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Abstract
Despite obvious differences such as the ability to fly, the fruit fly Drosophila melanogaster is
similar to humans at many different levels of complexity. Studies of development, cell growth and
division, metabolism, and even cognition, have borne out these similarities. For example,
Drosophila bearing mutations in the fly gene homologue of the known human disease Fragile X,
are affected in fundamentally similar ways as affected humans. The ramification of this degree of
similarity is that Drosophila, as a model organism, is a rich resource for learning about human
cells, development and even human cognition and behavior. Drosophila has a short generation
time of ten days, is cheap to propagate and maintain and has a vast array of genetic tools available
to it; making Drosophila an extremely attractive organism for the study of human disease. Here,
we summarize research from our lab and others using Drosophila to understand the human
neurological disease, called Fragile X. We focus on the Drosophila model of fragile X, its
characterization, and use as a tool to identify potential drugs for the treatment of Fragile X.
Several clinical trials are in progress now that were motivated by this research.
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Fragile X
Fragile X syndrome (FXS) is the leading single gene cause of intellectual disability (ID) and
autism [1]. Male patients with Fragile X typically have an IQ below 100 (with the average
being close to 50), as well as memory, executive function and sleep deficits. They also have
recognizable physical features such as large ears, an elongated face, a high-arched palate and
macro-orchidism in post-pubertal males [2–5]. Co-morbid autism afflicts 25–67% of males
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with fragile X [1, 6, 7], with the severity of autism generally increasing with the severity of
intellectual disability [6]. Far fewer fragile X females are diagnosed with autism. The
autistic symptoms (communication, social skills, and repetitive behaviors) in Fragile X
patients have historically worsened with age. As in autism, sleep problems are common in
Fragile X patients. Examination of brain tissue from fragile X patients shows dendritic spine
immaturity.

In most cases, the disease occurs when patients inherit an FMR1 gene with an aberrant 5′
untranslated region (5′UTR) containing increases in the normal number of a CGG repeat
sequence. The normal range of repeats is 5 to 30, but when the repeat length increases to
above 200 a cellular response is triggered that increases local DNA methylation and histone
modification changes, leading to transcriptional repression of the gene locus [5, 8]. The
subsequent loss of the fragile X mental retardation protein, FMRP [9, 10] causes the disease
symptoms.

Drosophila has a single highly conserved FMR1 gene, called dfmr1, which is 35% identical
and 60% similar to the human Fragile X gene, FMR1 [11]. The majority of the gene
sequence identity corresponds to known protein-protein interaction domains, and nucleotide-
binding domains needed for FXS function. In addition, the developmental expression pattern
of dfmr1 is analogous to that of the mouse and human FMR1 proteins [11–13]. Drosophila
mutants bearing either point mutations, or that lack all- or most of- the dfmr1 gene-coding
region lack detectable FMRP expression, providing the basis of a Drosophila fragile X
model [13–16]. Studies using this Drosophila Fragile X model have uncovered behavioral,
neuroanatomical and biochemical phenotypic similarities with human FXS patients (Table I)
[17–19]. That this model is relevant to human FXS is underscored by the fact that
pharmacological treatments that rescue Drosophila FXS phenotypes also rescue related
mouse FXS phenotypes and more recently, human Fragile X patient symptoms [20–27] in
clinical trials. We will now focus the rest of this review on our approaches and that of others
to use the Drosophila model of FXS to identify potential treatments for Fragile X.

Social Defects in the Fragile X model
The Drosophila male is born with an innate ability to perform a stereotypic courtship ritual
to entice a receptive female to mate. In courtship, male flies perform a characteristic
sequence of behaviors (Figure 1) [28–30]. These behaviors are repeated with some variation
until successful copulation occurs. This social behavior can be quantified by measuring the
percentage of time a male engages in courtship activity during a 10-minute test interval. This
percentage is referred to as the courtship index (CI) and gives a measure of overall courtship
activity. The quality of courtship behavior can be measured by determining the percentage
of time spent performing each of the steps in the courtship ritual (Figure 1).

The courtship index of naïve dfmr1 mutant males paired with virgin females, was
significantly reduced, compared to naive control males (Figure 2) [15]. More specifically,
fragile X flies failed to sustain courtship, resulting in a lower percent of fragile X flies that
progressed to later steps of courtship (genital licking and copulation). These results
suggested a social deficit in the Drosophila model for fragile X [15].

Another behavior that can be monitored in Drosophila, is grooming behavior. This behavior
is repetitive in nature, but brief; normally lasting for a few seconds. In contrast to wild type
flies, dfmr1 mutant Drosophila engage in excessively long time periods of grooming
behavior, suggesting that these males are more prone to repetitive behaviors, as is the case in
autistic patients [31].
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Learning and memory in Drosophila
Several learning and memory paradigms have been developed in Drosophila. The two most
popular are a classical avoidance conditioning paradigm (an associative memory paradigm
also known as the odor-shock paradigm) and a conditioned courtship paradigm (an
associative memory paradigm also referred to as the courtship conditioning paradigm).

In the odor-shock paradigm, Drosophila memory is measured by the rate at which flies learn
to distinguish between an odor associated with an adverse event (electric shock to the foot
[32–38]), and one associated with a neutral event (no shock). After a single training session,
0–2 minutes after training is referred to as immediate or immediate-recall memory and is
measured behaviorally by the percentage of flies that move to the chamber lacking a shock.
This form of memory had been previously referred to as learning, with the terminology
changing in the mids 1990s, although to this day is still sometimes referred to as learning.
Short-term memory is measured at 60 minutes after training and medium term memory 2–7
hours after training. There are two components of long-term memory, anesthesia resistant
memory (ARM) and long-term memory (LTM). ARM lasts for up to 48 hours after training
and is not dependent on de novo protein synthesis and is typically tested 1 day after massed
training. LTM is de novo protein synthesis dependent, can last at least 8 days but is typically
tested 1–4 days after spaced training (for review see Skoulakis EM, Grammenoudi S., 2006).
Memory is tested after the delay interval by giving the flies a choice between the two odors,
in a T-maze. The flies that have learned to pair the correct odor with the shock, choose the
part of the T-maze with the other odor.

In the conditioned courtship paradigm, a male fly is paired for an hour with a previously-
mated female (unreceptive female), and tested to see if the male remembers the female cues
and suppresses his courtship behavior when subsequently paired with a virgin (receptive)
female [28–30, 38–42]. This memory requires the male to pair complex female avoidance
behaviors with associated sensory signals [43–49]. In this assay, learning-during-training
(LDT) can be measured by comparing the CI during the first ten minutes, with the CI in the
last ten-minutes of the pairing. This is sometimes simply referred to as learning, but is more
related to working memory since it happens while the environmental stimulus is still
present. Generally a 40% reduction or more in courtship activity is observed during the
learning-during-training assay.

Memory is assessed in the next step of the paradigm. Males with typical memory will
exhibit depressed levels of courtship behavior for 2–3 hours after the learning experience/
training [40]. This is evaluated by comparing the behavior of the trained versus an untrained
male, when each is paired with a receptive (virgin) female. A trained male with normal
memory should show relatively depressed levels of courtship. A modified version of the
conditioned courtship paradigm can be utilized to establish and measure long-term memory
lasting out to 9 days after training [50].

dfmr1 mutants had learning and memory deficits by both the odor-shock and conditioned
courtship memory paradigms, and in a fashion consistent with the cognitive deficits of
patients with Fragile X syndrome. Specifically, dfmr1 mutants had impairments in learning
(immediate memory) with less choosing the shock-free chamber compared to control flies,
and forgot what they learned within one day [39]. In the courtship-based assay dfmr1
mutants showed both immediate-recall memory and short-term memory deficits. First,
learning-during-training was initially normal at 5 days of age, but no longer detectable at 20
days of age, perhaps due to cognitive decline with age in the fragile X model [51]. Second,
although learning-during-training was normal at 5 days of age, dfmr1 mutants had
immediate-recall memory deficits at 0–2 minutes after training (Figure 2), short-term
memory deficits at 60 minutes after training, and long-term memory deficits after one day of
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training. In Drosophila, each of these time points corresponds to a different, genetically
separable, form of memory (immediate-recall, short-term memory, and long-term memory,
respectively) [17, 52]. Finally, in addition to learning-during-training decaying with age,
repetitive-type behaviors increased with age in dfmr1 mutants: The percentage of time
dfmr1 mutants groomed themselves is elevated over controls, and increases with age [31].

Neuroanatomical defects in the Fragile X model
Despite significant symptoms, the brains of patients with Fragile X look quite healthy;
however closer examination shows some localized size variation, in addition to reliable
differences at the level of neurons [53]. The overall brain size and structure of the dfmr1
mutant brain also appears normal, however more detailed analysis has identified consistent
defects in select sets of neurons in the central and peripheral nervous systems. For example,
examination of the neuromuscular junction in dfmr1 mutant larvae, reveals an over
elaboration of “bou-tons”; the sites of synapse formation [13] (Table I). Additional gross
neuranatomical defects are also observed in the fruitfly: in dfmr1 mutants the mushroom
bodies required for short- and long-term memory formation exhibit neuron based structures
indicative of inappropriate midline crossing of neurons, compared to control flies [17, 54,
55] (Figure 3).

Drug treatments in the Drosophila Fragile X model
The Drosophila reproductive cycle is 10–14 days long; which makes orally-delivered drug
testing quick and simple. We have successfully used our Drosophila model for Fragile X to
identify drug candidates for the treatment of this disorder. These drugs are currently in
different phases of clinical trials.

The appropriate balance of mGluR signaling pathways relative to GABA signaling pathways
is required for maximum learning and memory in Drosophila, and in other mammals [17,
51] [56–65]. Our earlier studies indicated that a shift in this balance in favor of mGluR
activity was causing the learning and memory defect in our model for Fragile X (see [17] for
details). Furthermore results from cells from human patients indicated impaired cAMP
signaling [57, 61] and mouse studies indicated that there was enhanced mGluR signaling in
the hippocampus of the FXS model brain[66], motivating us to test the effect of decreasing
mGluR signaling via pharmacological treatment[17].

The mammalian genomes contain eight different metabotropic glutamate receptors
(mGluRs), which are subdivided into three groups (I, II and III), based on downstream
signaling events. In contrast, the Drosophila genome contains a single mGluR called
DmGluRA, which in neurons is connected to the Drosophila homologues of mammalian
Group I and Group II mGluR receptor signaling pathways [17, 67–69]. We added several
mGluR antagonists, and lithium, (which acts downstream of mGluR, but in the same
pathways) to the fly food to reduce mGluR signaling and increase cAMP signaling [17]. The
drug was added to the food at different time periods, including during the larval growth
period (development), adulthood, or during both time periods. Flies were tested in adulthood
for fragile X-related symptoms. Interestingly all drug treatments, but not vehicle containing
food, rescued the naïve courtship (social interaction) phenotype, immediate-recall and short-
term memory (Figure 4). In contrast, drug needed to be added during development to rescue
the mushroom body phenotype of neurons [17]. These results demonstrated that inhibiting
the mGluR pathway rescued relevant FXS phenotypes.

These studies were the first to indicate that drug treatment after the bulk of brain
development could rescue a developmental brain disorder. These studies demonstrated that
social and cognitive impairments were not set in stone by immutable developmental
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circuitry, but that adulthood signaling was important in social behavior and memory and that
modulating adulthood signaling could ameliorate social impairments. [70–76] Interestingly
the administration of the specific group II antagonist LY341495 or lithium in full adult mice
at eight weeks of age has recently been shown to reverse phenotypes in adult FXS mice [77,
78] as has treatment with the group I mGluR antagonist CTEP started soon after weening
but before adulthood [78].

In another study, a relatively high-throughput screen has also been employed to identify
drugs that rescue relevant Drosophila FXS mutant phenotypes. By taking advantage of the
observation that elevated levels of glutamate in fly food is toxic to dfmr1 mutants, Chang et
al., 2008, performed a drug screen to identify compounds that rescued the lethality of dfmr1
mutants. They screened the Spectrum collection of 2,000 FDA approved drugs collection
and identified a few that not only rescued the lethality but also rescued the naïve courtship
and mushroom body cross-over defects. Three of the identified compounds have the
commonality in that they act to promote γ-aminobutyric acid (GABA) receptor activity
[79]. Interestingly the identification of these compounds matches findings that there are
deficiencies of GABA(A) receptor signaling in the Drosophila and mouse fragile X models
[80].

Another compound that has efficacy in the fly fragile X model is the drug minocycline. This
derivative of tetracycline was tested in the fly model as it was shown to rescue defects in the
neuronal morphology displayed by the mouse FXS model [25]. In the fly study the effects of
minocycline treatment were examined in three different classes of neurons: motor neurons,
circadian neurons, and mushroom body neurons. In all three neurons the synaptic
connectivity defects were rescued by minocycline treatment and the results were validated
by genetic manipulations [24, 81]. Interestingly in the mouse, minocycline treatment has
been shown to inhibit MMP9 activity, which is also inhibited by cAMP signaling [82, 83].
The overall data from both the fly and mouse models indicate that minocycline treatment
should be examined as an approach to treat FXS symptoms.

Pharmacological treatments for the excessive grooming phenotype of the dfmr1 mutants
have also been identified. Unlike other phenotypes, such as naïve courtship, memory and the
mushroom body defects, this phenotype was exacerbated by treatment with mGluR
antagonists, but interestingly was rescued by treatment with reserpine. Basic research into
the grooming behavior of Drosophila has demonstrated that the addition of monoamines
dopamine, octopamine and serotonin to decapitated flies increases grooming behavior.
Interestingly monoamine synthesis has been found to be elevated in dfmr1 mutants [84] and
over-expression of Drosophila vesicular monoamine transporter (VMAT) transporter that
loads monoamines into synaptic vesicles also increases grooming behavior. Examination of
dfmr1 mutants revealed elevated levels of VMAT mRNA and protein [31]. Reserpine is a
known antagonist of VMAT and treatment with this drug was found to suppress the
excessive grooming behavior [31]. As excessive grooming is a phenotype displayed by the
mouse FXS model, it clearly important to explore this therapeutic route in the mouse model.
Also as reserpine has broad effects on monoamine transport more selective inhibitors of the
specific monoamines should be explored in the fly and mouse models as a route to suppress
excessive grooming behavior which might relate to the repetitive behaviors displayed by
fragile X patients.

As discussed in this review, the development of a Drosophila fragile X model and its initial
characterization has led to the realization that it displays several seemingly relevant
phenotypes. The relevance of these phenotypes is highlighted by the fact that they have been
useful in combination with basic research and with findings from studies using the mouse
fragile X model to suggest routes to pursue for pharmacological testing in Fragile X patients.
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However the final validation from any model comes from the ability of the model to guide
the identification of treatments that have efficacy in human patients. The Drosophila model
has reached this benchmark. Clinical trials, utilizing lithium, mGluR antagonists and
minocycline have all indicated promising results, suggesting further focus on such
compounds in full placebo controlled trials is warranted [20, 21, 85](Table I). The
Drosophila model has provided initial data in the cases of lithium and mGluR antagonists
and GABA agonists to pursue. It has also demonstrated great utility in how it can be used
from hypothesis testing based on basic research findings to unbiased drug screening. Thus
its utilization in the study of other human diseases affecting cognition and behavior should
be considered.
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Figure 1. Drosophila courtship behavior
Adult males will perform an innate stereotypic behavior to entice receptive females to mate.
This courtship ritual involves seven basic steps that are generally performed in the order
presented in the figure. The courtship starts by the male orienting toward the female and
following her. The male then taps the female to pick up pheromonal cues and then initiates
“singing” by extending and vibrating a wing. The male then licks the female abdomen and if
the female displays receptive behavior he will attempt and if successful initiate copulation.
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Figure 2. Naïve courtship and memory phenotypes displayed by the Drosophila fragile X model
Measuring the total amount of time a male courts in a 10 min test interval can quantitate the
level of naïve courtship activity of a particular strain of fly. The total courtship time is
divided by 10 mins to derive a courtship index (C.I.). Dfmr1 mutant males (white bar)
display reduced naïve courtship relative to controls (black bar). This deficit in courtship
activity is not due to sensory or locomotor defects [15]. Learning can be tested in the
courtship paradigm by placing a male in a courtship chamber with an unreceptive female. A
normal male will learn not to court the female within a one-hour training session. Dfmr1
mutants display a normal learning profile with respect to controls (not shown, see [17]).
Once trained, males remember the negative experience of the training and fail to court even
receptive females for up to three hours after training. The right two bars in this figure show
immediate recall memory that is tested within 2 mins of training, by placing a freshly trained
male with a receptive female. Control males displays significant reduction in courtship
(indicated by asterisks, p<0.001), whereas no difference is observed between the level of
naïve courtship and the level of courtship at 2 mins post-training displayed by the dfmr1
mutants.
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Figure 3. Mushroom body phenotype of dfmr1 mutants
A) Whole mount immunostaining of a Drosophila brain with anti-fasicillin II reveals the
mushroom body (MB) of the fly brain, which contains three bilaterally symmetric lobes, α,
β, and γ. The MB is the major learning and memory center of the fly brain and is thought to
be analogous to the vertebrate hippocampus. B) An image of the β–lobes of a control MB
shows that the β–lobes grow toward, but do not cross the mid-line of the brain. C) An image
of the β–lobes of a dfmr1 mutant MB shows a severe cross-over phenotype that is observed
in some of the mutant brains.
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Figure 4. Rescue of naïve courtship and memory by treatment with the mGluR antagonist
MPEP
Control (Rescue) and dfmr1 mutants (FS) were: A) raised in control food during
development and adults (CT-CT); B) raised in food containing the mGluR antagonist MPEP
(drug name) during development and as adults before testing (M-M); C) raised in MPEP
containing food during development and then put on control food as adults before testing
(M-CT); D) raised on control food during development and then placed on MPEP containing
food during adulthood before testing. A) Treatment with only control food reveals the same
dfmr1 phenotypes displayed in Figure 2, i.e. reduced naïve courtship and no detectable
immediate recall memory. A–C) Treatment of the dfmr1 mutants with MPEP containing
food during development and adulthood, development alone or adulthood alone, leads to
significant rescue of the naïve courtship and memory deficits, indicated with asterisks,
p<0.001.
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Table I

Dfmr1 mutant phenotypes and effective pharmacological treatments that rescue them.

Analysis Phenotype Drug Rescue Reference

Neuronal Anatomy Central Neuron targeting defects (mushroom
body cross-over)

mGluR antagonist
Lithium,MPEP,MPPG, MTPG and LY341495

[19]

GABA agonist
GABA, Creatinine and Nipecotic acid

[79]

Muscarinic ACH antagonist
Pilocarpine nitrate, Aminobenztropine

[79]

Antibiotic
Minocycline

[26]

Peripheral Synaptic Defects (over-elaboration of
NMJ structure)

mGluR antagonist
MPEP and genetic reduction of DmGluRA

[71]

Antibiotic
Minocycline

[26]

Central Synaptic Defects (Over-elaboration of
sLNv neurons)

Antibiotic
Minocycline

[26]

Neurotransmitter- containing vesicle Defects
(elevated presynaptic vesicle pool)

mGluR antagonist
MPEP and genetic reduction of DmGluRA

[71]

Behavior Repetitive Behaviors (Excessive grooming
behavior)

Neurotransmitter transport (into vesicles)
antagonist
Reserpine

[35]

Behavior Social Behaviors (naïve courtship) mGluR antagonist
Lithium, MPEP,MPPG, MTPG, LY341495

[19]

GABA agonist
GABA, Creatinine, Nipecotic acid

[79]

Muscarinic ACH antagonist
Pilocarpine nitrate and Aminobenztropine

[79]

Cognition 2 minute memory (Drosophila “Immediate recall
memory”)

mGluR antagonist rescue
Lithium, MPEP, MPPG, MTPG. LY341495

[19]

60 minute memory (Drosophila “short-term
memory”)

mGluR antagonist
Lithium, MPEP, MPPG, MTPG, LY341495

[19]

One day memory (Drosophila “long-term
memory”-protein synthesis-dependent)

mGluR antagonist
MPEP

[43]

Age-dependent learning decline mGluR antagonist
Lithium, MPEP,MPPG, MTPG, LY341495

[19]
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