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The molecular mechanisms underlying progression of prostate cancer (PCa) to castrate-resistant (CR) and
metastatic disease are poorly understood. Our previous mechanistic work shows that inhibition of tran-
scription factor Stat5 by multiple alternative methods induces extensive rapid apoptotic death of Stat5-
positive PCa cells in vitro and inhibits PCa xenograft tumor growth in nude mice. Furthermore, STAT5A/B
induces invasive behavior of PCa cells in vitro and in vivo, suggesting involvement of STAT5A/B in PCa
progression. Nuclear STAT5A/B protein levels are increased in high-grade PCas, CR PCas, and distant
metastases, and high nuclear STAT5A/B expression predicts early disease recurrence and PCa-specific
death in clinical PCas. Based on these findings, STAT5A/B represents a therapeutic target protein
for advanced PCa. The mechanisms underlying increased Stat5 protein levels in PCa are unclear.
Herein, we demonstrate amplification at the STAT5A/B gene locus in a significant fraction of clinical
PCa specimens. STAT5A/B gene amplification was more frequently found in PCas of high histologic
grades and in CR distant metastases. Quantitative in situ analysis revealed that STAT5A/B gene
amplification was associated with increased STAT5A/B protein expression in PCa. Functional studies
showed that increased STAT5A/B copy numbers conferred growth advantage in PCa cells in vitro and
as xenograft tumors in vivo. The work presented herein provides the first evidence of somatic
STAT5A/B gene amplification in clinical PCas. (Am J Pathol 2013, 182: 2264e2275; http://
dx.doi.org/10.1016/j.ajpath.2013.02.044)
Supported by NIH National Cancer Institute grant 1RO1CA113580-
01A1 (M.T.N.) and Academy of Finland grant 135655 (T.M.). Shared
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CA56036-08.
Organ-confined prostate cancer (PCa) is treated by surgery or
radiation, whereas options for disseminated PCa include
hormone therapy, radiotherapy, and chemotherapy. The re-
sponse to hormone therapy is of limited duration, and me-
tastatic PCa inevitably becomes castrate resistant (CR),
a stage for which there is no cure.1,2 Mechanisms underlying
PCa progression to metastatic CR disease remain to be
identified. Known molecular mechanisms underlying the
development of CR PCa include i) gene amplification of an-
drogen receptor (AR),3 ii) somatic mutations of AR resulting
in increased affinity for ligands,4,5 and iii) development of
intracellular capacity to biosynthesize androgens from
stigative Pathology.

.

adrenal steroids and cholesterol.6,7 In addition, constitutively
active alternative splice variants of AR have been recently
described in CR xenograft models of PCa and in clinical CR
PCa.8e10 These truncated AR isoforms do not require
ligand and may support CR PCa growth. Alternatively, or in
addition to alterations in AR, hyperactivation of growth
factor signaling may promote proliferation and survival of
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STAT5A/B Gene Amplification in Prostate Cancer
CRPCa through stimulation of AR or independently of AR.11

STAT5A/B controls PCa growth and tumor progression.12e18

Nuclear STAT5A/B protein levels are elevated in high-grade
organ-confined PCas, hormone therapyeresistant cancers,
and distant metastases.12,17e21 STAT5A/B belongs to the Stat
family of transcription factors22 and comprises two highly
homologous isoforms, 94-kDa STAT5A and 92-kDa
STAT5B.22 STAT5A (24 kb) and STAT5B (77 kb) genes are
located juxtaposed in a head-to-head orientation on chromo-
some 17q21.31.23 STAT5A/B are latent cytoplasmic proteins
that become activated by phosphorylation of a conserved
tyrosine residue in the carboxy-terminal domain.22 Tyrosine
phosphorylation leads to STAT5A/B homodimerization or
heterodimerization and to translocation to the nucleus, where
the dimers bind to specific STAT5A/B response elements of
target genes for transcriptional regulation.22

Inhibition of STAT5A/B protein expression or transcrip-
tional activity induces extensive apoptotic death of STAT5-
positive human PCa cells.12,14,15 Inhibition of STAT5A/B
significantly reduces subcutaneous and orthotopic PCa
xenograft tumor growth in nude mice.12,14,15,18 In addition,
nuclear STAT5A/B expression is elevated in PCa compared
with normal prostate epithelium.12,19,24 Increased nuclear
STAT5A/B is clustered to PCas of high histologic grades,19

a finding that we later confirmed in three additional inde-
pendent sets of human PCas.20,25 Nuclear STAT5A/B
expression is elevated in most CR PCas and distant PCa
metastases.17,18,21 STAT5A/B andAR functionally synergize
in AR-positive PCa cells.21 Consistent with these findings,
a recent study suggested that STAT5 may be involved in
redirecting AR binding sites in clinical CR PCas.26 However,
STAT5A/B promotes PCa cell viability also through AR-
independent pathways/mechanisms because STAT5A/B
inhibition triggers extensive apoptosis of PCa cells, which
lack AR expression.15 We recently showed that STAT5A/B
promotes metastatic behavior of human PCa cells in vitro,
including STAT5A/B-induced migration and heterotypic
adhesion of PCa cells and down-regulation of E-cadherin.18,20

STAT5A/B induced a 10-fold increase in metastasis forma-
tion in an experimental metastasis assay in nude mice,18 and
STAT5A/B has been shown to control tumor growth and
metastatic potential in the autochthonous transgenic mouse
PCamodel.27 Consistent with these findings, elevated nuclear
STAT5A/B expression in clinical PCas predicted early
disease recurrence and PCa-specific death in cohorts of 35720

and 67825 organ-confined PCas.
Given the importance of STAT5A/B in PCa growth and

progression, it is imperative to determine the mechanisms
leading to increased nuclear STAT5A/B protein levels in
PCa. One of the key activators of STAT5A/B in PCa is
locally produced prolactin,13,19,28 the expression of which is
elevated in high-grade PCas, CR PCas, and distant metas-
tases.13,19,29,30 Chromosome arm 17q, where the STAT5A
and STAT5B genes reside (17q21), is known to be altered in
hereditary and incidental PCa.31e44 This led us to hypothe-
size that the STAT5A/B gene locus may undergo somatic
The American Journal of Pathology - ajp.amjpathol.org
amplification in PCa during disease progression. Using
fluorescence in situ hybridization (FISH) analysis of prostate
tumor sections and a PCR-based copy number assay, we
demonstrate herein that STAT5A/B gene copy numbers are
increased in a significant fraction of clinical PCas. High copy
number gain (HCNG) of STAT5A/B genes was clustered to
PCas of high histologic grades and to CR metastases.
Amplification of the STAT5A/B gene locus in PCa was
associated with elevated nuclear STAT5A/B protein levels in
the tumor samples. Finally, we demonstrate that an increase
in STAT5A/B copy numbers in PCa cells promoted growth
of PCa cells in vitro and PCa xenograft tumors in vivo.
In summary, these data establish the novel concept that
STAT5A/B genes undergo amplification in high-grade organ-
confined PCas, CR local recurrences, and CR distant metas-
tases. Somatic STAT5A/B gene amplification may represent
a mechanism promoting PCa growth and progression.

Materials and Methods

Prostate Specimens

We evaluated 257 formalin-fixed, paraffin-embedded human
prostate specimens obtained from three different institutions
divided into four categories, as follows: i) whole tissue
sections of benign prostate hyperplasia specimens (n Z 9)
were from the Institute for Pathology, University of Basel
(Basel, Switzerland)45; ii) whole tissue sections of primary,
organ-confined PCa specimens of different histologic grades
(n Z 108) were from Georgetown University (Washington,
DC) [nZ 69; Gleason score (GS) 6, nZ 17; GS 7, nZ 24;
and GS 8/9, n Z 28] and from Thomas Jefferson University
(Philadelphia, PA) (nZ 39; GS 6, nZ 14; GS 7, nZ 18; and
GS 8/9, n Z 7); iii) recurrent CR PCa specimens (n Z 64)
collected by transurethral resection of the prostate after
androgen deprivation therapy in a tissue microarray platform
were from the Institute for Pathology, University of Basel;
and iv) whole tissue sections of distant PCa metastases
(nZ 21) were from Georgetown University. The metastases
were from lymph nodes (n Z 12) or bone (n Z 9).

In addition, CR distant PCa metastases in a tissue micro-
array format were obtained from the Institute for Pathology,
University of Basel (n Z 55). The metastases were from
lymph nodes (n Z 27), bone (n Z 6), or other organs
(n Z 43). The metastatic lesions were collected at autopsy
from patients who had undergone androgen deprivation and
had subsequently died of end-stage disease.

Freshly frozen samples of 14 CR PCas (Tampere Univer-
sity Hospital, Tampere, Finland) were from patients who had
experienced local progression of the disease during hormone
therapy. The specimens were histologically examined for
the presence of tumor tissue (>50% of cells) using H&E-
stained slides. The therapymodalities were orchiectomy (four
cases), luteinizing hormone-releasing hormone analogue
(three cases), estrogen (two cases), orchiectomy and estrogen
(two cases), combined androgen blockade (two cases), and
2265
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unknown (one case). The mean time from the onset of
androgen ablation to progression was 40months (range, 15 to
68 months). DNA was amplified using a GenomiPhi DNA
amplification kit (Amersham, GEHealthcare, Little Chalfont,
UK) according to the manufacturer’s instructions.

The sample-processing procedures for the paraffin-
embedded tissue samples in the four institutions were highly
consistent with each other. The Thomas Jefferson University
Institutional Review Board found this research to be in
compliance with federal regulations governing research on
deidentified specimens and/or clinical data [45CFR46.102(f)].

PCa Cell Lines

DU145, LNCaP, and CWR22Rv1 cell lines were obtained
from ATCC (Manassas, VA) and were grown in RPMI 1640
medium (Mediatech Inc., Herndon, VA) and 10% fetal
bovine serum (Quality Biological Inc., Gaithersburg, MD),
2 mmol/L L-glutamine (50 IU/mL), and 50 mg/mL of
penicillin-streptomycin (Mediatech Inc.). C4-2B and B4 cells
were cultured in T-medium in the presence of 5% fetal bovine
serum. Chromosomes were prepared from each cell line
using a standard protocol.46

Fluorescence in Situ Hybridization

To evaluate STAT5A/B gene copy numbers in PCa cell lines
and in the PCa tissue sections, we designed a STAT5A/B probe
consisting of a contig of four overlapping bacterial artificial
chromosome (BAC) clones containing sequences of the
STAT5A/Bgene:RP11-60B4,RP11-1151C17,RP11-1151G10,
and RP11-365D24 (BACPAC Resources, Oakland, CA). As
a control probe for all the samples, we used a chromosome 17
centromeric BAC clone: RP11-299G20. Correct chromosomal
localization of each of the four STAT5A/B probe BAC clones
to 17q21.1-21.2 and of the control probe BAC clone to
17p11.1was confirmed by FISHmapping.47 FISH analysis of
the cell lines and tissue sections was performed using a stan-
dard protocol.47e49 In brief, DNA from each BAC clone was
prepared and labeled using nick translation, as previously
described. The clones of the STAT5A/B probe and the control
clone were labeled with digoxigenin-11-dUTP and biotin-16-
dUTP (Roche Applied Sciences, Indianapolis, IN), respec-
tively, using nick translation.

For the tissue sections, each section was deparaffinized
with xylene, followed by pepsin digestion for 90 minutes and
fixation in an ethanol series. After denaturing in 70% form-
amide/2� standard saline citrate at 80�C, the tissue sections
or the chromosomal preparations from the cell lines were
hybridized with the denatured probe cocktail at 37�C over-
night. After stringent washes, the digoxigenin-labeled probe
(Stat5) was detected with a mouse anti-digoxin antibody
(Sigma-Aldrich, St. Louis, MO), followed by a goat anti-
mouse antibody conjugated to tetramethylrhodamine iso-
thiocyanate (Sigma-Aldrich). The biotin-labeled probe
(control) was detected with avidin conjugated to fluorescein
2266
isothiocyanate (Vector Laboratories, Burlingame, CA). The
chromosomes (cell line preparations) and the nuclei (cell line
preparations and paraffin sections) were counterstained with
DAPI and embedded in antifade reagent [200 mmol/L 1,4-
diazobicyclo[2,2,2]-octane 90% v/v glycerol, 20 mmol/L
Tris-HCl (pH 8)] to reduce photobleaching.
Scoring of cells and digital image acquisition were per-

formed using a 63� objective mounted on a Leica DMRBE
microscope (Leica Microsystems, GmbH, Wetzlar, Ger-
many) equipped with optical filters for DAPI, fluorescein
isothiocyanate, and tetramethylrhodamine isothiocyanate
(Chroma Technology Corp, Bellows Falls, VT) and a charge-
coupled device camera (CV-M4þ CL camera; JAI Ltd.,
Yokohama, Japan). The Applied Imaging CytoVision 4.5
software package (Genetix, Molecular Devices, San Jose,
CA) was used for image acquisition and processing. At least
50 nonoverlapping nuclei were evaluated in each case.
STAT5A/B amplification was defined as a signal ratio of gene
probe to control probe �2 or five or more copies of the gene
signal in �10% of the tumor nuclei.48,49

Immunohistochemical Analysis

Fluorescence Immunohistochemical Analysis Using
Automated Quantitative Analysis
Slides were deparaffinized, followed by dehydration and
antigen retrieval in Dako PT module using low pH retrieval
buffer (Dako, Carpinteria, CA). Immunostaining was per-
formed using Dako Autolink Plus autostainer. Endogenous
peroxidase activitywas blocked usingDakoFLEXperoxidase-
blocking reagent for 10 minutes, followed by serum-free
protein block for 30 minutes. Slides were incubated for 20
minuteswith amixture of the primary antibodies anti-STAT5A
(dilution 1:4000; Advantex BioReagents, Houston, TX), anti-
STAT5B (dilution 1:8000; Advantex Bioreagents), and anti-
cytokeratin (AE1/AE3) (dilution 1:100; Dako, Carpinteria,
CA); washed three times with Dako wash buffer; and subse-
quently incubated with a mixture of secondary antibodies
containing rabbit horseradish peroxidaseeconjugated anti-
body and mouse Alexa Fluor 488 (Molecular Probes Inc.,
Eugene, OR). The slides were washed three times with Dako
wash buffer and were subsequently incubated with tyramide-
Cy5 (PerkinElmer, Waltham, MA). The slides were stained
with DAPI for nuclear visualization, and automated quantita-
tive analysis (AQUA) was performed using the AQUA/
PM2000 imaging platform (HistoRx Inc., Branford, CT).
Slides were scanned and images of each area were captured at
three different channels detecting fluorescein isothiocyanate/
Alexa Fluor 488 (cytokeratin; green), Cy5 (STAT5; red), or
DAPI (nuclei; blue). AQUA scores were generated based on
the images acquired and the software program used, and the
results were validated manually, as described previously.50

Chromogenic Histochemical Analysis
Immunostaining was performed as described previ-
ously.12,19,20,28,51,52 The primary antibody recognizing
ajp.amjpathol.org - The American Journal of Pathology
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STAT5A/B Gene Amplification in Prostate Cancer
STAT5A/B (monoclonal antibody) (Santa Cruz Biotech-
nology, Santa Cruz, CA) was diluted in 1% bovine serum
albumin in PBS at a concentration of 0.2 mg/mL. The primary
antibody for detection of Ki-67 was from Biogenex Labora-
tories (San Ramon, CA). Antigen-antibody complexes were
detected using appropriate biotinylated goat secondary anti-
bodies (Biogenex Laboratories) followed by streptavidine
horseradish peroxidase complex, using diaminobenzidine
as chromogen and Mayer’s hematoxylin as counterstain.
Apoptotic cells were detected by TUNEL assay, which was
performed using the in Situ Death Detection Kit (Roche
Applied Sciences) as previously described.53

Scoring of Levels of Nuclear STAT5A/B in PCa Sections
Individual PCas were scored for STAT5A/B protein levels
on a scale from 0 to 3 where 0 represented undetectable; 1,
low; 2, moderate; and 3, high levels of STAT5A/B.

Copy Number Assay

GenomicDNA from14 freshly frozenCRPCaswere extracted
using a DNeasy blood and tissue kit (Qiagen Inc., Valencia,
CA) and were amplified using a GenomePhi DNA amplifica-
tion kit (Amersham, GE Healthcare) according to the manu-
facturers’ instructions. The copy numbers of STAT5A and
STAT5B were measured using a duplex RT-PCRebased pre-
designed Taqman copy number assay (Applied Biosystems,
Foster city, CA) according to the manufacturer’s protocol. The
predesigned primers used for STAT5A/B were as follows:
Hs06414094 (STAT5A, intron 17) and Hs05504773 (STAT5B,
intron 5) labeled with FAM dye. VIC dyeelabeled primers for
the detection of RNase P H1 RNA gene (RPPH1) copy
numbers on chromosome 14 was the internal reference copy
number, and human genomic DNA from pooled healthy male
blood was used as a control. The real-time quantitative PCR
reactionswere performed in quadruplicate using 20 ng ofDNA
as a template. The PCR program was 95�C for 10 minutes
followed by 40 cycles at 95�C for 15 seconds and 60�C for 1
minute. The PCR products were detected using the ABI
PRISM 7900HT sequence detection system, and the data were
analyzed using CopyCaller software version 2.0 (Applied
Biosystems).
Generation of Adenoviruses for Gene Delivery
of STAT5 or LacZ to PCa Cells

Plasmid cDNA-CMV-Stat5a and pCDNA-CMV-LacZ were
cloned into an adenoviral vector using the BD Adeno-X
Expression System 2 (BD Biosciences Clontech, Palo Alto,
CA) according to the manufacturer’s protocol, as described
previously.14,15 This specific cloning system was chosen
because it uses Cre-loxPemediated recombination, which
reduces the likelihood of development of replication-
competent adenovirus over time. The STAT5A and LacZ
BD Creator donor vector (pDNR-CMV) expression cassettes
The American Journal of Pathology - ajp.amjpathol.org
were transferred toBDAdeno-X acceptor vector (pLP-Adeno-
X-CMV) (BD Biosciences Clontech) by Cre-loxPemediated
recombination. The recombinant adenoviruses were purified,
linearized by PacI digestion, and transfected to QBI-293A
cells to produce infectious recombinant adenoviruses. Viral
stocks were expanded in large-scale cultures, purified by
double cesium chloride gradient centrifugation, and titered
side-by-side by a standard plaque assay method in QBI-293A
cells as per the manufacturer’s instructions.

Solubilization of Proteins, Immunoprecipitation, and
Immunoblotting

Cells were lyzed in lysis buffer [10 mmol/L Tris-HCl (pH
7.5), 5 mmol/L EDTA, 50 mmol/L NaCl, 30 mmol/L sodium
pyrophosphate, 50 mmol/L sodium fluoride, 1 mmol/L
sodium orthovanadate, 1% Triton X-100 (Roche Diagnostics
GmbH, Mannheim, Germany), 1 mmol/L phenylmethyl-
sulphonylfluoride, 5mg/mLof aprotinin, 1mg/mLof pepstatin
A, and 2 mg/mL of leupeptin], and the protein concentrations
of the whole cell lysates were determined by the Bradford
method (Bio-Rad Laboratories, Hercules, CA). The cell
lysates were immunoprecipitated for 2 hours at 4�C with
1.2 mg/mL of anti-STAT5A polyclonal antibody (Advantex
Bioreagents, Conroe, TX). Antibodies were captured by
incubation with protein AeSepharose beads (Pharmacia
Biotech, Piscataway, NJ) for 60 minutes. The filters were
blotted with 1:250 anti-STAT5A/B monoclonal antibody
(Transduction Laboratories Inc.) or anti-actin polyclonal
antibody (Sigma-Aldrich). The immunoreaction was detected
by horseradish peroxidaseeconjugated secondary antibodies
in conjunction with enhanced chemiluminescence substrate
mixture (Amersham,Piscataway,NJ) andwas exposed tofilm.

Clonogenic Survival Assay

DU145 cells were infected with AdStat5a or AdLacZ at
a multiplicity of infection (MOI) of 5. Infected cells were
trypsinized 24 hours later, and 50, 100, 200, and 400 cells
were seeded in triplicate. After 11 days, cells were washed
twice with PBS and were stained for 30 minutes in 0.25%
crystal violet solution (Sigma-Aldrich), and colonies with
>30 cellswere counted. For each group, we calculated plating
efficiency (PE) as (colonies counted/cells seeded) � 100 and
survival fraction as colonies counted/cells seeded� (PE/100).

Human PCa Xenograft Tumor Growth Experiments

Castrated male athymic mice (Taconic, Germantown, NY)
were cared for according to the institutional guidelines.
Sustained-release dihydrotestosterone (DHT) pellets (90-day
release, 1 pellet per mouse; Innovative Research of America,
Sarasota, FL) were implanted s.c. 3 days before the tumor cell
inoculations to normalize the circulating DHT levels. DU145
cells were infected 24 hours before inoculation to the mice with
AdStat5a or AdLacZ at an MOI of 5. DU145 cells (20 � 106)
2267
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Table 1 STAT5A/B Amplification Status in Clinical PCas

Amplification status No. of patients %

Benign prostate hyperplasia
Positive 0 0
Negative 9 100

GS 6 primary PCas
Positive 1 3
Negative 30 97

GS 7 primary PCas
Positive 5 12
Negative 37 88

GS 8 or 9 primary PCas
Positive 14 40
Negative 21 60

CR local PCa recurrences
Positive 10 16
Negative 54 84

Distant PCa metastases
Positive 4 19
Negative 17 81

CR distant PCa metastases
Positive 16 29
Negatve 39 71

Haddad et al
were mixed with half of the total injection volume (0.2 mL)
withMatrigel (BD Biosciences, San Jose, CA) and injected s.c.
into the flanks of the nude mice (one site per mouse). When the
tumors reached 15 to 20 mm in diameter, the mice were
sacrificed, and the tumor tissues were harvested. The volumes
of the tumors were measured until day 55 and were calculated
using the following formula: V Z (p/6) � d1� (d2)

2, with d1
and d2 indicating two perpendicular tumor diameters.

Statistical Analysis

For comparison of STAT5A/B gene amplification frequency
in PCas with different histologic Gleason Scores (GSs) or
immunohistochemical (IHC) STAT5A staining scores,
logistic regression analysis with pairwise comparisons was
used. The Mantel-Haenszel c2

1 test of correlation was used to
determine whether the intensity of STAT5A immunostaining
of PCas was associated with the GS of the cancers. Fisher’s
exact test was used for analysis of the rate of STAT5A locus
amplification in Gleason grade 3/3 versus 4/4 PCas. For
comparison of the tumor volumes between the control group
and the group in which the tumors overexpressed STAT5A
gene, mixed-effects linear regression analysis was used. Data
were log10 transformed to better meet assumptions of
normality and constant residual variance. Fixed effects were
included for the treatment groups (LacZ versus STAT5A),
time, and their interaction. Time was treated as a categorical
variable. A first-order autoregressive structure was assumed
for the residual variance covariance matrix. The interaction P
value was <0.0001, indicating that the difference between
groups differed by time. A geometric mean ratio of 1 indi-
cates that the (geometric) mean tumor volumes in the two
groups are the same. Significant differences were observed at
measurements on days 20 (P Z 0.006), 27 (P Z 0.004), 41
(P Z 0.0007), and 55 (P Z 0.025). Mixed linear regression
analysis was used for comparing Ki-67 or apoptotic cell
numbers in LacZ- versus STAT5A-overexpressing prostate
tumors. Percentages were logit-transformed before analysis.

Results

HCNG of STAT5A/B Genes at 17q21 in Primary Organ-
Confined PCas

To determine whether the STAT5A/B gene locus undergoes
copy number changes in PCa, we used FISH analysis of PCa
cell lines and formalin-fixed, paraffin embedded tissue
sections of benign prostate hyperplasias and primary organ-
confined PCas. First, FISH analysis of metaphase chromo-
somes prepared from three PCa cell lines using the STAT5A/B
probe showed two copies of the gene in CWR22Rv1 cells
(diploid chromosome content), three copies in DU145
cells (triploid chromosome content), and four copies in
LNCaP cells (tetraploid chromosome content) (Supplemental
Figure S1). STAT5A/B FISH analysis of paraffin-embedded
tissue sections of nine benign prostate hyperplasias showed
2268
a diploid pattern in all benign prostate hyperplasia samples
(Supplemental Figure S2 and Table 1). In organ-confined
PCas (n Z 108), 19% of the cancers showed amplification
of the STAT5A/B locus. Notably, analysis of whole sections of
PCas indicated that the amplification of STAT5A/B locus was
focal. Figure 1, A andB, shows examples of PCa sectionswith
amplification at the STAT5A/B gene locus versus PCas with
the STAT5A/B diploid pattern (Figure 1C).

STAT5A/B Gene Amplification Is Clustered to PCas of
High Histologic Grade

To determine the distribution of HCNG of the STAT5A/B
gene locus in PCas of different histologic grades, the
frequency of STAT5A/B gene amplification was analyzed in
organ-confined PCas, which were well differentiated (GS 6, n
Z 31), moderately differentiated (GS 7, n Z 42), or poorly
differentiated (GS 8/9, n Z 35) (Table 1), by FISH. The
STAT5A/B gene amplification status differed significantly by
GS (PZ 0.0017). As shown in Figure 1D, the percentage of
cases with gene amplification was 40% in high-grade (GS 8/
9) PCas, 12% in moderately differentiated PCas (GS 7), and
3% in well-differentiated (GS 6) PCas. Pairwise comparisons
of logistic regression analysis indicated that the STAT5A/B
gene locus was amplified in PCas of GS 8/9 significantly
more frequently compared with PCas of GS 6 (P Z 0.0053)
or GS 7 (P Z 0.0067). GS 6 and GS 7 PCas did not differ
with respect to percentage of HCNG of STAT5A/B genes
(P Z 0.21). Of the 108 PCas analyzed, Gleason grade
information was available for 38 cases, of which 13 were
Gleason grade 3/3 and 7 were 4/4. The rate of STAT5A/B
locus amplification for Gleason grade 3/3 was 7.7%, whereas
for Gleason grade 4/4 it was 71.4%. This suggests that
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Amplification at the STAT5A/B gene locus in clinical human PCas
was overrepresented in primary organ-confined PCas of high histologic grades,
CR PCas, distant metastases, and CR distant metastases. AeC: HCNG of the
STAT5A/B gene locus was more frequent in primary organ-confined PCas of high
histologic grades. Paraffin-embedded tissue sections of PCas were analyzed by
FISH for STAT5A/B gene copy numbers. Representative images of PCa sections
show amplification at the STAT5A/B gene locus (A and B) or diploid STAT5A/B
locus pattern (C). STAT5A copy numbers were analyzed by FISH in paraffin-
embedded tissue sections of 108 organ-confined PCas of GS 6 (n Z 31), GS 7
(n Z 42), and GS 8 or 9 (n Z 35) PCas. The percentages positive for STAT5A
gene amplification are shown above each column (D). STAT5A/B gene locus is
amplified in PCas of GS 8/9 significantly more frequently compared with PCas
of GS 6 (PZ 0.0053) or GS 7 (PZ 0.0067). BPH, benign prostate hyperplasia.
E: Amplification at the STAT5A/B gene locus was frequent in CR local recur-
rences, distant metastases, and CR distant metastases. Paraffin-embedded
tissue sections of local CR recurrences obtained by transurethral resection of
the prostate (n Z 64), distant metastases (n Z 21), and CR PCa metastases
(n Z 55) were analyzed for STAT5A/B gene copy numbers by FISH. The per-
centages positive for HCNG of STAT5A/B genes are shown above each column.

STAT5A/B Gene Amplification in Prostate Cancer
STAT5A/B locus amplification may represent a marker of
Gleason grade 4 PCa, which warrants further analyses in
larger cohorts in the future. In summary, these results indicate
that amplification at the STAT5A/B gene locus was clustered
to primary organ-confined PCas of high histologic grade.

HCNG of STAT5A/B Genes Is Frequent in CR Distant PCa
Metastases

The observation that increased STAT5A/B gene copy
numbers were significantly more prevalent in high-grade
The American Journal of Pathology - ajp.amjpathol.org
PCas prompted us to investigate whether STAT5A/B genes
undergo amplification during progression of PCa to CR and/
or metastatic disease. To address this question, we first
evaluated STAT5A/B copy numbers by FISH in a tissue
microarray of specimens obtained by transurethral resection
of the prostate from 64 patients with PCa with local recur-
rence (development of urethral obstruction) after androgen
deprivation therapy (Figure 1E and Table 1). Amplification
at the STAT5A/B gene locus was detected in 16% of the CR
local PCa recurrences. Next, we analyzed STAT5A/B copy
numbers in 14 freshly frozen CR PCas from patients who
had experienced local progression of PCa during hormone
therapy (Table 2) using a duplex real-time PCR-based
detection method TaqMan copy number assay. The samples
had been histologically examined by a pathologist for the
presence of >50% cancer cells. The average time from the
onset of androgen deprivation to recurrence was 40 months.
The relative copy number of STAT5A/B was normalized to
a known copy number of the RNaseP reference gene and
was further compared with the calibrator DNA (genomic
DNA from pooled healthy male blood) and calculated using
Copycaller software version 2.0 (Applied Biosystems).
Increase in STAT5A/B gene copy numbers was identified in
2 of 14 CR PCa recurrences (14%) (four to six copies)
(Table 2).

To assess STAT5A/B copy number status in disseminated
PCas, we analyzed paraffin-embedded tissue sections of 21
distant metastases (lymph nodes, n Z 12; bone, n Z 9) by
FISH. The results showed HCNG of STAT5A/B locus in
19% of the distant metastases (Figure 1E). Finally, we
evaluated STAT5A/B copy numbers by FISH in paraffin-
embedded tissue sections of CR distant PCa metastases
collected at autopsy from patients who had undergone
androgen deprivation therapy and subsequently had died of
end-stage metastatic PCa (Figure 1E). The STAT5A FISH
analyses indicated that STAT5A/B locus was amplified in
29% of the CR metastatic lesions. Collectively, these data
showed HCNG of the STAT5A gene locus in 14% to 16% of
CR local recurrences and 29% of CR distant metastases. Note
that in this study, the CR recurrences and CR distant
metastases analyzed were on tissue microarrays, whereas the
organ-confined PCas were individual tissue sections on
regular slides. Because tissue microarrays provide signifi-
cantly less tissue to be examined than whole tissue sections
on individual slides, the STAT5A gene amplification
frequency may be underestimated in local and distant CR
PCa recurrences owing to limited tumor tissue examined.
When emergence of STAT5A/B locus amplification was
analyzed in the cell culture setting by comparing LNCaP cells
versus C4-2B and B4 androgen-independent sublines of
LNCaP cells or CWR22Pc cells after prolonged androgen
deprivation (32 days) in vitro, no apparent amplification at
the STAT5A/B locus was detected (Supplemental Figures S3
and S4). This may be due to lack of the presence of tumor
microenvironment and the consequent critical epithelial-
stromal interactions in an in vitro setting. Taken together,
2269
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Table 2 Amplification at the STAT5A/B Locus in CR PCas

Sample
ID

STAT5A/B
locus
amplification Treatment

Diagnosis
to sample
(months)

1 No Orchiectomy þ estrogen 22
2 No Estrogen 29
3 No Orchiectomy þ estrogen 68
4 No Unkown
5 No Bicalutamide þ estrogen 60
6 No Orchiectomy 50
7 Yes Estrogen 27
8 No LHRH 47
9 No LHRH þ bicalutamide 60
10 No LHRH 15
11 No Orchiectomy 50
12 No LHRH 27
13 No Orchiectomy 37
14 Yes Orchiectomy 40

LHRH, luteinizing hormoneereleasing hormone.

Haddad et al
the data presented herein imply that STAT5A/B gene loci
undergo amplification during the process of PCa disease
progression.

STAT5A/B Gene Amplification Is Associated with
Increased STAT5A/B Protein Expression in PCa

To investigate the relationship between HCNG of STAT5A/B
gene locus and STAT5A/B protein expression in PCas,
we performed quantitative fluorescent STAT5A/B IHC
analysis and STAT5A/B FISH analysis on serial sections of
paraffin-embedded tissues of primary, organ-confined PCas
(Figure 2A). STAT5A/B immunostaining was quantified by
AQUA.50 Areas of diploid STAT5A/B status versus robust
STAT5A/B gene amplification showed low versus high
STAT5A/B protein expression, respectively (Figure 2A), as
quantified by AQUA in a single PCa (Figure 2B). Analysis of
a large section of each given PCa clearly indicated a focal
nature of STAT5A/B locus amplification. In summary, the
results of these experiments indicate that HCNG of the
STAT5A/B gene locus in PCa was associated with increased
STAT5A protein expression.

To further analyze whether amplification of STAT5A/B
genes is associated with increased STAT5A/B protein ex-
pression, we analyzed serial paraffin-embedded PCa tissue
sections by STAT5A/B FISH and IHC analyses of
STAT5A/B protein in the set of 108 organ-confined PCas
investigated for STAT5A/B locus amplification distribution
versus histologic grade of cancer (Figure 2C). The speci-
ficity of the STAT5A/B antibody used for IHC studies has
been demonstrated previously.12,18e21,51e53 The immuno-
stained tissue sections were evaluated using a quantitative
scoring method, which was based on the intensity of
STAT5A staining where 0 represented negative; 1, weak; 2,
moderate; and 3, strong staining (Figure 2C). Immuno-
staining for STAT5A protein was positively associated with
2270
the GS of PCa (P < 0.0001), as we have previously shown
in other clinical PCa materials.19,20 Similar to STAT5A/B
gene amplification, the percentage of PCas with high im-
munostaining for STAT5A increased as the GS increased,
whereas the percentage of PCas with low immunostaining for
STAT5A increased as the GS decreased (Figure 2C). When
the frequency of HCNG of the STAT5A/B gene locus was
evaluated in PCas with STAT5A immunostaining scores of 0,
1, 2, or 3, the presence of HCNG of the STAT5A/B gene locus
differed significantly by STAT5A immunostaining score
(logistic regression analysis, P Z 0.034) (Figure 2D). Pair-
wise comparisons of the immunostaining score showed that
the frequency of STAT5A/B gene amplification was signifi-
cantly higher in the group where STAT5A protein expression
was at the highest levels (score 3) compared with STAT5A
protein expression score 0 (P Z 0.01), 1 (P Z 0.02), or 2
(P Z 0.04) PCas (Figure 2D). Collectively, these results
indicate that STAT5A/B gene amplification positively asso-
ciated with increased STAT5A protein expression in PCa.

Increased Copy Numbers of STAT5A/B Genes in PCa
Cells Promotes Growth of PCa Cells in Vitro and PCa
Xenograft Tumor Growth in Vivo

Given that STAT5A/B genes at 17q21 locus are frequently
amplified in high-grade clinical PCas and that STAT5A/B is
critical for viability of PCa cells in culture, we hypothesized
that the introduction of additional copies of the STAT5A/B
gene will promote growth of PCa cells in culture and xeno-
graft tumors in vivo in nude mice. To test this hypothesis, we
cloned STAT5A/B into replication-deficient adenovirus
(AdStat5) and verified that adenoviral expression of STAT5A
resulted in increased STAT5A expression for at least 21 days
(data not shown). DU145 cells were infected with AdStat5 or
AdLacZ (MOIZ5) as the control group (Figure 3A), and cells
were seeded the next day at different densities for clonogenic
survival assay (Figure 3B). Introduction of extra copies of
STAT5A (MOI Z 5) increased the fraction of surviving cell
clones by 400% to 500% on day 11 compared with control
cells expressing LacZ (Figure 3B). To test if the expression of
extra copies of STAT5A/B affected PCa xenograft tumor
growth in vivo, DU145 cells were infected with AdStat5 (MOI
Z 5) 24 hours before inoculation of the cancer cells subcu-
taneously into the flanks of nude mice (Figure 3C). The mice
had been castrated and supplemented with sustained-release
DHT pellets to normalize the circulating androgen levels,
and the tumor sizes were measured once per week. Introduc-
tion of additional copies of STAT5A/B genes promoted pros-
tate tumor growth significantly (P < 0.0001) compared with
the control group (AdLacZ) (Figure 3C). Specifically, size
differences between tumors expressing LacZ versus tumors
with additional STAT5A/B copies were evident at tumor size
measurements on days 20 (P Z 0.006), 27 (P Z 0.004), 41
(PZ 0.0007), and 55 (PZ 0.025). To verify STAT5Aprotein
expression levels in PCa xenograft tumors in the two treatment
groups (AdStat5 versus AdLacZ), paraffin-embedded tissue
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 HCNG of the STAT5A/B locus positively correlates with high STAT5A protein expression in PCa. A: STAT5A/B gene amplification is overrepresented
in the areas of PCa where STAT5A/B protein expression levels are high. STAT5A/B expression was analyzed in paraffin-embedded tissue sections of primary
organ-confined PCas by immunofluorescence immunostaining (red) and was quantified by AQUA. In adjacent serial paraffin-embedded tissue sections, STAT5A/B
copy numbers were analyzed by STAT5A/B FISH, and H&E staining of areas 1, 2, 3, and 4 is also shown. B: Tumor regions with FISH-verified gene amplification
[regions 3 (n Z 4) and 4 (n Z 4)] show significantly elevated STAT5A/B protein compared with regions without detectable gene amplification [regions 1
(n Z 4) and 2 (n Z 9); P < 0.001 by analysis of variance and Sheffe’s post hoc test]. C: High STAT5A/B protein expression was associated with high histologic
grade of PCa. The set of organ-confined PCas (n Z 108) analyzed for STAT5A gene amplification was assayed for STAT5A/B protein levels by IHC analysis.
Immunostaining scores were obtained for 98 of the 108 cases (GS 6, n Z 27; GS 7, n Z 36; GS 8 or 9, n Z 35). Individual PCas were scored for STAT5A/B
protein levels on a scale from 0 to 3 where 0 represented undetectable; 1, low; 2, moderate; and 3, high levels of STAT5A/B. Immunostaining for STAT5A/B was
significantly more frequent in PCas of GS 8 or 9 compared with GS 7 or 6 (***P < 0.0001, Mantel-Haenszel c2

1 test). Data are given as means � SD. D: Logistic
regression analysis shows a high frequency of STAT5A/B gene amplification in PCas with high levels of STAT5A/B protein expression. HCNG of the STAT5A gene
locus was significantly higher in the group where STAT5A protein expression was at the highest levels (score 3) compared with score 0 (PZ 0.01), 1 (PZ 0.02),
or 2 (P Z 0.04) PCas. STAT5A/B locus amplification using FISH versus STAT5A/B protein expression.

STAT5A/B Gene Amplification in Prostate Cancer
sections of the tumors were immunostained for STAT5A. As
demonstrated in Figure 3D, the increase in STAT5A protein
expression was robust in prostate xenograft tumors grown
from DU145 cells infected with extra copies of STAT5A
compared with the control group. The tumors were further
analyzed for apoptotic and proliferating cells (Figure 3E). The
number of apoptotic cells was eightfold lower in PCa xenograft
The American Journal of Pathology - ajp.amjpathol.org
tumors expressing STAT5A versus the control tumors
(LacZ) (P Z 0.006). At the same time, the number of Ki-
67eexpressingcellswas increasedby approximately twofold in
STAT5A-overexpressing tumors (P Z 0.009) versus control
tumors (LacZ). In summary, these results support the functional
importance of increased STAT5A gene expression for PCa
growth in an AR-negative PCa tumor model.
2271
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Figure 3 Increased STAT5A copy numbers
promoted growth of PCa cells and PCa xenograft
tumors in nude mice. A: DU145 cells were infected
with AdStat5 or AdLacZ at an MOI of 5. To verify
increased expression of STAT5A in AdStat5-infecetd
DU145 cells, STAT5A was immunoprecipitated (IP)
using anti-STAT5A polyclonal antibody at different
time points and was immunoblotted (WB) with anti-
STAT5A/B monoclonal antibody. WCL, whole cell
lystate. B: For clonogenic survival assay, 50, 100,
200, and 400 cells were seeded in triplicate. After
11 days, cells were stained with 0.5% crystal violet,
and colonies with >30 cells were counted. PE
[(colonies counted/cells seeded) � 100] and
survival fraction [(colonies counted/cells seeded)
� (PE/100)] per each group were calculated. Data
are given as means � SD. C: Introduction of extra
copies of STAT5A to DU145 human PCa cells and
subsequent subcutaneous tumor growth in athymic
nude mice. DU145 PCa cells infected with
adenovirus-expressing STAT5A at an MOI of 5.
Twenty-four hours after infection, the cells were
inoculated s.c. into the flanks of castrated athymic
nude mice supplied with sustained-release DHT
pellets (1 tumor per mouse, 20 � 106 DU145 cells
per site, 1 DHT pellet per mouse). Tumor growth was
measured for 55 days. Tumor volumes were calcu-
lated using the following formula: V Z (p/6) �
d1� (d2)

2, with d1 and d2 indicating two perpen-
dicular tumor diameters. Mixed-effects linear
regression analysis, measurements on days 20
(P Z 0.006), 27 (P Z 0.004), 41 (P Z 0.0007),
and 55 (P Z 0.025). D: IHC analysis of STAT5A/B
showed a high level of nuclear STAT5A expression in
DU145 xenograft tumors overexpressing STAT5A
protein. E: The percentage of apoptotic cells
determined by TUNEL assay (left panel) was dec-
reased (P Z 0.006) and the percentage of Ki-67e
positive cells (right panel) was increased
(P Z 0.009) in DU145 xenograft tumors over-
expressing STAT5A.

Haddad et al
Discussion

PCa typically starts as organ-confined androgen-regulated
cancer that later progresses to CR and disseminated disease.
The molecular mechanisms underlying uncontrolled growth
and metastatic potential are unclear. STAT5A/B signaling
cascade represents a therapeutic target pathway in PCa. In
the present work, we demonstrate amplification at the
STAT5A/B gene locus in clinical PCas. We show that
HCNG of the STAT5A/B gene locus was particularly prev-
alent in organ-confined PCas of high histologic grades, CR
local recurrences, and CR distant metastases. We further
demonstrate that STAT5A/B gene amplification was spatially
associated with high STAT5A/B protein expression and that
introduction of additional copies of STAT5A/B to PCa cells
promoted growth of the cells in culture and as xenograft
tumors in vivo.
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In this study, STAT5A/B copy numbers were analyzed by
FISH in paraffin-embedded tissue sections and by a PCR-
based copy number assay in freshly frozen PCa speci-
mens. By FISH analysis, the STAT5A/B gene locus was
amplified on average in 16% of the 128 organ-confined
PCas analyzed, 16% of CR local recurrences, 19% of
distant metastases, and 29% of CR distant metastases. In
organ-confined PCas, HCNG of STAT5A/B genes was
associated with high histologic grade of PCa. In other
words, the frequency of HCNG of the STAT5A/B gene locus
in organ-confined PCas was at the highest (40%) in poorly
differentiated GS 8 or 9 PCas, whereas only 3% of well-
differentiated GS 6 PCas showed an increase in STAT5A/B
gene copy numbers. STAT5A/B gene copy number analysis
of 14 CR local PCa recurrences by a PCR-based method
indicated that 14% of the recurrences had HCNG of the
STAT5A/B locus. To compare these results with the results of
ajp.amjpathol.org - The American Journal of Pathology
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STAT5A/B Gene Amplification in Prostate Cancer
other studies, we focused computational analysis of GEO
data sets of PCas (GSE 8026, 3289, 2171, 1439, and 1390)
for STAT5A/B gene amplification on GSE 802654 because it
represented an analysis of genome variation profiling of
DNA, whereas the others were transcriptomic databases. In
the GSE 8026 database, expression levels were found for the
STAT5A probe set for 20 localized PCas and 17 metastatic
CR PCas. Two of the 17 metastatic PCas (12%) showed clear
STAT5A/B gene amplification, whereas none of the localized
PCas exhibited a copy number increase in the STAT5A/B locus.
Note that the DNA samples analyzed in this data set (GSE
8026) were not from metastases at distant sites but from the
actual PCas that had disseminated and become CR; therefore,
an analysis of the distantCRmetastaseswould potentially yield
higher STAT5A/B locus amplification rates.55 Analysis of the
GSE 35988 database indicated a 15% rate for alterations in the
STAT5A/B gene locus in a cohort of 61 primary and CR PCas.
Future studies will need to determine the size of the amplicon
at 17q.21 by array comparative genomic hybridization using
chromosome 17especific probe sets.

HCNG of the STAT5A/B locus in PCa was associated
with high nuclear STAT5A/B expression, suggesting that
STAT5A/B gene amplification results in increased STAT5A
protein expression. This was determined in adjacent tissue
sections by FISH and by AQUA analysis of STAT5A
protein expression in situ. Moreover, in the cohort of 114
PCas where HCNG of STAT5A/B genes was more frequent
in high GS cancers (Figure 1A), also high nuclear STAT5A
protein expression was clustered to the same high GS PCas
(Figure 2B). In fact, 45% of the PCas with high nuclear
STAT5A expression had HCNG of the STAT5A/B gene
locus (Figure 2D). Amplification of STAT5A/B gene locus
in PCa may represent a mechanism that provides certain
PCa cell clones an increased supply of STAT5A/B proteins
to be activated by the local growth factor tyrosine kinase
networks, such as Prl-Jak2, IL-6eJak2, Src, or EGFR
family.18,56e59

The finding of amplification at the STAT5A/B gene
locus in PCa is important because STAT5A/B is crucial for
PCa cell growth in culture and for PCa tumor growth
in vivo.12e15,17,27 Specifically, data from our laboratory12e15

and others17,27 have shown that inhibition of STAT5A/B in
PCa cells by RNA interference, antisense oligonucleotides, or
adenoviral expression of dominant-negative mutant of
STAT5A/B triggers extensive apoptotic death of PCa cells
in vitro and inhibits PCa tumor growth in vivo.12e15 STAT5A
promotes transcriptional activity of AR in PCa cells,21 and
STAT5A/B increases protein stability of the AR in PCa
cells.17Moreover, a recent study by Sharma et al,26 suggested
that STAT5A and other members of the Stat transcription
factor familymay redirect ARbinding site selection in clinical
CR PCas, leading to altered AR transcriptome in CR PCas in
patients. Nevertheless, the mechanisms underlying STAT5A
induction of PCa growth likely involve AR-dependent and
AR-independent pathways. This concept is supported by data
showing that STAT5A/B inhibition also induces extensive
The American Journal of Pathology - ajp.amjpathol.org
death of AR-negative PCa cells in culture.15 Herein, we
provide additional data demonstrating that simulation of
HCNG of the STAT5A/B gene locus in the AR-negative
DU145 prostate xenograft tumor model by introduction of
additional STAT5A/B gene copies using adenovirus as an
expression vector resulted in significant promotion of PCa
tumor growth in nude mice accompanied by decreased
apoptotic cells and increased number of Ki-67epositive
cells. The results of this study point out that increased
expression of STAT5A/B by the introduction of additional
STAT5A/B gene copies critically promoted PCa cell and
tumor growth through mechanisms independent of the AR.

The frequency of STAT5A/B gene locus amplification was
high in CR distant metastases of PCas. We have shown
previously that STAT5A/B induces metastastic characteris-
tics and behavior of PCa cells in culture and promotes
metastases formation in experimental metastases models in
nude mice.15 Moreover, protein levels of STAT5A/B have
been shown to be increased in distant PCa metastases.15 It is
possible that HCNG of the STAT5A/B gene locus in PCa may
provide certain PCa cells with growth advantage, metastatic
potential, and increased ability to survive at the distant sites.
For understanding of the full biological significance of
STAT5A/B locus amplification in PCa, it will be crucial to
determine whether STAT5A/B gene amplification in PCa
predicts early recurrence, development of metastatic disease,
and PCa-specific death.

In summary, the findings presented in this work show, for
the first time, HCNG of the STAT5A/B locus in clinical PCas.
This finding is important because the JAK2-STAT5A/B
signaling pathway represents a therapeutic target for PCa,
and pharmacologic inhibitors of this pathway are currently
entering clinical trials for PCa. Ongoing work aims to
determine whether STAT5A/B amplification in PCa predicts
the responsiveness of a given cancer to inhibitors of the
JAK2-STAT5A/B pathway.
Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2013.02.044
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