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Peroxisome proliferatoreactivated receptor gamma (PPARg) agonists have anticancer activity and influ-
ence cell differentiation. We examined the impact of the selective PPARg agonist efatutazone on mammary
cancer pathogenesis in a mouse model of BRCA1mutation. Mice with conditional loss of full-length BRCA1
targeted to mammary epithelial cells in association with germline TP53 insufficiency were treated with
efatutazone through the diet starting at age 4 months and were euthanized at age 12 months or when
palpable tumor reached 1 cm3. Although treatment did not reduce percentage of mice developing invasive
cancer, it significantly reduced prevalence of noninvasive cancer and total number of cancers permouse and
increased prevalence of well-differentiated cancer subtypes not usually seen in this mouse model. Invasive
cancers from controls were uniformly estrogen receptor a negative and undifferentiated, whereas well-
differentiated estrogen receptor aepositive papillary invasive cancers appeared in efatutazone-treated
mice. Expression levels of phosphorylated AKT and CDK6 were significantly reduced in the cancers devel-
oping in efatutazone-treated mice. Efatutazone treatment reduced rates of mammary epithelial cell
proliferation and development of hyperplastic alveolar nodules and increased expression levels of the
PPARg target genes Adfp, Fabp4, and Pdhk4 in preneoplastic mammary tissue. Intervention efatutazone
treatment in mice with BRCA1 deficiency altered mammary cancer development by promoting development
of differentiated invasive cancer and reducing prevalence of noninvasive cancer and preneoplastic disease.
(Am J Pathol 2013, 182: 1976e1985; http://dx.doi.org/10.1016/j.ajpath.2013.02.006)
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The anticancer activities of peroxisome proliferatoreactivated
receptor gamma (PPARg) agonists include promotion of
differentiation1e5 and apoptosis6 in addition to inhibition of
cell proliferation,6,7 inflammation,3 and angiogenesis.8 The
agent studied herein, efatutazone (CS-7017/RS5444), is a
selective high-affinity thiazolidinedione (TZD)-class PPARg
agonist that can induce PPARg-dependent transactivation but
cannot activate either PPARa or PPARd transactivation.9e11

Efatutazone restrains growth of human anaplastic thyroid
and colon cancer cells in xenograft mouse models9,11,12 and
inhibits formation and progression of azoxymethane-induced
colonic adenomas in mice.13 In anaplastic thyroid cancer
cells, efatutazone reduces cell proliferation through a
stigative Pathology.

.

PPARg-dependent mechanism that affects activation of the
Rho-related GTP-binding protein RhoB and CDK inhibitor 1
signaling pathways.11,12 A recent phase 1 trial in patients with
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PPARg Agonist Impacts Mammary Cancer
advanced malignancy demonstrated acceptable toxicity with
some evidence of disease control.14 The EC50 of 0.20 nmol/L
reported for PPARg promoter activation by efatutazone is
estimated to be 1/50th of the EC50 of themore commonly used
PPARg agonist rosiglitazone.2,9 An appropriate in vivo dose
for pathophysiologic experiments is known from published
dose-ranging and efficacy studies previously performed,
including studies in mouse models.9,11e13

PPARg belongs to a family of nuclear receptors that bind
to peroxisome proliferator hormone response elements
located in the promoters of target genes.15,16 PPARg binds to
members of the retinoic X receptor (RXR) family as heter-
odimers. Ligands of PPARg can stimulate target gene tran-
scription, including adipose differentiationerelated protein
(Adfp), fatty acid binding protein 4 (Fabp4), and pyruvate
dehydrogenase kinase isozyme 4 (Pdhk4).15,16 Therapeutic
roles for TZD-class PPARg agonists are under debate.
Although there is evidence that this drug class reduces pre-
neoplastic and cancer cell growth and differentiation4,5,17e22

with alterations in cell-cycle proteins,11,12,17e19,22 including
RAC-a serine/threonine-protein kinase (AKT),20,21 in vivo
changes in expression levels of cell-cycle proteins are not
always accompanied by alterations in cell growth,16 and
results from many studies using PPARg agonists as single
agents have not been promising.23,24 Moreover, three
TZD-class drugs that were Food and Drug Administration
approved25 for diabetes are currently restricted owing to
an increased risk of cardiovascular events (rosiglitazone;
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafety
InformationforPatientsandProviders/ucm143349.htm, last
accessed April 7, 2013), under investigation for raising the risk
of bladder cancer (pioglitazone; http://www.fda.gov/Drugs/
DrugSafety/PostmarketDrugSafetyInformationforPatientsan
dProviders/ucm109136.htm, last accessed April 7, 2013), or
withdrawn owing to hepatotoxicity (troglitazone; http://
www.fda.gov/Safety/MedWatch/SafetyInformation/Safety
AlertsforHumanMedicalProducts/ucm173081.htm, last ac-
cessed April 7, 2013). Finally, off-target PPARg-independent
anticancer effects of some TZD-class drugs have been identi-
fied, complicating the interpretation of experiments showing
reductions in cancer cell growth.26 Efatutazone was tested in
this study because it is a selective PPARg agonist with high
affinity for PPARg that showed acceptable toxicity in a phase 1
trial,14 because interest remains in developing PPARg-modu-
lating drugs27 for specific settings,23 and because the impact of
TZD-class drugs on the development of mammary cancer
initiated by loss of function of the genetic risk factor breast
cancer 1, early onset (Brca1) was not defined.

Genetically engineered mice that undergo a mammary
epithelial celletargeted deletion of Brca1 exon 11 in somatic
cells coupled with germline tumor protein p53 (TP53) hap-
loinsufficiency are an established tool for studies of BRCA1
mutationerelated breast cancer pathogenesis. These mice
model the predilection for the development of poorly
differentiated, triple-negative/basal-type mammary cancers
found in human patients with BRCA1mutation.28e35 The cell
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of origin for BRCA1 mutationerelated human and mouse
mammary cancer is reported to be a luminal estrogen recep-
tor a (ERa)enegative mammary epithelial progenitor cell36

that can show a basal-like differentiation pattern.37 Inacti-
vation of BRCA1 in ERa-negative cancer stem cells is
hypothesized to push cancer development toward a basal-
type phenotype.38 Loss of normal BRCA1 function in
mammary epithelial cells alters cell differentiation and fate
specification so that luminal cells are, molecularly speaking,
more basal-like.39 In 7,12-dimethylbenz(a)anthracenee
treated mice carrying two intact BRCA1 genes, another
PPARg agonist, GW7845, promotes the appearance of more
differentiated ERa-positive mammary adenocarcinomas.10

However, it is also known that PPARg activation can
induce a stellate cell morphology corresponding to triple-
negative pathobiology in three-dimensional cell culture
in vitro.40 These investigations were initiated to assess the
in vivo impact of a PPARg agonist on mammary cancer
subtype development in the setting of BRCA1 deficiency.

Intervention treatment with the PPARg agonist efatuta-
zone at age 4 months did not change the prevalence of
cancers >1 cm3 by age 12 months but did significantly
decrease the total number of cancers formed, promoted the
development of well-differentiated cancer subtypes not
found in the absence of drug treatment, and reduced the
levels of phosphorylated AKT (pAKT) and CDK6 expres-
sion levels in the invasive cancers formed. This was
accompanied by a decline in preneoplasia prevalence and
decreased rates of mammary epithelial cell proliferation.

Materials and Methods

Mouse Model, Efatutazone Administration, and
Necropsy

C57Bl/6 mice exhibiting loss of full-length BRCA1
expression in mammary epithelial cells through conditional
Mouse Mammary Tumor Virus (MMTV)-Cre (Line D)41

transgene-mediated Brca1 floxed exon 11 (f11) de-
letion accompanied by loss of one germline copy of TP53
(Brca1f11/f11/p53þ/-/MMTV-Cre)28e31,33,34,41 were identified
using tail samples (Transnetyx Inc., Cordova, TN). Efatuta-
zone was administered through the diet (F3028, rodent diet,
grain-based, 1/2-in pellets; Bio-Serv, Frenchtown, NJ) at
a 30-mg/kg concentration, a dose selected for its maximal
efficacy (antitumor activity) and limited toxicity profile
(bioavailability in fasted mice: 86.6%; Daiichi Sankyo,
Tokyo, Japan),9,11e13 starting at 4months of age.Controlmice
received the same diet without added efatutazone. Mice were
necropsied at 12 months of age or when the largest palpable
tumor size reached 1 cm3. Cohorts of control (n Z 13) and
efatutazone-treated (nZ 13) Brca1f11/f11/p53þ/-/MMTV-Cremice
were entered into the study. Two mice in the control group
were excluded: one was sacrificed owing to an untreatable
skin condition and one was found dead. Five mice in the
efatutazone-treated group were excluded: one was sacrificed
1977
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owing to an untreatable skin condition, three were found dead,
and one developed lymphoma, resulting in nZ 11 control and
n Z 8 efatutazone evaluable mice. Mammary gland cancers
�1 cm3 (nZ10controlmice,nZ10efatutazone-treatedmice)
were harvested and divided: half were fixed in 10% buffered
formalin overnight at 4�C and embedded in paraffin and half
were snap frozen in liquid nitrogen and stored at �80�C. One
inguinal mammary gland was prepared for whole mount,29,31

and the other, as available, was fixed in 10% buffered
formalin overnight at 4�C and was embedded in paraffin. One
mammaryglandwas snap frozen in liquid nitrogen and stored at
�80�C.Animal procedureswere performed in accordancewith
federal guidelines and were approved by the Georgetown
University Institutional Animal Care and Use Committee.

Whole-Mount Analysis, Immunohistochemical
Analysis, and Pathologic Evaluation

Mammary gland whole mounts fixed in Carnoy’s solution
and stained in carmine alum were evaluated for the presence
or absence of dense lobular growth and number of hyper-
plastic alveolar nodules (HANs) per gland (n Z 10 control
mice; n Z 8 efatutazone-treated mice). Images were ob-
tained using a Nikon Eclipse E800M microscope equipped
with a Nikon DXM1200 camera (Nikon Instruments Inc.,
Melville, NY).29,31 Five-micrometer sections of formalin-
fixed, paraffin-embedded tissue were stained with H&E
for histologic evaluation.42 The presence or absence of
nonpalpable invasive and noninvasive cancer, hyperplasia,
and stromal pathology or alteration with efatutazone treat-
ment was scored by a board-certified pathologist (B. V.S.K.)
on one H&E section taken from the center of one inguinal
mammary gland of each mouse (n Z 8 control mice, n Z 8
efatutazone-treated mice). Cancer multiplicity was defined
as the number of cancers detected by either external
palpation (>1 cm3) or examination of one H&E section
taken from the center of the inguinal mammary gland from
each mouse with cancer. Serial 5-mm sections of mammary
glands were used for the detection of protein expression by
immunohistochemical (IHC) analysis performed using the
Vectastain ABC kit (Vector Laboratories, Burlingame, CA)
or Mouse on Mouse (M.O.M.) peroxidase kit (PK-2200;
Vector Laboratories) as appropriate using the following
primary antibodies: ERa (dilution 1:750; SC-542; Santa
Cruz Biotechnology Inc., Santa Cruz, CA), progesterone
receptor (PGR) (dilution 1:250; SC-538; Santa Cruz
Biotechnology Inc.), Ki-67 protein (dilution 1:100; NCL-L-
Ki-67-MM1; Novocastra, Newcastle on Tyne, UK), cyclin
D1 (dilution 1:50; SP4; RM-9104-S; NeoMarkers, Thermo
Scientific, Fremont, CA), cyclin E (dilution 1:80; SC-198;
Santa Cruz Biotechnology Inc.), pAKT serine (ser473)
(dilution 1:35; D9E; Cell Signaling Technology Inc., Dan-
vers, MA), AKT (pan) (dilution 1:600; C67E7; Cell
Signaling Technology Inc.), retinoblastoma-associated
protein (RB) (dilution 1:25; sc-50; Santa Cruz Biotech-
nology Inc.), serine (ser807/811) phosphorylated RB (pRB)
1978
(dilution 1:100; 93083s; Cell Signaling Technology Inc.),
CDK4 (dilution 1:2000; sc-260; Santa Cruz Biotechnology
Inc.), CDK6 (dilution 1:750; SAB4300596; Sigma-Aldrich,
St. Louis, MO), keratin, type II cytoskeletal 5 (CK5)
(dilution 1:1000; PRB-160P; Covance Inc., Princeton, NJ),
tumor protein 63 (p63) (dilution 1:1000; MS-107-P0;
NeoMarkers), PPARg (dilution 1:60; sc-7196; Santa Cruz
Biotechnology Inc.), RXRa (1:300; sc-553; Santa Cruz
Biotechnology Inc.), and PPARa (dilution 1:300; ab8934;
Abcam Inc., Cambridge, MA) following either manufac-
turer instructions or as previously published.16,29,31,43e47

IHC analysis was performed on sections of cancer tissue
(n Z 10 control mice, n Z 10 efatutazone-treated mice;
exceptions are pRb: nZ 8 control mice; and PPARa: nZ 8
control mice and n Z 3 efatutazone-treated mice) and
mammary glands (n Z 10 control mice, n Z 8 efatutazone-
treated mice; exceptions are PPARa: n Z 5 control mice
and n Z 5 efatutazone-treated mice). Percentages of
epithelial cells demonstrating nuclear-localized ERa, PGR,
or Ki-67 were calculated by counting �500 cells per
section. Cancers were designated as ERa or PGR positive if
>10% of the cancer cells demonstrated nuclear-localized
expression. The proliferation index was calculated as the
percentage of epithelial cells with nuclear-localized Ki-67 in
�500 epithelial cells per mammary gland section. Qualita-
tive IHC scoring included measures of intensity (0 indicates
no stain; 1, weak; 2, intermediate; and 3, strong) and propor-
tion of cells stained (1 indicates �1/3 positive cells; 2, 1/3 to
2/3 positive cells; and 3, �2/3 positive cells). The average of
the proportion and intensity scores was used to determine a
final IHC score for pAKT Ser473, AKT (pan), pRB, RB,
cyclin D1, cyclin E, CDK4, CDK6, PPARa, PPARg, and
RXRa as follows: 0 indicates none; 1, low; 2, medium; and 3,
high. Presence and absence of staining in myoepithelial and
cancer cells was evaluated for CK5 and p63 (n Z 8 control
mice, n Z 7 efatutazone-treated mice). A board-certified
academic pathologist (B.V.S.K.) blinded to the identity and
treatment group of the samples read the mammary cancer,
epithelial, and stromal pathology reports.

RNA Isolation and Real-Time RT-PCR

Total RNA was isolated using TRIzol reagent (Life Technol-
ogies, Grand Island, NY), and cDNA prepared from 2 mg of
total RNA by a reverse transcription reaction. Three indepen-
dent samples of mammary gland tissue from the efatutazone-
treated and untreated cohorts were randomly selected for
analysis. Taqman gene expression assays (Life Technologies)
were used to detect Adfp (Mm00475794_m1), Fabp4
(Mm00445878_m1), Pdhk4 (Mm01166879_m1), and eukary-
otic 18s rRNA (Hs99999901_s1). Reactions were performed
according to the manufacturer’s instructions using the ABI
Prism 7700 sequence detector and ABI SDS 2.1 software
version 2.1 (Life Technologies). Fold change in mRNA
expression was calculated using the CT method (2-DDCT

method).48
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Western Blot Analysis

Total protein samples (15 mg per lane) isolated from cancer
tissue were electrophoresed on 4% to 12% gradient Bis-Tris
gels (NP0335; Life Technologies), transferred to poly-
vinylidene difluoride membranes (EMD Millipore, Billerica,
MA), and blotted using primary antibody against pAKT
Ser473 (dilution 1:1000; D9E; Cell Signaling Technology
Inc.), pAKT Threonine (Thr)308 (dilution 1:1000; C31E5;
Cell SignalingTechnology Inc.), AKT (pan) (dilution 1:1000;
C67E7; Cell Signaling Technology Inc.), CDK6 (dilution
1:1000; DCS83; Cell Signaling Technology Inc.), and CDK4
(dilution 1:1000; DCS156; Cell Signaling Technology Inc.).
The blot was incubatedwithAmershamECL (GEHealthcare,
Piscataway, NJ) and horseradish peroxidaseeconjugated
secondary antibody (dilution 1:10,000; GE Healthcare) and
was visualized using the SuperSignal West Pico chemilumi-
nescent substrate (Thermo Scientific) and Amersham
Hyperfilm ECL (GE Healthcare), or the blot was incubated
with Odyssey IRDye 680LT or 800CW (LI-COR Biosci-
ences, Lincoln, NE) as appropriate and visualized using a LI-
COR Odyssey infrared imager (LI-COR Biosciences).
Protein markers (Bio-Rad Laboratories, Hercules, CA) were
used asmolecular standards.Western blotswere quantified by
measuring means� SEM relative densities (Photoshop CS5;
Adobe Systems Inc., San Jose, CA; or Odyssey Image Studio
software version 3.0; LI-COR Biosciences). Expression
levels of pAKT were normalized to AKT (pan). AKT (pan),
CDK4, and CDK6 were normalized to actin. Samples were
randomly selected from each group for quantitative Western
blot analysis: pAKT Thr308: n Z 3 control mice, n Z 6
efatutazone-treated mice; pAKT Ser473, CDK6: n Z 3
controlmice, nZ 4 efatutazone-treatedmice; andAKT (pan),
CDK4: nZ 3 control mice, nZ 3 efatutazone-treated mice.
Statistical Analysis

Student’s t-tests were used to compare age at tumor devel-
opment, mean numbers of invasive and noninvasive cancers,
number of HANs, percentage of mammary epithelial cells
with nuclear-localized Ki-67, and protein expression levels
(GraphPad Prism version 4.03 for Windows; GraphPad
Software Inc., San Diego, CA). Proportions of mice with
noninvasive cancer, papillary and squamous histologic
features, and IHC scores were compared using Z-tests
(McCallum Layton, Leeds, UK). U-tests were used to
compare real-time RT-PCR data (GraphPad Prism). Fisher’s
exact test was used to compare the prevalence of mammary
glands demonstrating dense lobular growth and HANs
(GraphPad Prism). Significance was assigned at P � 0.05.
Results

Efatutazone treatment starting at age 4 months did not
prevent the appearance of cancers �1 cm3 by age 12 months
The American Journal of Pathology - ajp.amjpathol.org
but reduced cancer multiplicity and promoted the appear-
ance of differentiated cancer histologic types.

Efatutazone treatment did not significantly reduce the
means� SEM age at which tumors reached 1 cm3 [10.1� 0.3
months (control) versus 10.0 � 0.3 months (efatutazone)]
(Figure 1A) or the prevalence of cancers�1 cm3 [81% (control)
versus 100% (efatutazone)] (Figure 1B). ERa-negative undif-
ferentiated and moderately differentiated adenocarcinomas and
undifferentiated spindloid cancers appeared in efatutazone-
treated and control mice (Figure 1E). However, efatutazone
treatment significantly reduced cancer multiplicity [3.7 � 0.9
per mouse (control) versus 1.5� 0.3 per mouse (efatutazone);
P < 0.05, Student’s t-test] (Figure 1C), decreased the
percentage of mice with noninvasive cancers [78% (control)
versus 25% (efatutazone); P < 0.05, Z-test] (Figure 1D), and
altered the spectrum of cancer histologic types that developed
(Figure 1F). Well-differentiated ERa-positive papillary and
ERa-negative squamous cancers appeared only in the treated
group [0% (control) versus 23% (efatutazone);P< 0.05, Z-test]
(Figure 1, F and G). Noninvasive cancerization of lobules and
in situ cancer were found in both groups (Figure 1, F and H).
Expression of the myoepithelial cell proteins CK5 and p6349

were more prominent in the more differentiated cancers. Efa-
tutazone treatment did not significantly alter expression pat-
terns of PPARa, PPARg, and RXRawhen specific tissue types
were compared (Figure 2).44e47 Prominent nuclear localization
of all three proteinswas observed in epithelial and fat cells, with
the exception of one spindloid cancer that demonstrated
appreciable cytoplasmic PPARa staining (Figure 2C). Relative
PPARg and RXRa expression levels were higher in fat cell
nuclei (scores of 2 to 3) than in normal-appearing mammary
duct cells (scores of 1) (Figure 2, A and D). Relatively higher
expression levels of PPARg and RXRa were found in adeno-
carcinomas (scores of 2 to 3) (Figure 2, B and E) than in spin-
dloid cancers (scores of 0 to 1) (Figure 2, C and F). Papillary
cancers exhibited expression of PPARa and PPARg but not
RXRa (Figure 2G). PPARg andRXRa expressionwas slightly
higher in adenosis and in situ cancer (Figure 2, H and I) than
in the normal-appearingmammary ductal cells (Figure 2, A and
D). Efatutazone treatment did not significantly change the
appearance of the mammary stroma, which in mice is com-
posed primarily of fat cells (Figure 2, A and D). Periductal
fibrosis was found associated with cancerization of lobules,
atypical hyperplasia and adenosis, and desmoplasia with some
invasive cancers, without significant differences in appearance
between the control and efatutazone-treated cohorts.

Relative Levels of pAKT Are Lower in Mammary Gland
Tissue and Cancers of Efatutazone-Treated Mice

Significant reductions in means � SEM relative expression
levels of pAKT Ser473 [1.0 � 0.3 (control) versus 0 0.04 �
0.1 (efatutazone); P < 0.05, Student’s t-test] and pAKT
Thr308 [1.0 � 0.4 (control) versus 0.1 � 0.1 (efatutazone);
P < 0.05, Student’s t-test] but not total AKT [1.0 � 0.1
(control) versus 0.7 � 0.2 (efatutazone)] were found in the
1979
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Figure 1 Impact of efatutazone treatment on mammary cancer development in Brca1f11/f11/p53þ/-/MMTV-Cre mice. A: Bar graphs comparing means � SEM age in
months when the largest cancer reached 1 cm3 in the control (10.1� 0.3) and efatutazone-treated (10.0� 0.3) cohorts. nZ 11 control mice; nZ 8 efatutazone-
treatedmice.B: Bar graphs comparing the percentage of micewith at least one cancer>1 cm3 by age 12months in the control (81%) and efatutazone-treated (100%)
cohorts. nZ 11 control mice with 10 cancers >1 cm3; nZ 8 efatutazone-treated mice with 10 cancers>1 cm3. C: Bar graphs comparing the means� SEM cancer
numbers in mice with cancer (>1 and<1 cm3) from control (3.7� 0.9) and efatutazone-treated (1.5� 0.3) cohorts. *P< 0.05, Student’s t-test, two-tailed. nZ 32
control cancers; n Z 13 efatutazone-treated cancers. D: Bar graphs comparing the percentage of mice with noninvasive cancers by age 12 months in the control
(78%) and efatutazone-treated (25%) cohorts. *P< 0.05, Z-test. nZ 11 control mice; nZ 8 efatutazone-treatedmice. E: Representative histologic types of invasive
undifferentiated adenocarcinoma, undifferentiated spindloid cancers, and moderately differentiated adenocarcinomas from control and efatutazone-treated mice.
H&E-stained sections are shown with insets illustrating representative ERa, PGR, p63, and CK5 IHC staining. F: Stacked bar graphs comparing the distribution of
cancer phenotypes in the control versus efatutazone-treated groups: undifferentiated adenocarcinomas (54% versus 39%), moderately differentiated adenocarci-
nomas (3% versus 6%), spindloid s (20% versus 18%), ductal carcinoma in situ (DCIS) (7% versus7%), cancerization of lobules (16% versus 7%), squamous cancers
(0% versus 7%), and papillary cancers (0% versus 16%). *P< 0.05, Z-test, squamous and papillary control (0%) versus efatutazone (23%). nZ 32 control cancers; n
Z 13 efatutazone-treated cancers. G: Representative histologic features of papillary and squamous cancers found only in efatutazone-treatedmice.H: Representative
histologic features of in situ carcinoma and cancerization of lobules found in control and efatutazone-treated mice. The key illustrates where H&E and IHC ERa, PGR,
p63, and CK5 images are positioned. Original magnification, �60. Scale bars: 25 mm. Arrows indicate representative cells with positive staining.
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cancers that developed on efatutazone treatment as assessed
by Western blot analysis (Figure 3, AeD). In some settings,
PPARg agonists can reduce expression of cell-cycle regu-
lators,16e19,21,50 but CDK6 (Figure 3E) was the only cell-cycle
1980
regulator expressed at statistically significantly lower levels
in cancers from efatutazone-treated mice as assessed by IHC
analysis [scores of 0 to 3 (control) versus 0 to 1 (efatuta-
zone); P < 0.05, Z-test]. Statistically nonsignificant trends
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Expression patterns of PPARa, PPARg, and RXRa in mammary tissue and cancers from control and efatutazone-treated mice. Representative
images of H&E-stained sections and PPARa, PPARg, and RXRa IHC sections for each tissue shown. Small arrows indicate mammary epithelial ductal cell nuclei
and large arrows indicate fat cell nuclei. Bar graphs summarize relative IHC scores for ductal epithelial (duct), fat (Fat), and cancer (Ca) cells. A: Mammary
ductal structure and surrounding stromal fat pad (control). B: Undifferentiated adenocarcinoma (control). C: Undifferentiated spindloid cancer (control). D:
Mammary ductal structure and surrounding stromal fat pad (efatutazone treated). E: Undifferentiated adenocarcinoma (efatutazone treated). F: Undiffer-
entiated spindloid cancer (efatutazone treated). G: Papillary cancer (efatutazone treated). H: Adenosis (control). I: In situ carcinoma (control). IHC scores:
0 indicates no stain; 1, weak; 2, intermediate; and 3, strong. n Z 10 (PPARg and RXRa) and 5 (PPARa) control cancers; n Z 8 (PPARg and RXRa) and 5
(PPARa) efatutazone-treated cancers. Original magnification, �40. Scale bars: 50 mm.

PPARg Agonist Impacts Mammary Cancer
toward lower CDK4 (Figure 3F) and pRB (Figure 3G) but not
total RB (Figure 3H) levels were found using IHC analysis.
Although some cancers showed decreased expression levels
of CDK6 and CDK4 when evaluated by Western blot anal-
ysis, others did not, and the overall mean differences in
relative expression levels were not statistically significantly
different (Figure 3I). Efatutazone treatment did not sig-
nificantly alter cyclin D1 and cyclin E expression patterns
(Figure 3, J and K).
The American Journal of Pathology - ajp.amjpathol.org
Efatutazone Treatment Reduces Dense Lobular Growth,
HANs, and Mammary Epithelial Cell Proliferation in the
Mammary Glands of Brca1f11/f11/p53þ/-/MMTV-Cre Mice and
Increases Expression of PPARg Downstream Genes

Efatutazone treatment reduced the prevalence of dense
lobular growth [58% (control) versus 11% (efatutazone); P<
0.05, Fisher’s exact test] (Figure 4A), means� SEM number
of HANs per gland [6.0 � 1.2 (control) versus 1.2 � 0.6
1981
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Figure 3 Levels of pAKTandexpressionof CDK6are significantly reduced in cancers fromefatutazone-treatedBrca1f11/f11/p53þ/-/MMTV-Cre-mice.A: Stackedbar graphs
summarizing IHC scores with representative IHC analysis images below for pAKT Ser473 and AKT (pan) in cancers from control and efatutazone-treated cohorts. B: Bar
graphs comparingmeans� SEM relative densities of pAKT Ser473 evaluated byWesternblot analysis in cancers from control (1.0� 0.3) andefatutazone-treated (00.04
� 0.1) cohorts. *P < 0.05, Student’s t-test, two-tailed. pAKT Ser473 levels were normalized to AKT (pan). AKT (pan) levels were normalized to actin. Representative
Westernblots of pAKTSer473andAKT (pan)are shownbelow thebar graphs. Actin is shownas a loading control.C: Bar graphs comparingmeans� SEM relative densities
of pAKT Thr308 evaluated by Western blot analysis in cancers from control (1.0� 0.4) and efatutazone-treated (0.1� 0.1) cohorts. *P< 0.05, Student’s t-test, two-
tailed. pAKT Thr308 levels were normalized to AKT (pan). AKT (pan) levels were normalized to actin. Representative Western blots of pAKT Thr308 and AKT (pan) are
shown below the bar graphs.D: Bar graphs comparingmeans� SEM relative densities of AKT (pan) in cancers from the control (1.0� 0.1) and efatutazone-treated (0.7
� 0.2) cohorts. AKT (pan) levels were normalized to actin. Stackedbar graphs summarizing IHC scores with representative IHC images below in cancers from control and
efatutazone-treated cohorts for CDK6 (E), CDK4 (F), pRB (G), and RB (H). I: Representative Western blots demonstrating a range of CDK6 and CDK4 expression levels in
cancers from control and efatutazone-treated cohorts. Actin is shown as a loading control. White bars indicate images isolated from different regions of the same blot.
Stacked bar graphs summarizing IHCscoreswith representative IHC images below in cancers from thecontrol and efatutazone-treatedcohorts for cyclinD1 (J) andcyclin
E (K). IHC scores: 0 indicates no stain; 1, weak; 2, intermediate; and 3, strong, represented by different shades: 0 indicates none (white); 1, low (light gray); 2, medium
(dark gray); and 3, high (black). IHC analysis: nZ 10 controlmice, nZ 10 efatutazone-treatedmice.Western blot analysis: control: nZ 3 [pAKT Ser473, pAKT Thr308,
AKT (pan)]; efatutazone treated: nZ 4 (pAKT Ser473 and CDK6), nZ 6 (pAKT Thr308), nZ 3 [AKT (pan) and CDK4]. Ca, cancer. IHC images: original magnification,
�40. Arrows indicate cells with representative staining for protein indicated. Scale bars: 20 mm, except for 10 mm for AKT (pan). *P < 0.05.
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(efatutazone); P < 0.05, Student’s t-test] (Figure 4B), and
means � SEM rates of mammary epithelial cell proliferation
[21.9% � 4.5% (control) versus 3.9% � 0.6% (efatutazone);
P< 0.05, Student’s t-test] (Figure 4C). The percentage ofmice
demonstrating HANs was also significantly reduced by ef-
atutazone [91.7% (control) versus 44.4% (efatutazone); P <
0.05, Fisher’s exact test]. No significant differences in the
1982
percentages of mammary epithelial cells demonstrating
nuclear-localized ERa were found when comparing the two
groups [5.4% � 1.5% (control) versus 7.6% � 1.4% (efatuta-
zone)]. Significant fold increases in expression of the PPARg
target genes Adfp (2.3- to 3.2-fold), Fabp4 (4.1- to 7.1-fold),
andPdhk4 (5.2- to 26.1-fold)were found inmammary tissue of
efatutazone-treated mice (P < 0.05, U-test) (Figure 4, DeF).
ajp.amjpathol.org - The American Journal of Pathology
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Discussion

The spectrum of mammary cancer subtypes initiated
by loss of full-length Brca1 in association with Tp53
haploinsufficiency was modified by treatment with the
PPARg agonist efatutazone. The appearance of well-
differentiated cancer histologic features with efatutazone
treatment indicated that the histologic fate of cancer
progenitor cells was not fixed in this model by 4 months
of age, the time when drug treatment was initiated, and
expands the number of histologic cancer subtypes found
in this model.28,29,31,33 Recognition of an intervention that
introduces an ERa-positive differentiated cancer subtype
in this model opens the door to the identification of
a cell(s) of origin for ERa-positive and ERa-negative
cancer subtypes developing in the setting of BRCA1
deficiency.36,51
Figure 4 Efatutazone treatment reduces lobular growth, preneoplasia, and cell proli
from Brca1f11/f11/p53þ/-/MMTV-Cre mice. A: Bar graphs comparing the percentage of ma
efatutazone-treated (11%) mice. *P< 0.05, Fisher’s exact test. Representative mamma
dense lobular growth. nZ 10 control mice; nZ 8 efatutazone-treated mice. Original
mammary glandwholemount in control (6.0� 1.2) and efatutazone-treated (1.2� 0.6)
arrows indicatingHANs are shown below the bar graphs. nZ 10 controlmice; nZ 8 efa
means� SEM proliferation indices of mammary epithelial cells from control (21.9%�
analysis. *P< 0.05, Student’s t-test, two-tailed. Representative Ki-67 IHC images are sh
10controlmice;nZ8efatutazone-treatedmice.Originalmagnification,�40.D: Graph i
in RNA expression levels of Adfp in mammary tissue from efatutazone-treated compared
(4.1) and maximum (7.1) relative fold increases in RNA expression levels of Fabp4 in ma
U-test.F: Graph illustrating themedian,minimum(5.2), andmaximum(26.1) relative fold
treated compared with control mice. *P< 0.05, U-test. DeF: nZ 3 control mice and n
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In contrast to the lack of effect on the appearance of cancers
>1 cm3 by age 12 months in this model, efatutazone treatment
markedly inhibited the development of smaller invasive and
noninvasive cancers and decreased preneoplasia prevalence. It
could be that the larger cancers formed from clinically unap-
parent efatutazone-resistant cancer or cancer progenitor cells52

that had progressed to a certain stage in the gland when efatu-
tazone treatmentwas initiated at 4months of age,whereas cancer
stemor progenitor cells at an earlier stage or not yet formedwere
inhibited. It is known that in vitro exposure of MCF-7 and
primary breast cancer cells to the PPARg agonist pioglitazone
reduces the formation of mammospheres.53 Alternatively, there
could be different types of mammary stem or progenitor cells in
theglandsofBrca1f11/f11/p53þ/-/MMTV-Cremice, ones thatwerenot
inhibited by efatutazone and others that were. The appearance
of differentiated ERa-positive papillary cancers not usually
seen in this model raises the question of whether efatutazone
ferationand increases expressionof PPARgdownstreamgenes inmammary tissue
mmary gland whole mounts with dense lobular growth in control (58%) and
ry gland whole mounts are shown below the bar graphs. Arrow indicates area of
magnification,�4. B: Bar graphs comparing means� SEM number of HANs per
mice. *P< 0.05, Student’s t-test, two-tailed. Representative wholemounts with
tutazone-treatedmice. Originalmagnification:�10.C: Bar graphs comparing the
4.5%) and efatutazone-treated (3.9%� 0.6%) mice determined from Ki-67 IHC
own below the bar graphs.Arrows indicate nuclear-localized Ki-67 staining. nZ
llustrating themedian,minimum(2.3), andmaximum(3.2) relative fold increases
with control mice. *P< 0.05, U-test. E: Graph illustrating the median, minimum
mmary tissue from efatutazone-treated compared with control mice. *P< 0.05,
increases inRNAexpression levelsofPdhk4 inmammary tissue fromefatutazone-
Z 3 efatutazone-treated mice. *P< 0.05. Scale bars: 1000 mm (B); 20 mm (C).
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treatment could have modified some early cancer or progenitor
cells toward a more well-differentiated phenotype. Future
studies that vary the timing of efatutazone exposure could
determinewhether there is a time point earlier than age 4months
that would more profoundly inhibit cancer development;
explore whether the impact of efatutazone is reversible, that is,
whether cancer development would be restored after discon-
tinuation of the drug; and directly investigate the impact of
efatutazone on cancer stem and progenitor cells.

Expression of PPARg and RXRa were verified in the
epithelial and stromal tissue compartments. It is not yet known
whether the inhibitory action of efatutazone on mammary
epithelial cell proliferation and development of hyperplasia and
cancer is mediated by its action on only one tissue compartment
or whether it is a combined effect on different tissue compart-
ments. PPARa expressionwas examined because exposure to a
PPARa agonist promotesmammosphere formation and it is up-
regulated in MCF7 cells grown as mammospheres.53 PPARa
expression was found in the normal-appearing mammary
epithelial cells of theBrca1f11/f11/p53þ/-/MMTV-Cremice and in the
cells composing adenosis, noninvasive, and invasive cancers.
A previous report indicated that PPARa expression in normal
mammary epithelial cells is low,54 but whether PPARa plays
a specific role in cancer progression in mammary cells deficient
in BRCA1 remains to be determined.

The reduced levels of pAKT and decreased rates of cell
proliferation found herein with efatutazone treatment in vivo
are consistent with previous in vitro studies of PPARg
agonists.1e4,10,19,21 Significantly, the decreased levels of
pAKT did not translate into reduced cancer prevalence but
did correlate with reduced numbers of cancers and lower
rates of HAN development.

Although the use of PPARg agonists for the treatment of
diabetes is currently limited, thousands of women have been
exposed. A challenging translational question would be to
determine whether diabetic women exposed to a PPARg
agonist have different patterns of breast cancer development
than unexposed women, an area that has not yet been
addressed in publications, to our knowledge.

In conclusion, the PPARg agonist efatutazone significantly
modified cancer development and promoted the appearance of
more differentiated mammary cancers in the setting of BRCA1
deficiency. The studies set a platform for further investigations
of the cells of origin and the role of PPARg in the generation of
diverse breast cancer subtypes in different genetic backgrounds.
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