performance [2]. Therefore,
algorithms whose complexity and memory usage do not depend on the number of LORs are
attractive for state-of-the-art PET systems. In this context, performing reconstruction
directly from the raw list-mode data has proved to be particularly appealing and useful for
dealing with the parameter complexity as well as sparseness of the dataset.

Statistical image reconstruction methods, such as ordered-subsets expectation-maximization
(OSEM), account for the stochastic nature of the imaging process. These iterative algorithms
have been shown to offer a better trade-off between noise and resolution in comparison to
filtered backprojection [3], [4], but are computationally intensive. Memory usage is also a
point of concern for the reconstruction. The system response matrix (SRM), which maps the
image voxels to the scanner detectors and models the imaging process, can be gigantic [5].

These issues have been addressed using various methods. The SRM can be factored into the
product of smaller components that are stored in memory [6]. Some implementations also
compute parts (such as solid angle) of this factorization on-the-fly, which saves memory but
adds workload to the processor. The SRM can also be compressed using symmetries and
near-symmetries [7], and extracted only when needed to limit the memory profile.

Another approach to reduce the complexity of the reconstruction involves rebinning the 3-D
projections into a stack of 2-D sinograms that can be reconstructed independently using a 2-
D reconstruction method, such as filtered-backprojection (FBP) or 2D-OSEM. Fourier
rebinning (FORE), combined with 2D-OSEM [8], is an order of magnitude faster than 3D-
OSEM. Furthermore, it has been shown to produce images that are not significantly
degraded compared to 3D-OSEM for whole-body clinical scanners [9]. However, for high-
resolution pre-clinical PET systems, the average number of counts recorded per LOR is low
(i.e., the data is sparse). As a consequence, the measured projections do not reflect the ideal
line integral and the potential for resolution recovery is lost with this approach [6].

In list-mode, the focus of this paper, the LOR index and other physical quantities (e.g., time,
energy, TOF, depth-of-interaction, or incident photon angle) are stored sequentially in a long
list as the scanner records the events. The problem of reconstructing directly from the list-
mode data lends itself to a maximum-likelihood formulation. Despite its computation
burden, this processing method has gained popularity [2], [5], [10]–[14]. List-mode is an
efficient format to process sparse data sets, such as dynamic or low count studies. It has
additional benefits, namely: 1) additional information can be stored for each event, 2)
complete subsets can be formed by splitting the events according to their arrival time, 3) the
symmetries of the system are preserved, 4) image reconstruction can be started when the
acquisition begins, 5) events can be positioned continuously in space and time, and 6) data
can be converted to any other format.

Incorporation of an accurate spatially-variant resolution model for PET has been shown to
help reduce quantitative errors [15], [16] and improve resolution by deconvolving the
system blurring. Yet, including the contribution of voxels that are off of the LOR axis
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increases the number of voxels processed by an order of magnitude and slows the back- and
forward line projection operations.

We investigated practical ways to accelerate list-mode 3D-OSEM reconstruction using
programmable graphics hardware, namely the graphics processing unit (GPU) [17].
Primarily designed to deliver high-definition graphics for video games in real-time, GPUs
are now increasingly being used as cost-effective high-performance coprocessors for
scientific computing [18]. GPUs are characterized by massively parallel processing, fast
clock-rate, high-bandwidth memory access, and hardwired mathematical functions. The size
of their on-board memory (<1.5 Gb) may currently be the most limiting factor for
performing accurate reconstruction with GPUs. Nevertheless, these characteristics make
them particularly well suited for an on-the-fly scheme with high computational intensity.

As shown on Fig. 1(b), over the last five years, GPUs’ peak performance P has increased at
a faster rate than CPU's: PGPU ≈ PCPU

1.6. GPUs are single-instruction multiple-data (SIMD)
processors but multicore CPUs are multiple-instruction multiple-data (MIMD). MIMD leads
to more complex designs because multiple instruction decode blocks as well as special logic
are required to avoid data read/write hazards. SIMD also dedicates less area to the data
cache and more to the arithmetic logic units. As a result, the number of parallel SIMD
processing units has been growing faster than has the number of MIMDs. It therefore
appears likely that GPUs will continue to be increasingly useful for medical image
reconstruction as the performance gap with CPUs widens.

Iterative reconstruction on GPU has been the focus of previous research. Texture mapping
on nonprogrammable graphics hardware was first proposed in 1994 [19] as a way to
accelerate cone-beam FBP. The same technique was later applied to port OSEM to a
consumer-grade graphics architecture [20]. More accurate methods were developed once the
GPU became programmable and handled floating-point textures. The general approach was
first described for processing sinograms using FBP and EM [21], and the ordered subset
convex reconstruction algorithm [22]. Attenuation correction and the incorporation of a
point spread function were also addressed for SPECT [23]. A real-time GPU-based
reconstruction framework was developed for X-ray CT [24]. These methods [19]–[24] have
been successful because the GPU is efficient at applying the affine transformation that maps
a slice through the volumetric image to any sinogram projection view, and vice-versa.

The main challenge in implementing list-mode OSEM on the GPU is that the list-mode
LORs are not arranged in any regular pattern like sinogram LORs. The mapping between the
list-mode data and the volumetric image is not affine, and as a result texture mapping cannot
be used in this context. The projection operations must be line driven, which means that the
back- and forward projections must be performed on a per LOR basis. This motivates the
design and investigation of a novel GPU technique to back- and forward project individual
LORs described by arbitrary endpoint locations, even when a shift-varying kernel is used to
model the response of the system. No existing GPU projection technique has addressed the
specific issues of list-mode processing. These issues also arise when data is processed in
histogram-mode, in which case a weight, representing the measured projection, is passed to
the GPU with each LOR. Even sinogram-based reconstruction can be performed in this new
LOR-driven framework by describing each sinogram bin by its value and the two LOR
endpoint locations; however this approach would be less efficient than the GPU texture
mapping technique cited above. We also propose a novel framework to define arbitrary,
shift-varying system response kernels that are evaluated on-the-fly by parallel units within
the GPU. This feature is important to correct for the various resolution blurring factors in
emission tomography.
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The implementation on the GPU of list-mode 3D-OSEM with shift-varying kernels is
challenging because the graphics pipeline architecture does not run efficiently unless the two
main components (line back- and forward projections) are reformulated. This reformulation
involves handling line backprojection using the GPU rasterizer and decomposing line
forward projection into smaller elementary operations that run efficiently in parallel on the
GPU. We proved, both mathematically and experimentally, that the reformulated operations
replicate the correct line back- and forward projections. These two GPU-based approaches
to image reconstruction are reported here for the first time.

II. Materials and Methods
A. List-Mode Ordered-Subset Expectation-Maximization

The list-mode 3D-OSEM algorithm is described in [11] and [14]. It can be formulated as

(1)

where  is the 3-D reconstructed image after iteration m and subset l. Voxels are indexed
by j = 1, . . . , J. The events are partitioned into subsets Sl, l = 1, . . . , L. The image estimate
after iteration m is λm+1,1 = λm,L+1. For list-mode, the subsets are formed according to the
arrival time of the events. The SRM coefficients pij model the probability that a positron
emitted from voxel j will generate two annihilation photons detected along the LOR i. The
sensitivity image

(2)

takes into account the nonuniform density of LORs throughout the volumetric image and the
change in sensitivity wi along LOR i as caused by tissue attenuation and geometrical and
intrinsic detection efficiency variations. This computation requires the time-consuming
backprojection of all LORs, unless variance reduction techniques are used [25].

For the study reported here, corrections for photon attenuation, scatter, random coincidences
and dead time were not implemented. In order to account for randoms and scatter in the
reconstruction process, a scatter estimate sik and a random estimate rik are added to the
forward projection. These estimates can be either loaded into the GPU together with the
LOR attributes or directly computed on the GPU, in which case they are stored in video
memory.

B. System Response Kernels
The spatial resolution in PET is degraded by physical processes associated with photon
emission, transport and detection. These resolution blurring factors can be modeled in the
SRM. This provides resolution recovery through deconvolution on condition that the model
is accurate enough, the SNR is high enough and the number of iterations is sufficient.
Several experiments have shown that incorporating a model of the system response can
improve the performance of the reconstruction for certain tasks [6], [7], [16], [26].

In the GPU line-projection technique we have developed, we generalize the notion of system
response matrix by modeling the system response using kernels. Kernels are nonnegative
real-valued functions that model the contribution of each voxel to each LOR as a function of
multiple variables. These variables include the indices of the current LOR and voxel, which
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allow any SRM to be represented with a kernel. Kernels can be described more generally by
selecting another choice of parametrization, such as the center Vj of voxel j, the projection
Lij of Vj on LOR i, the distance dij between the center of voxel j and LOR i, the distances

between Lij and each of the two detectors  and , the orientation ui and length li of LOR

i, the time-of-flight τi, and the photon depth-of-interaction for each detector  and .
Kernels are smooth approximations of the SRM, independent of the voxel size. They allow
for compact representations of the resolution-blurring process by taking advantage of the
geometrical redundancies in the system.

The kernel is evaluated at all voxels that contribute significantly to LOR i. We call the set of
such voxels the tube-of-response (TOR), further defined by a cylinder

(3)

where η is a user-defined constant which sets an upper bound on the distance dij between
voxel j and LOR i. While SRMs are implemented by lookup tables, kernels allow for a mix
of memory lookups and on-the-fly computations and lead to a higher computational
intensity (defined as the ratio of arithmetic logic unit to memory usage). Kernels can also be
evaluated at each voxel independently, in the GPU parallel processing units.

The results presented in this paper are based on a fixed-width Gaussian kernel centered on
the LOR axis. The full-width half-maximum (FWHM) was chosen to match the average
system-resolution blurring. The kernel K is parametrized by the distance dij between the
center of voxel j and LOR i

(4)

and we have pij = K(dij). This kernel is not the perfect representation of the system response,
but it is sufficient to demonstrate the GPU line-projection technique. More advanced kernels
can be implemented on the GPU, for example, by varying σ as a function of the LOR

orientation ui and the distance to the detectors  and .

C. Hardware
The GeForce 8800 GT, G92 chipset (NVIDIA, Santa Clara, CA) has 112 parallel shading
units clocked at 1.5 GHz. It allows 32-bit floating point processing throughout the entire
pipeline. On-board video memory (512 Mb) is accessed through a 256-bit bus with a peak
transfer rate of 64 Gb/s. The cost of this GPU is equivalent to the cost of a high-end dual-
core CPU. For the implementation of list-mode 3D-OSEM on the GeForce 8800 GT, the Cg
compiler 2.0 [27] served to compile programs for the shading units. The OpenGL 2.1
graphics API interfaced between the CPU and the GPU. We did not use the CUDA
(compute unified device architecture) library. CUDA facilitates the development of high-
performance computation on the GPU, but does not interface with all the features of the
GPU. OpenGL and Cg allowed us to use the rasterizer, the blending units and texture
mapping, which are key elements for our technique.

D. GPU Implementation
In order to use the GPU pipeline efficiently, we reformulated the projections to enhance
parallelism and match the pipeline architecture.
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1) Data Representation—GPU memory is organized in textures, which in computer
graphics are used to store color images. A 2-D color texture forms an array of 32-bit
floating-point quadruples, that can be accessed randomly by GPU shaders. We stored the
volumetric images used for reconstruction in such textures by tiling the stack of slices.

The list-mode projection data, consisting of LOR endpoints and the projection value, were
stored in another 2-D texture using the four color channels. This storage scheme allows for
continuous positioning of the LORs in space.

We used the OpenGL framebuffer object (FBO) extension to enable shaders to write directly
to texture.

2) Line Projection Stages—The forward projection of λj along LOR i and the

backprojection of LOR i with weight ωi into volumetric image  are mathematically
represented as, respectively

(5)

(6)

Both operations can be conceptualized of as a sequence of three stages. In the first stage, the
voxels Ti that contribute non-negligibly to LOR i are identified. In the second stage, further
processing is performed on the voxels identified in the first stage. The kernel parameter
variables are computed from LOR i and voxel j attributes and then used to evaluate the
system response kernel pij. In the last stage, the data vector (image or projection data) is
updated according to (5) and (6).

3) Voxel Identification for Line Forward Projection—The voxel identification stage
consists of determining the voxels Ti that are to be processed during the line back- and
forward projection of LOR i. In a typical CPU code, this task would be carried out by three
levels of nested loops with variable bounds. On the GPU, this stage was the most
problematic because pixel shaders can only write to the pixel on which they are called.
GPUs also do not implement efficiently nested loops with variable bounds, unless the same
constant number of iterations are executed in each parallel unit. When the number of
iterations is constant, all parallel units run the same number of instructions and the loops can
be unrolled. The line forward-projector was efficiently reformulated so that all loops run a
constant number of iterations.

Let us assume that the LOR main direction is along ex, i.e.,

(7)

where ui denotes the direction vector for LOR i. This relationship can always be satisfied by
switching dimensions if needed. As shown later, (7) is important to ensure that the number
of iterations in distributed loops is bounded.

The line forward projection of the volumetric image λj along LOR i can be described
equivalently as
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(8)

where

(9)

and  represents a slice of the volumetric image along the ex axis, indexed by an index x =
1 . . . X where X is the number of slices. In this formulation, the outer loop distributes the
computation across the dimension ex while the inner loop iterates over the two remaining
dimensions. In Fig. 2, the inner and the outer loops are represented by vertical and
horizontal dashed line, respectively.

Si,x can be equivalently described by introducing the ellipse E defined by the set of all the
points in slice  that are at a distance η from LOR i (Fig. 3).

The computation of the inner loops (8) is distributed over parallel shading units. In the GPU,
computation is done by drawing a horizontal line, that is X-pixels long, in a temporary
texture while a custom shader is bound (represented in Fig. 2 by a horizontal line at the
bottom). The inner loop computation is skipped when Si,x is empty.

The direct computation of the inner loop in (8) is inefficient because the bounds vary with
the LOR and the slice index x (Fig. 3). Yet, when conditions (7) are satisfied, the number of

iterations in the inner loop is bounded by  because the angle between the LOR
and the x axis is less than π/4. Conditions (7) can always be met by choosing the main
dimension of the LOR to correspond to the outer loop.

Consequently, the inner loop can be performed in exactly  iterations provided
that an indicator function for TOR Ti is used

(10)

The indicator function ITi is efficiently evaluated by the GPU. For such that Si,x is not
empty, the inner loop computation can be equivalently expressed as

(11)

where  is the set of voxels shown on Fig. 3. The voxel set  contains Si,x but has a
constant number of elements. This technique processes more voxels than strictly needed but
keeps the bounds of the inner loop constant.

The description of this technique in OpenGL/Cg terms is the following: horizontal lines
(shown on the bottom of Fig. 2) are drawn into a temporary 2-D buffer while a 1-D texture
is applied onto these lines by mapping the horizontal line endpoints to the original LOR
endpoints. The 1-D mapping generates texture look-up coordinates (shown as white dots in
Fig. 2). Textures are filtered on-the-fly by custom shaders which performed the inner loop
computation described in (11). This method generates the αi,x values and stores them in a
temporary 2-D texture. In a second pass, a shader calculates the sum over x (Fig. 5).
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4) Voxel Identification for Line Backprojection—A different technique was used to
perform voxel identification in the line backprojection. The GPU rasterizer was used to
identify which voxels belong to the TOR and distribute the evaluation of the system
response kernel.

The GPU rasterizer can convert a 2-D vectorial polygon Γ into a 2-D pixel image λj. In
computer graphics, 2-D polygons come from the projection of 3-D vectorial primitives onto
the plane of the display. Pixel j is rastered if its center (yj, zj) belongs to polygon Γ (Fig. 4).
We call

(12)

the set of such voxels. A pixel shader Φ can be inserted in the graphics pipeline to compute
the pixel value λ (i.e., color). This yields the raster equation

(13)

GPUs can only raster 2-D vectorial objects, which hinders a straightforward implementation
of 3-D line backprojection. Yet, it is possible to circumvent this obstacle by performing the
line backprojection slice by slice. Color is used to encode the slice index and process four
slices simultaneously. For each slice x and LOR i, a polygon Γ is generated and then
rastered into the set of voxels RΓ (12). The best choice for Γ is the smallest rectangle that
covers the ellipse E (Fig. 4). In that case, RΓ contains Si,x and all the voxels in Ti are
processed. RΓ can be larger than Si,x, so an indicator function is necessary (10).

In OpenGL, rectangles are drawn into a 2-D texture while vertex and pixel shaders are
bound, respectively, to define Γ's coordinates and to evaluate the value of the system
response kernel at each pixel location. The result of the kernel evaluation, pij, is then
assigned to the pixel color register and additively blended with the image texture (Fig. 5).

Identifying voxels using the GPU was implemented distinctly in the line forward and back-
projections. In the forward projector, we used a constant-size square to bound the set Si(x) of
the voxels that contributed to LOR i (Fig. 3), while in the backprojector we used a variable-
size rectangle (Fig. 4). The latter method was more efficient because less voxels were
needlessly processed, which was experimentally confirmed: the GPU line backprojector runs
40% faster than the forward projector. Unfortunately, due to GPU architecture constraints, it
is not efficient to use the rasterizer in the line forward projector. Another fundamental
difference is that parallelization in the forward projection was achieved by running
computation simultaneously on multiple slices, while in the backprojection the voxels that
belong to the same slice are processed in parallel.

5) Kernel Evaluation—The pixel shaders evaluate the value of the system response
kernel. For each LOR, this evaluation is performed twice (once in the forward and once in
the back projection) on all the voxels belonging to the associated TOR.

First, the kernel parameters are calculated using LOR and voxel attributes. LOR attributes
are defined in the vertex shader and passed to the pixel shader. The voxel attributes are read
from the Cg WPOS register.

For the fixed-width Gaussian system response kernel (4), the only parameter needed is the
distance dij between LOR i and voxel j. This distance can be computed by forming the
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orthogonal projection of the voxel center Vj onto the LOR defined by a point Pi and a
direction vector ui, i.e.,

(14)

This computation is fast because hardwired GPU functions for dot product and norm are
used.

Following the calculation of the parameter variables, the kernel value pij for LOR i and
voxel j is evaluated. The kernel evaluation can use texture look-ups and arithmetic functions
such as exponentials (4), powers and linear interpolation. Texture lookups are useful, for
example, to read out the coefficients of splines functions, which represent one parameter of
the system response kernel. The kernel value is only computed when needed. This approach
allows for implementation of arbitrary shift-varying kernels. The high-level shading
language Cg [27] provides an important library of mathematical functions that are applicable
to both scalar and vectorial floating-point registers.

6) Vector Data Update—The last stage of the projection consists of updating the data
vector (either a volumetric image or a set of list-mode projections).

For the line forward projector, the partial sums (8) are summed (outer loop)

(15)

The resulting values fi are then inverted and written back to the projection data texture in
preparation of the line backprojection.

In the line backprojector, the pixel shader called by the rasterizer directly writes to the
correct voxel location. We enabled additive blending to add the shader output to the
previous voxel value (13). Additive blending is performed in dedicated 32-bit floating-point
units. The last step in OSEM consists of multiplying the update image by the previous
volumetric image and dividing it by the sensitivity map (1). This is done by running the
volumetric image through a pixel shader.

E. Evaluation: Simulated Data
1) High-Resolution CZT PET System—This work used data provided by a simulated
small animal PET system design based on cross-strip 3-D CZT detectors that are under
development in our laboratory [28], [29]. In this setup, the tangential interaction coordinate
was determined by a pattern of 1 mm spaced anode strips; the axial coordinate, by the ratio
between the recorded anode to cathode pulse height; and the depth-of-interaction coordinate,
by a pattern of 5 mm spaced cathode strips. The 4 × 4 × 0.5 cm3 detector slabs were
arranged edge-on with respect to incoming photons, in a square box geometry, with field-of-
view (FOV) 8 × 8 × 8 cm3 [Fig. 6(a)]. Events were positioned with 1 mm resolution and an
interaction depth resolution of 5 mm. The system has more than 8 billion LORs, which
motivates list-mode processing.

The Monte-Carlo package GATE was used to simulate the acquisition of two phantoms. To
keep the simulation as realistic as possible, the output from the GATE hits file was used to
position each photon event. Due to the low Z and low density of the CZT material, incoming
photon events often interact multiple times in the detectors. Such photon events were
positioned at the estimated location of the first interaction and binned to the nearest 1 × 5 ×
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1 mm3 bin. Consistent with measurements [29], we modeled the energy resolution by adding

Gaussian noise with FWHM , where E is the energy of the single interaction
in keV.

2) Phantoms and Reconstruction Protocol—A phantom comprising two large
concentric rods (1 cm and 4 cm diameter) of activity [Fig. 6(b)] was simulated to assess the
quantitative contrast recovery of the GPU-based reconstruction independently of the system
resolution. Two regions of interest (ROI 1 and ROI 2) were defined in the 1 cm and the 4 cm
radius rods as shown on Fig. 6(b). The activities in each rod were set up to create a 10:1
contrast between ROI 1 and ROI 2. The contrast C was measured on reconstructed images
as a function of iteration

(16)

where  and  are the average image intensities over each ROI. Spatial variance  in
ROI 2 was also computed to approximate image noise N. Our figure of merit for noise in the
images is

(17)

where  is the spatial variance in ROI 2. Photons that scattered in the object as well as
random coincidences were not included in the reconstruction to obtain the reconstructed
contrast in an ideal case.

The phantom data were reconstructed using list-mode 3D-OSEM on a CPU and a GPU
architecture. On the CPU, we used an inhouse C++ reconstruction package that supports
arbitrary system response kernels. On the GPU, we used the novel technique described in
Section II-D. For both platforms, the FWHM of the fixed-width Gaussian kernel was chosen
to be 1 mm, a value equal to the detector pitch. The computation of the sensitivity image Nj
(2) followed the same procedure for both reconstructions.

A high-resolution sphere phantom [Fig. 6(c)] was simulated to look at the effects of the
GPU reconstruction on image resolution. The phantom comprised four quadrants of spheres,
all in one central plane, placed in air. The spheres were 1, 1.25, 1.5, and 1.75 mm in
diameter. Their centers were placed twice their diameter apart. Twenty million counts were
acquired. The activity was placed all the way up to the edge of the 8 × 8 × 8 cm3 system
FOV.

Finally, to provide a global measure of the deviation between images produced using GPU
and CPU list-mode 3D-OSEM, we measured the average relative deviation

(18)

at different subiterations for both phantoms.

F. Experimental Preclinical Data
1) Vista DR PET—The GEHC eXplore Vista DR [30] is a preclinical PET scanner with
two depth layers of 1.55 mm pitch crystals. The useful field-of-view is 6.7 cm transverse
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and 4.6 cm axial. Photons can be recorded by 6 084 crystal elements, providing 28.8 million
LORs. Data is acquired in 3-D and stored in LOR histograms. We performed two phantom
studies (hot rod and cold rod phantoms) to evaluate the performance of the GPU
reconstruction on a real dataset.

2) Hot and Cold Rod Phantom—The hot rod phantom (Micro Deluxe phantom, Data
Spectrum, Durham, NC) was filled with 110 μCi of 18F and imaged for 20 min. The cold
rod phantom was filled with 200 μCi of 18F and imaged for 20 min. The rod diameters were
1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 mm. The spacing between the centers was twice the diameter.
For both experiments, data was collected in histogram-mode.

Reconstruction was performed on a GPU using 3D-OSEM with Gaussian kernel (1.4 mm
FWHM) and on a CPU using FORE + 2D—OSEM, included with the Vista DR installation.
Thirty-two subsets were formed and two iterations were run, the recommended value for the
system. For 3D-OSEM, we formed a random partition by splitting the LORs into 32 subsets.
We also modified our GPU-based list-mode reconstruction package to handle histogram-
mode data by adding the capability to assign a projection value to each LOR.

G. Processing Time
The processing time for each reconstruction method was measured. CPU-based 3D-OSEM
was benchmarked on a high-end Intel Core 2 Duo E6600 (2.4 GHz). The GPU used for the
same task was the NVIDIA GeForce 8800GT GPU. The image size was 160 × 160 × 160
voxels for the simulated datasets and 175 × 175 × 60 voxels for Vista DR datasets. The
measured time includes Fourier rebinning for FORE + 2D—OSEM. A 1 mm FWHM
Gaussian kernel with a TOR cutoff of η = 1 mm was used for 3D-OSEM in the first
experiment. In the second one, we chose a 1.1 mm FWHM kernel with a TOR η = 0.8 mm
cutoff. Reconstruction time is provided for one million LORs processed (back- and forward
projected).

III. Results
No significant difference was observed between the images generated using list-mode 3D-
OSEM on the GPU and the CPU for the simulated rod contrast phantom (Fig. 7). This was
further confirmed by a horizontal profile through the center of both images [Fig. 7(c)]. The
contrast-noise trade-off at different subiterations was neither affected by the mathematical
reformulation of line projections nor by the use of the GPU as a reconstruction platform
(Fig. 8). The contrast, measured between ROI 1 and ROI 2, converged to 9.426 for the GPU
and 9.428 for the CPU. Noise was virtually identical on both reconstruction (0.28440 versus
0.28435 rms).

Inspection of the sphere phantom images revealed no significant difference between the two
implementations (Fig. 9). Neither did the profile through one row of 1.75 mm spheres. The
reconstructed sphere size was evaluated by fitting a mixture of Gaussians to 1-D profiles
through the center of the 1.75 mm spheres. The sphere size on images reconstructed with
3D-OSEM on both GPU and CPU is 1.36 ± 0.32 mm. The difference in the reconstructed
sphere size between the GPU and CPU implementations was on the order of 10–5 mm.

The global difference between images reconstructed using the GPU and the CPU was
quantitatively evaluated by measuring the average relative deviation (18). The overall
deviation ε between the two implementations was below 0.25% at 20 iterations. It was lower
for the rod phantom than for the sphere phantom (Fig. 10).
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The GPU reconstruction package was benchmarked against an existing standard
reconstruction package on high-resolution datasets acquired on the Vista DR. A comparison
of GPU histogram-mode 3D-OSEM against CPU FORE + 2D—OSEM for the hot rod (Fig.
11) and the cold rod (Fig. 12) show visual differences. All of the 19 1.6 mm rods were
resolved with when 3D-OSEM was used, compared to only ten with FORE + 2D—OSEM.
The improvement is due to the limited potential of FORE for resolution recovery [6], [7],
and not difference in processing between GPU and CPU.

The processing time was also measured for various implementations (Table I). The quoted
time is in seconds per million LORs processed (back- and forward projected). For list-mode
3D-OSEM on the simulated PET system, the GPU reconstruction was 51 times faster than
the CPU's. 3D-OSEM on the GPU was 2.3 times slower than CPU FORE + 2D—OSEM,
but potentially more accurate. The computation of the sensitivity map (2) took 7 min 20 s for
the simulated dataset and 1 min 14 s for the real dataset on the Vista DR.

IV. Discussion
Despite different projection formulations and hardware architecture, the GPU and the CPU
versions of list-mode 3D-OSEM generated virtually identical images. Fig. 10 indicates that
globally, at 20 iterations, the relative deviation ε between the gold standard CPU
implementation and its GPU-based counterpart was, on average, on the order of 0.25%. This
level of error is acceptable for PET and well beyond the accuracy needed. For example, for a
scan with 100 million counts, a 100 × 100 × 100 voxels image will have at best 10%
variance per voxel (based on Poisson statistics). The deviation between GPU and CPU
reconstruction was also smaller for low resolution phantoms such as the rod phantom.

The agreement between the GPU and the CPU implementation was validated both in terms
of the quantitative voxel values (Fig. 7) and the ability to resolve small features (Fig. 9). The
contrast trade-off and the reconstructed sphere size were identical.

The computation of the distance dij between voxel j and LOR i (14) is the leading cause of
error on the GPU. The error in dij is around 8.6 × 10–6 voxel RMS. This error might seem
insignificant, however dij is computed and compared to the cutoff η 10 billion times per
subiteration. As a result of these errors, 0.002% of the TOR voxels are misclassified. The
difference in dij values stems from minuscule errors in the output of floating-point
operations on graphics hardware.

Other less significant sources of deviation between GPU and CPU results occur during the
evaluation of the kernel. The numerical values produced by GPU's hardwired functions,
such as exponentials, are slighlty different from those produced by the CPU math libraries.

The Vista DR study shows that the GPU reconstruction performs well with data measured
on an existing commercial system. We compared GPU 3D-OSEM with a Gaussian kernel to
the standard reconstruction algorithm installed on this system, FORE + 2D—OSEM, in
order to show that the GPU reconstruction produces acceptable results. The quality of the
images meets our expectations and—if not exceeds—matches that of FORE + 2D—OSEM
reconstruction.

As mentioned in Table I, FORE + 2D—OSEM on a CPU is 2.3 times faster than 3D-OSEM
on the GPU, but potentially not as accurate because FORE uses several approximations to
rebin the 28.8 million LORs into 1.4 million “effective” 2-D LORs (61 2-D sinograms with
175 spatial locations and 128 angles [30]). While FORE + 2D—OSEM trades off image
quality for reconstruction speed, a GPU implementation does not pay a significant penalty
for the acceleration.
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It is also worth noting that the processing time for FORE + 2D—OSEM per million
“effective” LORs is 47.3 s, which is 9 times longer than that for GPU 3D-OSEM. In
addition, the rebinned 2-D LORs involve a smaller number of voxels because they are
shorter and they do not incorporate a broad system kernel. The TORs that were used in
Table I for 3D-OSEM involved on average 10 times more voxels than the LORs used for
2D-OSEM, the volumetric image size being equal. Thus, 3D-OSEM would run around 10
times faster if a narrow (i.e., η small) TOR was used.

A few other qualitative comments can be made. Concerning the hot rod phantom (Fig. 11),
all of the 1.6 mm rods are clearly resolved for the GPU-based reconstruction with Gaussian
kernel. In contrast, some the 1.6 mm rods at the edge of the FOV are not resolved on the
FORE + 2D—OSEM image. The background noise is also lower by 27%. For the cold rod
phantom (Fig. 12), we observed that 3D-OSEM provided greater uniformity throughout the
FOV as well as higher contrast.

GPUs and CPUs both aims at executing the workload as fast as possible but they use
different strategies to achieve that goal. CPUs excel at executing one long thread of
computation, while GPUs are efficient at running thousands of independent threads.
Therefore, it is necessary to adopt different reconstruction strategies on each platform. For
example, Siddon's algorithm [31] is well suited to CPU architectures because it requires
voxels to be processed sequentially, in long threads of computation. In kernel projection
techniques, the SRM is evaluated at each voxel independently, so the computation can be
broken down into many small threads. Besides, kernel projection techniques produce better
images because Siddon's algorithm is based on the perfect line integral model which does
not include the contribution of voxels that are off of the LOR axis.

V. Conclusion
The GPU is becoming increasingly useful as a computing platform for medical image
reconstruction. Approaches based on texture mapping were applied successfully to parallel-
beam [21] and cone-beam X-ray CT [24] and are applicable to PET reconstruction when the
data is processed in a sinogram. However, list mode or histogram mode require a radically
different approach.

We showed that GPUs can accelerate the line back- and forward projections for list-mode
and histogram-mode 3D-OSEM. In this scheme, each LOR can be described by two
arbitrary endpoints and incorporate any shift-varying kernel that models the system response
blurring. Our technique can also reconstruct sinogram data, but a texture mapping approach
is more efficient in this case.

This novel use of the GPU in reconstruction is 51 times faster than the same algorithm
implemented on a CPU with virtually identical image quality and quantitative accuracy.
High-resolution, time-of-flight and dynamic PET are three applications that could
immediately benefit from the GPU-based line projectors.

The ability to incorporate any system response kernel in the reconstruction was
demonstrated using a fixed-width Gaussian kernel. More accurate modelling will be
researched as it will allow for greater quantitative accuracy in the reconstructed images.
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Fig. 1.
(a) Trend in the number of LORs for PET systems (Adapted from [1] with permission). (b)

Trend in the computational performance P for CPUs and GPUs over five years: .
GPUs: NVIDIA GeForce FX 5800 (A), FX 5950 Ultra (B), 6800 Ultra (C), 7800 GTX (D),
Quadro FX 4500 (E), GeForce 7900 GTX (F) and 8800 GTX (G); CPUs: Athlon 64 3200+
(A), Pentium IV 560 (B), Pentium D 960 (C), 950 (D), Athlon 64 X2 5000+ (E), Core 2 Duo
E6700 (F), Core 2 Quad Q6600 (G), Athlon 64 FX-74 (H) and Core 2 Quad QX6700 (I).
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Fig. 2.
In the line forward projection, voxels that contribute to LOR i are identified by performing
an outer and an inner loop. The former iterates over the main dimension for the LOR (as
defined in (7)—here ex), while the latter iterates over the two remaining dimensions (only ey
is shown on the figure). The computation of the inner loops is done simultaneously in
parallel shaders within the GPU. To make computation efficient, the inner loop bounds are
increased (see Fig. 3) so that the number of iterations is constant. In a second pass, the outer
loop sum is computed by a second shader (bottom).
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Fig. 3.
Voxel j ∈ Si,x (represented in dark gray) if and only if (yj, zj) is inside ellipse E (9). The size
and shape of Si,x vary with i and x, which prevents efficient GPU loops over this set.

However, Si,x is a subset of  (light + dark gray), whose size is constant. Thus, loops on

 run efficiently on the GPU.

Pratx et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Pixels whose center (represented by a black dot) is comprised within the raster polygon Γ
are selected by the GPU rasterizer (light + dark gray). When the coordinates of the raster
polygon Γ are chosen to contain ellipse E, the set of such voxels includes Si,x. Rastering a
rectangle provides an efficient way to identify contributing voxels in the backprojection.
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Fig 5.
Simplified schematics for one sub-iteration of list-mode 3D-OSEM on the GPU. (OGL)
indicates an OpenGL call, (VS) and (PS) denote programs running in the vertex and the
pixel shader, respectively.
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Fig. 6.
(a) 8 × 8 × 8 cm3 FOV small animal PET system based on 1 mm resolution, 3-D positioning
CZT detectors. (b) Rod phantom used for contrast recovery comparison. (c) Sphere phantom
used for resolution evaluation.
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Fig. 7.
Reconstruction of the rod phantom using list-mode 3D-OSEM on (a) the GPU and (b) the
CPU. The rod radius is 1 and 4 cm [Fig. 6(b)]. The activity concentration ratio between the
two rods is 10:1. (c) Horizontal profile through the center of both images.
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Fig. 8.
Contrast-noise trade-off at different sub-iterations for the rod phantom (Fig. 7). Contrast is
evaluated between ROI 1 and ROI 2 [Fig. 6(b)]. Noise is approximated by the spatial
standard deviation in ROI 1.
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Fig. 9.
Sphere phantom in air reconstructed with 20 iterations of list-mode 3D-OSEM on (a) the
GPU and (b) the CPU, using Gaussian kernel with 1 mm FWHM. The spheres extend to the
edge of the 8 × 8 × 8 cm3 FOV and their size is 1, 1.25, 1.5, and 1.75 mm. The spacing
between the centers is twice the diameter. (c) Profile through the 1.75 mm spheres for both
reconstructions.
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Fig. 10.
Average relative deviation between the GPU and the CPU versions of list-mode 3D-OSEM
for the rod phantom and the sphere phantom.
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Fig. 11.
Micro Deluxe hot rod phantom, acquired on the Vista DR system and reconstructed with (a)
histogram-mode 3D-OSEM with 1.4 mm-FWHM Gaussian kernel on the GPU and (b) using
FORE+2D-OSEM provided with the system. A single slice is shown. The rods diameters are
1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm. Spacing is twice the diameter.
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Fig. 12.
Micro Deluxe cold rod phantom, acquired on the Vista DR system and reconstructed with
histogram-mode 3D-OSEM with (a) 1.4 mm FWHM Gaussian kernel on the GPU and also
(b) using the FORE + 2D—OSEM provided with the Vista DR system. A single slice is
shown. The rods diameters are 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm. Spacing between centers
is twice the diameter.
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TABLE I

Reconstruction Time (Seconds Per Million LORs Processed)

Algorithm Recon. time (s)

GPU 3D-OSEM (160×160×160) 8.8

CPU 3D-OSEM (160×160×160) 449

GPU 3D-OSEM (175×175×61) 5.3

CPU FORE+2D-OSEM (175×175×61) 2.3
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