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Atopic dermatitis is an inflammatory cutaneous disorder characterized by dry skin and relapsing
eczematous skin lesions. Besides antibody production, the contribution of B cells to the pathogenesis of
atopic dermatitis is unclear. In mice, repeated epicutaneous sensitization with ovalbumin induces
inflamed skin lesions resembling human atopic dermatitis and therefore serves as an experimental model
for this condition. To investigate the role of B cells in a murine model of atopic dermatitis, ovalbumin-
sensitized allergic skin inflammation was assessed in mice lacking CD19. In ovalbumin-sensitized skin
from CD19-deficient mice, the number of eosinophils and CD4þ T cells was reduced, and both epidermal
and dermal thickening were decreased. Following in vitro stimulation with ovalbumin, CD19 deficiency
significantly reduced the proliferation of CD4þ, but not CD8þ, T cells from spleen and draining lymph
nodes. Furthermore, splenocytes and draining lymph node cells from ovalbumin-sensitized CD19-
deficient mice secreted significantly less IL-4, IL-13, and IL-17 than ovalbumin-sensitized wild-type
mice. These results suggest that CD19 expression in B cells plays a critical role in antigen-specific CD4þ

T-cell proliferation and T helper 2 and 17 responses in a murine model of atopic dermatitis. Furthermore,
the present findings may have implications for B-celletargeted therapies for the treatment of atopic
dermatitis. (Am J Pathol 2013, 182: 2214e2222; http://dx.doi.org/10.1016/j.ajpath.2013.02.042)
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Atopic dermatitis (AD) is one of the most common in-
flammatory cutaneous disorders, characterized by dry, itchy
skin and relapsing eczematous skin lesions, which affects
approximately 15% to 30% of children and 2% to 10% of
adults.1 Histologically, AD is characterized by epidermal
and dermal thickening with marked infiltration of activated
T cells, eosinophils, and monocytes/macrophages within the
dermis.1 Approximately 60% to 90% of patients with AD
show increased serum total IgE against environmental
and/or food allergens.2e4 In addition, the expression of
T helper (Th) 2 cytokines, such as IL-4, IL-5, and IL-13, is
increased in the acute skin lesions of AD,5,6 suggesting that
Th2 cells play critical roles in disease development.

Skin barrier dysfunction is a critical feature of AD. Recent
studies have shown that more than 10% of patients with AD
have mutations in the filaggrin gene, which is important for
skin barrier function.7,8 It has been hypothesized that
a disrupted skin barrier facilitates antigen penetration and
stigative Pathology.

.

epicutaneous sensitization, leading to allergic skin inflam-
mation in patients with AD.9 Moreover, IL-4 and IL-13
reduce filaggrin gene and protein expression in keratino-
cytes.10 Thus, a genetic and/or acquired defect in filaggrin is
likely to play an important role in the development of AD. In
mice, repeated epicutaneous sensitization of tape-stripped
skin with ovalbumin (OVA), mimicking epicutaneous al-
lergen exposure to epidermal barrier dysfunction, was found
to induce the appearance of inflamed pruritic skin lesions at
the application site, as well as local and systemic Th2
responses. Because of the resemblance of these lesions to
human AD,11,12 this experimental method can serve as
a convenient experimental model.
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CD19 Regulates Atopic Dermatitis in Mice
Historically,B cells havebeen considered tomediate humoral
immune responses by differentiating into antibody (Ab)-
secreting plasma cells.13 However, recent studies have revealed
that B cells also serve as antigen-presenting cells,14 secrete
a variety of cytokines,15 provide costimulatory signals, and
promote T-cell activation.15,16 Moreover, IL-10eproducing B
cell subsets can inhibit innate and adaptive immune responses,
inflammation, and autoimmunity, demonstrating the existence
of regulatoryB cells.13,17e19 Thus, in addition toAbproduction,
B cells have multiple diverse immune functions.

The fate and function of B cells are controlled by signal
transduction through B-cell receptors, which are further
modified by other cell-surface molecules, including CD19,
CD21, CD22, CD40, CD72, and Fcg receptor IIb.20 CD19 is
a general rheostat that defines signaling thresholds critical for
humoral immune responses and autoimmunity.21 CD19 is
a B-cellespecific cell-surface molecule of the Ig superfamily
expressed by early pre-B cells in humans andmice until plasma
cell differentiation.22,23 Human CD19 and mouse CD19 are
functionally equivalent in vivo.22 B cells from CD19-deficient
(CD19�/�) mice are hyporesponsive to a variety of trans-
membrane signals, including B-cell receptor ligation.22 CD20,
a B-cellespecific cell-surface molecule involved in the regu-
lation of B-cell activation and Ca2þ transport, is initially
expressed by pre-B cells in humans and mice with continued
expression until plasma cell differentiation.24,25 Although the
role of B cells, besides Ab production, in the pathogenesis of
AD remains unclear, B-cell depletion in humans with the
chimeric human anti-CD20 monoclonal antibody (mAb)
rituximab results in an improvement of AD,26,27 suggesting
that B cells play important roles in the development of this
condition. Therefore, in the present study, we examined the
importance of B cells in an OVA-sensitized allergic skin
inflammation model usingCD19�/� and wild-type (WT)mice.

Materials and Methods

Mice

WT C57BL/6J mice were purchased from the Jackson
Laboratory (Bar Harbor, ME). CD19�/� (C57BL/6 � 129)
mice were generated as described previously28 and back-
crossed for 7 to 12 generations onto the C57BL/6 background
before use in this study. Lack of cell-surface CD19 expres-
sion was verified by two-color immunofluorescence staining
with flow cytometric analysis. All mice were bred in
a specific pathogenefree barrier facility and used at 8 to 12
weeks of age. All studies were approved by the Committee on
Animal Experimentation (University of Tokyo, Japan).

Epicutaneous Sensitization

Epicutaneous sensitization of mice was performed as de-
scribed previously.12 Briefly, the dorsal skin of anesthetized
mice was shaved and tape-stripped six times. Next, 100 mg
of OVA (Grade V; Sigma-Aldrich, St. Louis, MO) in 100 mL
The American Journal of Pathology - ajp.amjpathol.org
of PBS or 100 mL of PBS alone was placed on a patch of
1 � 1-cm sterile gauze, which was secured to the dorsal
skin with a transparent bio-occlusive dressing (Tegaderm;
3M Health Care, St. Paul, MN). Each mouse had a total of
three 1-week exposures to the patch separated from each
other by 2-week intervals.

Histological Analysis

Mice were sacrificed 1 day after removal of the patch after the
third sensitization (day 50). Skin samples were removed, and
segments were fixed in 10% buffered formalin. After paraffin
embedding, sections (5 mm thick) were cut and stained
with H&E for eosinophil counting and with toluidine
blue for mast cell counting. For immunohistochemistry,
paraffin-embedded tissues were cut into 6-mm-thick sections,
deparaffinized in xylene, and then dehydrated in PBS.
Deparaffinized sections were treated with endogenous
peroxidase blocking reagent (Dako, Glostrup, Denmark) and
proteinase K (Dako) for 6 minutes at room temperature.
Sections were then incubated with rat mAb specific to mouse
CD4 (#2H9; ReliaTech, Wolfenbüttel, Germany), CD8 (D-9;
Santa Cruz Biotechnology, Santa Cruz, CA), and B220
(RA3-6B2; BD Biosciences, San Jose, CA). Rat IgG
(Southern Biotechnology Associates, Birmingham, AL) was
used as a control for nonspecific staining. Sections were then
incubated sequentially (20 minutes at 37�C) with a bio-
tinylated rabbit anti-rat IgG secondary Ab followed by
a horseradish peroxidaseeconjugated avidinebiotin complex
(Vectastain ABC kit; Vector Laboratories, Burlingame, CA).
Sections were developed with 3,30-diaminobenzidine tetra-
hydrochloride and hydrogen peroxide, and counterstained
with methyl green. Stained cells were counted in 10 random
grids under high magnification (�400) using a light micro-
scope. Each section was examined independently by two
investigators (K.Y. and M.K.) in a blinded manner.

Serum Ab Determination

Mice were bled and serum samples were collected on day 50
(1 day after the end of epicutaneous sensitization). All serum
samples were stored at �70�C until use. Serum levels of
OVA-specific IgG1, IgG2a, and IgE Abs were measured with
a specific enzyme-linked immunosorbent assay (ELISA) kit
(AlphaDiagnostic International, SanAntonio, TX), according
to the manufacturer’s protocol. Each sample was tested in
duplicate.

Abs and Immunofluorescence Analysis

Anti-mouse mAbs against B220 (RA3-6B2), CD19 (1D3),
CD5 (53-7.3), CD1d (1B1), CD4 (H129.19), CD8 (53-6.7),
and CD25 (PC61) were obtained from BD Biosciences.
For intracellular staining, mAbs against FoxP3 (FJK-16s;
eBiosciences, San Diego, CA) and the Cytofix/Cytoperm kit
(BD Biosciences) were used. Single-cell suspensions of the
spleen and draining lymph nodes (pooled bilateral axial and
2215
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Figure 1 Decreased allergic skin inflammation in CD19�/� mice. The
shaved back skin of WT and CD19�/� mice was epicutaneously sensitized
with PBS or OVA. A: Representative skin sections from WT and CD19�/�

mice stained with H&E. Original magnification, �200. B: Epidermal and
dermal thickness in WT and CD19�/� mice. Values represent means � SEM
from n � 5 mice per group. Significant differences between sample means
are indicated as *P < 0.05, **P < 0.01. Similar results were obtained in at
least two independent experiments.
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inguinal lymph nodes) were prepared by gentle dissection.
Peritoneal cavity leukocytes were isolated with 10 mL of
cold (4�C) PBS injected into the peritoneum of sacrificed
mice followed by gentle massage of the abdomen. Viable
cells were counted using a hemocytometer, with relative
lymphocyte percentages determined by flow cytometry.
Single-cell leukocyte suspensions were stained on ice using
predetermined optimal concentrations of each Ab for 20 to
60 minutes and fixed as previously described.23 Cells with
the light scatter properties of lymphocytes were analyzed
by immunofluorescence staining and a FACSVerse flow
cytometer (BD Biosciences). Background staining was
determined using unreactive isotype-matched control mAbs
(Caltag Laboratories, San Francisco, CA) with gates posi-
tioned to exclude �98% of unreactive cells.

Lymphocyte Subset Isolation

Magnetic-activated cell sorting technology (Miltenyi Biotec,
BergischGladbach, Germany) was used to purify lymphocyte
populations according to the manufacturer’s instructions.
B220 mAb-coated microbeads and CD4þ and CD8þ T-cell
isolation kits (Miltenyi Biotec) were used to purify B cells,
CD4þ T cells, and CD8þ T cells, respectively. When neces-
sary, the cells were enriched a second time using a fresh
magnetic-activated cell sortingcolumn toobtainpurities>95%.

In Vitro T-Cell Proliferation Assays

On day 50, 3 � 105 purified CD4þ or CD8þ T cells har-
vested from the spleen or draining lymph nodes were
cultured in 96-well plates in 200 mL of complete medium
(RPMI 1640 containing 10% fetal calf serum, 200 mg/mL
penicillin, 200 U/mL streptomycin, 4 mmol/L L-glutamine,
and 5 � 10�5 mol/L 2-mercaptoethanol; all from Invitrogen,
Carlsbad, CA) with 1.5 � 105 mitomycin C (Sigma-
Aldrich)-treated splenic B cells and 200 mg/mL OVA.
5-Bromo-20-deoxyuridine (BrdU; cell proliferation BrdU
ELISA; Roche, Indianapolis, IN) was added during the final
2 hours of 4-day cultures. BrdU incorporation was then
assessed by measuring absorbance at 450 nm.

Analysis of in Vitro Cytokine Synthesis

Single-cell suspensions of the spleen and draining lymph
nodeswere prepared in completemedium.Cellswere cultured
in complete medium at 2 � 106/mL in 24-well plates in the
presence of 200 mg/mLOVA. Supernatant was collected after
96 hours of culture. The levels of IL-4, IL-10, IL-13, IL-17,
and interferon (IFN)-g in the supernatantswere determined by
ELISA according to the manufacturer instructions (R&D
Systems, Minneapolis, MN).

Adoptive Transfer of B Cells

Splenic B cells were purified using CD19 mAb-coated
microbeads (Miltenyi Biotech). The cells were enriched
2216
a second time using a fresh magnetic-activated cell sorting
column to obtain purities >95%. Then, 2 � 107 CD19þ B
cells from naive WT mice were transferred intravenously
into CD19�/� mice. Two days later, the recipient mice were
epicutaneously sensitized with OVA to induce allergic skin
inflammation.

Statistical Analysis

All data are expressed as means � SEM. The U-test was
used for determining the level of significance of differences
in sample means, and the Bonferroni test was used for
multiple comparisons.

Results

Decreased Severity of OVA-Sensitized Allergic Skin
Inflammation in CD19�/� Mice

To assess whether CD19 expression played a role in the pa-
thogenesis of OVA-sensitized allergic skin inflammation, we
sensitized CD19�/� and WT mice with OVA epicutaneously
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 CD19 deficiency reduced
inflammatory cell infiltration in allergic
skin inflammation. The numbers of eosin-
ophils, mast cells, B220þ B cells, CD4þ

T cells, and CD8þ T cells per field of view
were counted. Original magnification,
�400. Values represent means� SEM from
n � 5 mice per group. Significant differ-
ences between sample means are indicated
as *P< 0.05, **P< 0.01. Results represent
one of two independent experiments with
similar results. HPF, high-power field.

CD19 Regulates Atopic Dermatitis in Mice
over 7 weeks, and the site of repeated sensitization was
histopathologically assessed. Epicutaneous sensitization
with OVA induced thickening of the epidermis and dermis
in both WT and CD19�/� mice, but to a lesser degree in
CD19�/� mice (Figure 1). Furthermore, OVA sensitization
significantly increased the numbers of eosinophils, mast
cells, and CD4þ and CD8þ T cells in both WT and CD19�/�

mice, but the numbers of eosinophils and CD4þ T cells were
significantly lower in CD19�/� than in WT mice after
sensitization with OVA (Figure 2). There were no significant
differences in the numbers of mast cells, B cells, and CD8þ

T cells between WT and CD19�/� mice. These results show
that allergic skin inflammation was suppressed in CD19�/�

mice compared with WT mice.
CD19 Deficiency Inhibits OVA-Specific Ab Production

The effect of CD19 deficiency on serum Ab responses was
also assessed after repeated OVA sensitization. OVA-
sensitized WT mice were able to mount OVA-specific
IgG1, IgG2a, and IgE Ab responses following sensitiza-
tion, whereas no OVA-specific Abs were detected in the
serum of PBS-sensitized mice (Figure 3). By contrast, the
The American Journal of Pathology - ajp.amjpathol.org
serum levels of IgG1, IgG2a, and IgE anti-OVA Abs
remained significantly lower in CD19�/� mice sensitized
with OVA; levels in these animals were not significantly
higher than those in WT mice sensitized with PBS. Thus,
CD19 deficiency significantly attenuated OVA-specific Ab
production in OVA-sensitized allergic skin inflammation.

The Effects of Repeated OVA Sensitization on the
Numbers of Regulatory B Cells and T Cells

The effects of CD19 deficiency on the numbers of
CD4þCD25þFoxP3þ regulatory T cells in the spleen and
draining lymph nodes, peritoneal CD5þB220þB1-a cells, and
splenic CD1dhiCD5þ regulatory B cells (B10 cells)19 were
also assessed by flow cytometry after repeated OVA sensiti-
zation. Without OVA sensitization, CD19�/� mice had
significantly reduced B220þ B cells in the spleen and perito-
neal cavity compared with WT mice (P < 0.01), whereas
B220þ B-cell numbers in the draining lymph nodes were
comparable between WT and CD19�/� mice (Table 1). The
numbers of B220þ B cells in the spleen, draining lymph
nodes, and peritoneal cavity increased during OVA-sensitized
allergic skin inflammation in both WT and CD19�/� mice,
2217
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Figure 3 Impaired antigen-specific Ab production in CD19�/� mice. Serum OVA-specific IgG1, IgG2a, and IgE concentrations in OVA-sensitized WT and
CD19�/� mice. Values represent means � SEM from n � 5 mice per group. Significant differences between sample means are indicated as **P < 0.01. Similar
results were obtained in at least two independent experiments.
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although these changes were not significant. The numbers of
regulatory T cells in the spleen and draining lymph nodes
were significantly increased during OVA-sensitized allergic
skin inflammation in both WT and CD19�/� mice (P < 0.05
and P < 0.01, respectively). The numbers of regulatory T
cells in the spleen and draining lymph nodes were comparable
in OVA-sensitized WT and CD19�/� mice. The numbers of
peritoneal B-1a cells were significantly decreased inCD19�/�

mice compared with WT mice, as previously described,23 but
there was no effect on these peritoneal B-1a cell numbers after
OVA sensitization of eitherWT orCD19�/�mice. Moreover,
OVA sensitization did not affect splenic regulatory B-cell
numbers in WT mice, whereas no significant numbers of
regulatory B cells were observed inCD19�/�mice, regardless
of OVA sensitization as described.19 Thus, repeated epi-
cutaneous OVA sensitization affected the numbers of regu-
latory T cells, which did not correlate with the observed
decreased disease severity in CD19�/� mice.
CD19 Deficiency Attenuates OVA-Specific CD4þ T-Cell
Proliferation

The effects of CD19 deficiency on OVA-specific CD4þ and
CD8þ T cell responses was evaluated after repeated OVA
Table 1 Cell Numbers in Wild-Type and CD19�/� Mice

Tissue Subset

Cell number (�
Wild-type PBS

Spleen B220þ 499 � 45
CD1d hiCD5þB220þ 16 � 3
CD4þCD25þFoxP3þ 15 � 2

Draining lymph node B220þ 11 � 2
CD4þCD25þFoxP3þ 2.5 � 0.4

Peritoneal cavity B220þ 12 � 1.8
CD5þB220þ 1.5 � 0.4

Data are expressed as means � SEM of at least four mice.
*P < 0.05, **P < 0.01 versus PBS-sensitized wild-type mice.

2218
sensitization. Spleen and draining lymph node CD4þ and
CD8þ T cells were purified after OVA sensitization, and
OVA-specific T-cell proliferation was quantified in vitro
using purified mitomycin Cetreated B cells from WT mice
sensitized with OVA as antigen-presenting cells in the pres-
ence of PBS or OVA. Spleen and draining lymph node CD4þ

T-cell recall responses to OVA in OVA-sensitized CD19�/�

mice were reduced by 40% (P < 0.01) and 66% (P < 0.01)
compared to OVA-sensitized WT mice, respectively
(Figure 4A). By contrast, OVA-specific CD8þ T-cell prolif-
erationwas equivalent inWT andCD19�/�mice (Figure 4B).
Thus, CD19 deficiency impaired the expansion of antigen-
specific CD4þ T cells, but not CD8þ T cells, following
OVA sensitization.
Th2 and Th17 Cytokine Production Is Decreased in
CD19�/� Mice

Because CD19 regulates OVA-specific T-cell proliferation,
it is possible that CD19 also affects cytokine production in
response to OVA stimulation. Therefore, we stimulated
OVA-sensitized splenocytes and draining lymph node cells
with PBS or OVA in vitro and, using ELISA, examined
whether the loss of CD19 affected cytokine secretion.
10�5)

CD19�/� PBS Wild-type OVA CD19�/� OVA

235 � 32** 532 � 58 262 � 39**
0.2 � 0.1** 20 � 4 0.3 � 0.1**
14 � 3 21 � 3* 20 � 4*
12 � 3 14 � 3 14 � 2
2.3 � 0.6 4.4 � 0.8** 4.9 � 1.0**
2.5 � 0.4** 11 � 2.2 2.3 � 0.1**
0.09 � 0.02** 1.6 � 0.3 0.08 � 0.03**
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Figure 4 CD19 deficiency inhibits OVA-specific CD4þ T-cell prolifera-
tion. CD4þ (A) or CD8þ (B) T cells were purified from spleen or draining
lymph nodes and cultured with mitomycin C-treated B cells from OVA-
sensitized WT mice in the presence of PBS or OVA. Values represent
means � SEM BrdU incorporation from triplicate cultures. All data are
representative of two independent experiments; n � 5 mice per group.
Significant differences between sample means are indicated as *P < 0.05,
**P < 0.01. OD, optical density.

CD19 Regulates Atopic Dermatitis in Mice
OVA-sensitized WT splenocytes secreted more IL-4, IL-
13, IL-17, and IL-10 than PBS-sensitized WT splenocytes
(Figure 5A). OVA-sensitized CD19�/� splenocytes
exhibited reduced secretion of IL-4, IL-13, IL-17, and IL-
10 compared to OVA-sensitized WT splenocytes. Simi-
larly, WT draining lymph node cells treated with OVA
showed increased IL-4, IL-13, IL-17, and IL-10 production
compared to cells treated with PBS, whereas draining
lymph node cells from OVA-sensitized CD19�/� mice
secreted significantly less IL-4, IL-13, IL-17, and IL-10
relative to those from OVA-sensitized WT mice
(Figure 5B). Thus, CD19 deficiency decreased Th2 and
Th17 cytokine secretion in an OVA-sensitized model of
allergic skin inflammation.
Figure 5 CD19 deficiency suppresses Th2 and Th17 cytokine produc-
tion. IL-4, IL-13, IFN-g, IL-17, and IL-10 secretion by splenocytes (A) and
draining lymph node cells (B) from OVA-sensitized WT and CD19�/� mice
after in vitro PBS or OVA stimulation. Values represent means � SEM from n
� 5 mice per group. Significant differences between sample means are
indicated as *P < 0.05, **P < 0.01. Similar results were obtained in at
least two independent experiments. N.D., not detected.
Adoptive Transfer of CD19þ B Cells Restored the
Severity of Allergic Skin Inflammation in CD19�/� Mice

Genetic deficiency of CD19 may affect normal T-cell
development and impair allergic skin inflammation. There-
fore, we next assessed whether CD19 expression in B cells
The American Journal of Pathology - ajp.amjpathol.org 2219
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Figure 6 Adoptive transfer of WT B cells in allergic skin inflammation. WT splenic B cells were purified from naive WT mice and transferred into CD19�/�

mice. Two days later, the recipient mice were epicutaneously sensitized with OVA to induce allergic skin inflammation. A: Representative skin sections stained
with H&E from WT, CD19�/�, and WT B-celletransferred CD19�/� mice. Original magnification, �200. B: Epidermal and dermal thickness in WT, CD19�/�, and
WT B-celletransferred CD19�/� mice. Values represent means� SEM from n � 4 mice per group. Significant differences between sample means are indicated as
*P < 0.05, **P < 0.01.

Yanaba et al
was responsible in vivo for allergic skin inflammation.
B cells were purified from the spleen of naive WT mice and
transferred to CD19�/� mice before OVA sensitization (2 �
107 cells, >95% CD19þ). Transferring WT B cells into
CD19�/� mice significantly enhanced thickening of the
epidermis and dermis (P < 0.05 for both) (Figure 6). The
CD19�/� mice that received WT B cells developed allergic
skin inflammation of the same severity as that in WT mice.
Therefore, reduced allergic skin inflammation of CD19�/�

mice is enhanced to normal levels when spleen B cells from
WT mice are transferred, indicating the pathogenic role of
CD19 expression in B cells.

Discussion

Previous studies have shown that B-cell depletion with CD20
mAb reduces CD4þ T-cell activation during immune
responses to low-dose, but not high-dose, antigens.29 B-cell
depletion also suppresses both arthritogenic collagen-specific
CD4þ T-cell proliferation in murine collagen-induced
arthritis and B-cellespecific CD4þ T-cell proliferation in
pancreatic lymph nodes of NOD mice.29,30 Consistently, the
results of the present study showed that CD19 expression in
2220
B cells is required for antigen-specific CD4þ T-cell activa-
tion following epicutaneous sensitization. Therefore, it is
most likely that B cells contribute to antigen-specific CD4þ

T-cell activation and expansion during allergic skin inflam-
mation. Moreover, antigen-specific B cells are considered to
be essential for Th2 cell development.31 B cells control
parasite infection by promoting Th2 cell development in
mice.32,33 Of note, the results of the present study show that
CD19 expression in B cells promoted, not only IL-4 and
IL-13, but also IL-17 production. It has been reported that the
numbers of Th17 cells are increased in patients with asthma
and acute AD.34,35 In addition, B-celledepletion therapy
with CD20 mAb inhibits Th17 responses in patients with
rheumatoid arthritis,36 suggesting the potential role of B cells
in Th17 responses. Thus, B cells are likely to enhance both
Th2 and Th17 responses, thereby regulating allergic in-
flammatory responses. By contrast, IL-17 expression in
patients with AD is significantly decreased compared with
those with psoriasis, a representative Th17-dominant disease,
although it is slightly increased compared with healthy
individuals.37 Furthermore, we have examined IL-17 mRNA
expression using real-time PCR and found that expression in
the inflamed skin was not affected by OVA sensitization in
ajp.amjpathol.org - The American Journal of Pathology
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CD19 Regulates Atopic Dermatitis in Mice
either WT or CD19�/� mice (data not shown). Therefore, the
role of Th17 cells in allergic diseases remains largely unclear.
Additional studies will therefore be required to clarify the
role of Th17 responses in AD.

B cells play both positive effector and negative regulatory
roles during immune responses.13 CD19 deficiency may
either decrease or increase inflammation depending on the
disease model. It has previously been demonstrated that
CD19 deficiency is beneficial in mouse models of systemic
sclerosis,38 rheumatoid arthritis,39 and pulmonary fibrosis,40

whereas CD19 deficiency enhances inflammation in the
contact hypersensitivity response,19 an experimental auto-
immune encephalomyelitis model of human multiple scle-
rosis,41 and a dextran sulfate sodiumeinduced colitis model
of human ulcerative colitis.18 Because CD19�/� mice have
few, if any, CD1dhiCD5þ regulatory B10 cells,19 CD19
deficiency may lead to worsening of the inflammatory
response in diseases that have a predominance of regulatory
B cells relative to effector B cells. Our experimental findings
revealed that the splenic B10 cell subset did not have
a critical role in the inhibition of OVA-sensitized allergic
skin inflammation. Consistently, rituximab-induced B-cell
depletion in humans led to the improvement of AD,26,27

suggesting the predominance of effector B cells relative to
regulatory B cells in this condition. However, it is also
possible that the balance between opposing positive and
negative regulatory B-cell functions changes during the
course of disease in AD. In mice, B-cell depletion before
experimental autoimmune encephalomyelitis induction cau-
ses a deterioration in disease symptoms, whereas B-cell
depletion after the development of experimental autoimmune
encephalomyelitis symptoms inhibits pathogenic T-cell
expansion and decreases disease severity.42 Further studies
are needed to determine the contribution of each B-cell subset
to the pathogenesis of AD.

The absence of CD19 from birth affects normal B-cell
development, and the number of B220þ B cells was found to
be significantly reduced in CD19�/� mice.22,43 The prolif-
erative capacity of CD19�/� B cells to mitogens is also lower
than WT B cells.22 Therefore, suppressed allergic skin
inflammation in CD19�/� mice is likely due to the decreased
B-cell numbers and/or impaired proliferation capacity of
B cells, resulting in impaired allergic skin inflammation.
Moreover, it was reported that peritoneal B-1a cells are also
decreased in CD19�/� mice compared with WT mice,23

although it has also been shown that peritoneal B-1a cells
promote Th17 cell differentiation in mice.44 Thus, reduced
peritoneal B-1a cells may decrease IL-17 secretion in
CD19�/� mice. Future studies may determine the precise
mechanisms by which B-cell CD19 expression is involved in
allergic skin inflammation.

In conclusion, the current findings demonstrate that CD19
expression in B cells plays a pathogenic role in OVA-
sensitized skin inflammation by enhancing antigen-specific
CD4þ T-cell expansion and Th2 and Th17 responses.
Currently, patients with AD are treated with corticosteroids
The American Journal of Pathology - ajp.amjpathol.org
and immunosuppressive drugs, but these therapies can cause
severe side effects such as infection and may fail in some
severe cases. The therapeutic use of B-celletargeted thera-
pies that effectively eliminate B cells or simply reduce B-cell
hyperactivity may hold promise for the treatment of allergic
skin diseases such as AD. Examining the effects of B-cell
depletion in a murine model of OVA-sensitized skin in-
flammation with an intact immune system using mouse
anti-mouse CD20 mAb can provide a preclinical test for
B-cellebased immunotherapy for AD in humans.
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