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We describe the construction and analysis of a genome-scale metabolic model representing a developing leaf cell of rice (Oryza sativa)
primarily derived from the annotations in the RiceCyc database. We used flux balance analysis to determine that the model represents
a network capable of producing biomass precursors (amino acids, nucleotides, lipid, starch, cellulose, and lignin) in experimentally
reported proportions, using carbon dioxide as the sole carbon source. We then repeated the analysis over a range of photon flux values
to examine responses in the solutions. The resulting flux distributions show that (1) redox shuttles between the chloroplast, cytosol, and
mitochondrion may play a significant role at low light levels, (2) photorespiration can act to dissipate excess energy at high light levels,
and (3) the role of mitochondrial metabolism is likely to vary considerably according to the balance between energy demand and
availability. It is notable that these organelle interactions, consistent with many experimental observations, arise solely as a result of the
need for mass and energy balancing without any explicit assumptions concerning kinetic or other regulatory mechanisms.

Rice (Oryza sativa) makes up nearly 20% of the total
caloric intake for the human population as a whole; the
income of more than 100 million households in devel-
oping countries depends on rice cultivation. Although
rice yield has increased, though gradually more slowly,
during the last four decades, the world population
continues to grow, while the land and water resources
for cultivation are declining, leading to a need for
high-yielding, stress-tolerant, nutrient-rich rice culti-
vars (Nguyen and Ferrero, 2006).

Researchers are trying to meet the challenges of
improving production in different ways. Some of the
efforts include (1) identifying the stress-tolerant rice
varieties and stress-responsive genes (Xiang et al.,
2007), (2) producing a “Green Super Rice” combining,
in a single plant, many different favorable character-
istics from the large number of available strains and
cultivars, guided by molecular marker-based selection
(Zhang, 2007), (3) introducing the genes of C4 plant to

change the leaf anatomy of rice and hence improving
the photosynthesis (Kajala et al., 2011), and (4) pro-
ducing vitamin A-enriched golden rice (Al-Babili and
Beyer, 2005). In addition, current research on the ge-
netic basis of signaling between nitrogen-fixing soil
bacteria and legumes (Xie et al., 2012) has the potential
to allow the engineering of nodule formation in cereal
crops such as rice and wheat (Triticum aestivum).

Here, we present a genome-scale model of rice metab-
olism and examine its responses to changing light avail-
ability. Because rice is also a model organism for other
cereal crops, such as wheat, this effort should help re-
searchers to understand the biochemistry of a photosyn-
thetic crop plant as well as to compare it with other plants.
In addition, the metabolic model of rice, which is the
second metabolic model of a crop plant, can be used as a
template for comparing the metabolism of different vari-
eties of rice that are pathogen tolerant, drought tolerant,
lower or higher yield, etc., and thus, it may also help in
identifying characteristics of individual varieties that may
assist rice biotechnologists to breed the desired rice crop.

MODELING METABOLISM

Modeling Approaches

There are two broad classes of metabolic models:
those that depend upon knowledge of enzyme kinetics
(kinetic models) and those that do not (structural
models; Schuster and Fell, 2007). Another distinction
can be made between small metabolic models con-
structed manually to represent a small section of me-
tabolism and large models that seek to represent the
entire metabolic capabilities of an organism and that
are built from data extracted from databases and
termed genome-scale metabolic models (GSMs). The
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difficulty of obtaining kinetic equations and parame-
ters for all of the enzymes and transporters involved in
a GSM, in spite of the development of robots for per-
forming large numbers of enzyme measurements (Gibon
et al., 2004), means that all such models investigated to
date are structural.
A further advantage of structural modeling over

kinetic modeling is that the structure of the network is
completely defined by the set of reactions involved
and their stoichiometric chemical equations. For ex-
ample, the number of independent fluxes in a meta-
bolic network, and the relationships between them at
steady state, can be determined from the null space of
the stoichiometry matrix (Reder, 1988; Schuster and
Schuster, 1989), and those metabolite concentrations
constrained by mass conservation can be determined
from the left null space of the stoichiometry matrix
(Reder, 1988; Schuster and Höfer, 1991).
One early development was the use of linear pro-

gramming to examine the constraints on metabolic
function and product yields set by reaction stoichio-
metry and network structure (Fell and Small, 1986;
Varma and Palsson, 1994), the methodology eventu-
ally becoming known by the term flux balance analysis
(FBA) coined by the Palsson group (Varma and Palsson,
1994). This type of computational analysis is a more
efficient and thorough replacement for older conven-
tional approaches, which consisted of manual account-
ing of the stoichiometry of metabolic conversions along
defined pathways. Later, the development of elemen-
tary modes analysis (Schuster et al., 1999, 2000) showed
that even small subsets of cellular metabolic networks
could have many more paths and functions than are
described as pathways in textbooks. Edwards and
Palsson (2000) pioneered the construction and analysis
of metabolic networks consisting of the reactions cata-
lyzed by the enzymes contained in the annotations of
whole genomes, beginning with Escherichia coli. Though
the linear programming/FBAmethodology, and certain
other techniques such as null space analysis, scale easily
to cope with the few thousand reactions of a GSM, el-
ementary modes analysis undergoes a combinatorial
explosion of enumerable pathways, and interpretation
of the output becomes challenging, though not impos-
sible (Carlson, 2009).
Though other methods have been proposed for

finding feasible routes through metabolic networks,
unless they explicitly take into account the conserva-
tion of mass throughout the network, represented by
the stoichiometric constraints, as do elementary modes
analysis and FBA, then the routes will not be func-
tional on a sustained basis (de Figueiredo et al., 2009).
With the appropriate methods, it is possible to find the
maximum yield of metabolic products from nutrients
for a given metabolic network and how this might be
altered by knocking out certain enzyme reactions or
introducing novel enzymes into the network (Trinh
et al., 2008). Combined with some experimentally de-
rived constraints, such as the maximum uptake rate of
a nutrient, the rate of growth, and the composition of

the organism’s biomass, FBA can predict an optimal
set of internal fluxes within the network, and these
predictions have been shown to be close to measure-
ments made by metabolic flux analysis (Schuetz et al.,
2007; Lee et al., 2008; Williams et al., 2010).

GSMs and Their Analysis

Currently, there are approximately 100 published
GSMs of varying completeness and quality, plus sev-
eral hundred existing as automatically generated draft
reconstructions (Henry et al., 2010). The major as-
sumption in their analysis, as mentioned above, is that
the production and consumption of all internal me-
tabolites is stoichiometrically balanced, so their con-
centrations are constant and the system is at a steady
state. Additional constraints are placed on the models,
such as specifying maximum production rates of bio-
mass components and/or nutrient uptake that are
consistent with experimental observations. A common
requirement in their analysis is the setting of an ob-
jective function that is optimized by the linear pro-
gramming to produce a prediction of the fluxes in the
network as nutrients are converted into excretory
products and biomass. Most commonly, the objective
function is to maximize the biomass yield from the
nutrients used (Schuster et al., 2008), which has been
shown to be appropriate for E. coli growing in a che-
mostat (Fong et al., 2003; Lewis et al., 2010), but which
does not always reflect the use of fermentative catab-
olism unless additional constraints are set (Teusink
et al., 2009). Another possible objective function is the
minimization of total flux in the system (Holzhütter,
2004; Poolman et al., 2009), which represents economy
in the enzymic machinery.

A major application of GSMs is investigating and
generating hypotheses about the operating character-
istics of metabolic networks, represented by the dif-
ferences between flux patterns in the network if control
mechanisms operate to implement the different objec-
tives mentioned above. GSMs also have the potential
to be used as a framework for integrating and inter-
preting other types of high-throughput data, such as
gene expression and proteomics measurements (Shlomi
et al., 2007; Oberhardt et al., 2009), if the data can be
incorporated into either the constraints or the objective
function.

Eukaryotic GSMs

The majority of GSMs to date are of prokaryotes.
The first eukaryotic GSM was that of Saccharomyces
cerevisiae (Förster et al., 2003), which has gone through
several iterations (Heavner et al., 2012) and has been
followed by models of several other yeasts. The met-
abolic networks of human (Mo et al., 2007) and mouse
(Selvarasu et al., 2010) exist as reconstructions, that is,
as a compendium of reactions with gene associations
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en route to becoming a computable model. Photosyn-
thetic organisms are represented at the microalgal level
by Chlamydomonas reinhardtii (Boyle and Morgan, 2009;
Chang et al., 2011) and Ostreococcus spp. (Krumholz
et al., 2012). For plants, there are now several models
of Arabidopsis (Arabidopsis thaliana; Poolman et al.,
2009; de Oliveira Dal’Molin et al., 2010; Mintz-Oron
et al., 2012), and these are currently undergoing a
process of collaborative reconciliation. The model of C4
metabolism for maize (Zea mays), sorghum (Sorghum
bicolor), and sugar cane (Saccharum officinarum; Dal’Molin
et al., 2010) was in fact derived from the Arabidopsis
model rather than from the maize genome, but a model
based on the maize genome was published shortly after
(Saha et al., 2011). Hence, to date, there is only one GSM
of a true crop plant (maize).

All the eukaryotic models vary in the extent to
which cellular compartmentation is explicitly repre-
sented, and this remains a difficult problem owing to
the incomplete and contradictory information about
the localization of the enzymes and the specificity of
intracellular transporters. This is most marked in
plants, which have specialized metabolic roles for cy-
tosol, mitochondria, chloroplasts, and peroxisomes
(Seaver et al., 2012). Furthermore, whereas microbial
metabolism can be analyzed on the assumption that it
is directed toward efficient growth (Schuster et al.,
2008), other imperatives shape the metabolism of
multicellular organisms, such as the need for mutual
support of different tissues that implement different
subsets of the genomically encoded metabolic network
by tissue-specific gene expression (Seaver et al., 2012).

A GSM for Rice

In this paper, we describe a GSM for rice derived
from the RiceCyc database (Youens-Clark et al., 2011),
representing a network capable of the photoautotro-
phic production of all major biomass precursors (car-
bohydrate, amino acids, nucleotide bases, etc.) in
experimentally observed proportion.

We analyze the model to identify feasible changes in
reaction flux distribution in response to changes in
photon flux, with the goal of identifying coordinated
response across the whole system. It is clear that there
must be some positive minimum value of photon flux
below which precursor synthesis is not possible at the
rate specified and another higher value beyond which
the additional energy cannot be put to any use and
must therefore be dissipated by the system. Our in-
terest is to investigate how the metabolic network and
its energy transduction mechanisms, and in particular
those of the mitochondrion, respond as photon flux
varies from minimal sustainable to hyperabundance.
Shastri and Morgan (2005) have previously examined
dependence of photosynthetic metabolism on light
energy, but in the prokaryote Synechocystis spp. The
investigation of the C. reinhardtii GSM (Chang et al.,
2011) was somewhat different, as a more detailed

model of the light reactions was used to model the
dependence of growth rate on light quality.

A very similar approach (identifying response to
changes in energy demand in heterotrophic plant cells)
has been validated experimentally (Williams et al.,
2010) using 13C metabolic flux analysis.

In our analysis, we additionally consider the con-
sequences of saturation of the Calvin cycle, here rep-
resented by an imposition of an upper limit on the sum
of fluxes in the Rubisco carboxylation and oxygenation
reactions, which also captures the effect of competition
between CO2 and oxygen (O2). This modeling assump-
tion remains valid even if, in reality, other Calvin cycle
reactions effectively limit the rate of assimilation.

The exact choice of the value for this upper limit is
arbitrary, but was chosen such that its effects are only
discernible at a photon flux above that where the
metabolic state had stabilized, and allows us to explore
responses at much higher light intensities where the
chloroplast could become overenergized.

RESULTS

General Model Properties

The initial reconstruction from RiceCyc generated a
model with 1,484 metabolites in 1,736 reactions, of
which 1,029 could carry flux from nutrients to the
specified biomass components and at least 790 reac-
tions had gene associations. (The gene-reaction asso-
ciations are underestimated, because we have not
included counts for the manually added reactions,
such as the lumped light reactions and the compart-
mented mitochondrial and chloroplast metabolism.)
When optimal flux distributions were obtained over
the range of light fluxes tested, 309 reactions were used
in at least some part of the range.

General Responses to Varying Light Levels

We repeatedly solved the linear program described
by Equation 1, incrementing the constraint represent-
ing the incident photon flux for each solution. In this
way, we accumulated a set of solutions allowing us to
plot the fluxes associated with individual reactions as a
function of photon flux.

The minimum photon flux for which a solution to
Equation 1 (see “Materials and Methods”) could be
found was 0.321 light flux units, corresponding to a
maximally efficient quantum demand of 13.4 photons
per carbon fixed. The assimilation quotient (AQ; CO2
fixed per O2 released, the reciprocal of the photosyn-
thetic quotient) at this point is 0.98, corresponding to
13.1 photons per O2 released. As the light levels in-
crease, the AQ falls in stages to a minimum of 0.87 and
then remains constant at this value.

The number of reactions being utilized at any par-
ticular photon flux across the range varied between
270 and 277. Of these, 142 responded to changing light
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flux, all but 10 of which carried flux over the entire
range of light flux values. The remaining 167 remained
constant, reflecting the constant ratios of biomass
components.
Above the threshold of minimal light flux, the objec-

tive value increases, for all intents and purposes, linearly
(data not shown). However, the responses of individual
reactions are far more varied. Figure 1 shows the dis-
tribution of correlations of reaction fluxes with photon
flux. The strong responders are obviously highly cou-
pled to the light reactions and involve transmission of
reductant to the rest of the cell. The weak and moderate
responders represent buffering between the strong re-
sponders and the constant biomass production. An ex-
amination of the reactions showing changes reveals that
this is associated with shifting patterns of interaction
between chloroplast and mitochondrial metabolism, as
described below.

Specific Responses to Varying Light

The changing interactions between chloroplast and
mitochondrial metabolism are shown in Figures 2 and
3. Across the range of photon fluxes scanned, five
major metabolic patterns can be seen (Fig. 3, A–E),
with transitions between them occurring at the points
where the set of reactions in the optimal solution
changes, as indicated by the vertical boundaries be-
tween the regions. In regions A and B (Fig. 3), ATP is
generated by the mitochondria (shown by the flux in
complex 5, the ATP synthase), falling away in region C
(Fig. 3). The ATP synthesis is driven by carbon and
reductant exported from the chloroplast; hence, there
are corresponding changes in the chloroplast transport
reactions. A corollary is that some of the photosyn-
thetic O2 is utilized by mitochondrial respiration, and
conversely, the CO2 evolved by respiration is refixed
in the chloroplast. The small fluctuations in reaction
rates near the A and B border (Fig. 3) are associated
with shifts in in nitrogen metabolism, as described
later.

Mitochondrial Response

The changing flux distributions shown in Figures 2
and 3 correspond to various modes of operation of the
mitochondrial metabolism presented in Figure 4.

In region A (Fig. 4), most flux is accounted for by
generation of ATP through the operation of the elec-
tron transport chain (ETC), with reductant supplied
primarily from the operation of a mitochondrial
malate-oxaloacetate shunt, with only a small contribu-
tion from the partial oxidation of pyruvate. Overlaid on
this is a much smaller flux generating 2-oxoglutarate
(2-OG) from fumarate and pyruvate, and the tricarboxylic
acid (TCA) cycle between 2-OG fumarate, including
complex 2 (succinate dehydrogenase), is inactive. As
region A is traversed, the flux patterns seen in region B
gradually emerge (Fig. 4).

Throughout region B (Fig. 4), pyruvate is completely
oxidized, and most flux is accounted for by the con-
ventional operation of the citric acid cycle and the
ETC, including complex 2, leading to an increased
synthesis of ATP at a near-constant rate throughout
and the maximum reoxidation of photosynthetic as-
similate to CO2. In addition to this, there is a small
uptake of fumarate and malate, which now accounts
for the export of 2-OG at the same rate as in region A
(Fig. 4). The malate-oxaloacetate shunt is inactive.

Region D (C is a transition between B and D; Fig. 4)
represents an unchanging state in which most of the
cell’s energetic requirements are met externally to the
mitochondria. The ETC again operates, but without
complex 2 and with much lower flux than previously;
ATP production is reduced to less than 1% of that in
regions A and B (Fig. 4), and oxygen consumption is
minimal. Reductant is generated by the reactions of the
TCA cycle from fumarase to isocitrate dehydrogenase
oxidizing fumarate, oxaloacetate, and pyruvate to
generate 2-OG.

Region E (Fig. 4) represents minimum activity of the
mitochondrion (also corresponding to the saturation of
both the carboxylase and oxygenase reactions of
Rubisco). Here, oxaloacetate and pyruvate are still

Figure 1. Reaction flux correlation with photon
flux. These are calculated as the absolute values
(i.e. ignoring the distinction between correlated
increases and decreases) of the pairwise (Pearson’s)
correlation coefficients of each of the 142 variable
fluxes with the photon flux across the range of light
values. The reactions that show no flux changes are
excluded.
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being incompletely oxidized to generate 2-OG, with
the resulting NADH being reoxidized via the opera-
tion of an incomplete ETC comprising complexes
1 and 5 with the addition of the operation of the al-
ternative oxidase reaction. It is only in this region that
the alternative oxidase reaction is active, and this leads
to a further fall in mitochondrial ATP production.

Chloroplast Response

In region A (Fig. 4), there is a glyceraldehyde 3-P
exchange with 3-phosphoglycerate across the chloro-
plast membrane, resulting in the transfer of reducing

power from the chloroplast to the cytosol, where ox-
aloacetate is reduced to malate that is taken up by the
mitochondria. It is interesting to note that, although
the chloroplast module contains a functioning malate-
oxaloacetate transporter, this redox shuttle mechanism
was not utilized in any of the solutions described here.
Although the model represented by Equation 1 re-
mains soluble if a flux is explicitly set in these reac-
tions, all subsequent solutions are then suboptimal. As
the light intensity increases toward region B (Fig. 4),
the import of 3-phosphoglycerate declines, as it is
converted in the cytosol to the pyruvate that is taken
up by the mitochondria. Also, the gross CO2 fixation
rate increases as more is recycled from rising mito-
chondrial oxidation of pyruvate.

Figure 2. Responses of solutions in the chloroplast and mitochondrion
to varying photon fluxes. Suffix _tx indicates transport of the named
metabolite, positive values represent import to the compartment, and
negative values represent export. The abscissa is plotted as a loga-
rithmic scale to enable the full set of responses to be easily seen; this
causes the reaction responses to appear as curves, whereas they vary
linearly with light intensity, showing abrupt changes in slope where the
pattern of fluxes changes. The four major flux rearrangements are in-
dicated by vertical lines dividing the flux patterns into five major re-
gions labeled A to E. The transition between regions A and B is shown at
higher magnification in Figure 3. PGA, phosphoglycerate; GAP, glyceral-
dehyde 3-P; PGly, phosphoglycolate; Mal, malate; MalDH, malate dehy-
drogenase; Pyr, pyruvate; OAA, oxaloacetate Cplx V, complex v.

Figure 3. Chloroplast and mitochondrial transport responses at low
light levels. This shows a magnified view of the transition between the
states A and B shown in Figure 2. At lowest light levels, there is a
maximum import of 3-phosphoglycerate (3-PGA) into the chloroplast,
corresponding with the maximum export of glyceraldehyde 3-P (GAP),
acting as a shuttle to export reductant and ATP. At the same point, the
mitochondrial malate-oxaloacetate (Mal-OAA) shuttle is maximally
active, as demonstrated by the import of Mal, the activity of malate
dehydrogenase (MalDH), and the export of OAA. Thus, in this region,
there is a net transfer of reductant from the chloroplast to the cytosol.
The two curves for CO2 transport demonstrate the recycling from mi-
tochondria to chloroplast.
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Throughout region B, the chloroplast metabolism,
like that of the mitochondria, remains largely constant,
until the transition to region C, where mitochondrial

ATP production starts to decline in the face of the in-
creasing production of ATP by the light reactions,
evidenced by an increase in oxygen evolution from the

Figure 4. Flux distributions in the mitochondrial module at various photon fluxes. Results are shown for specific flux values in
the labeled regions as follows: A, 0.3; B, 0.8; D, 4.0; and E, 8.0. State C (not shown) is intermediate between B and D. Flux
figures are rounded to 1 significant figure for clarity. Reactions that are grayed out carry zero flux. In state B, all reactions are
active, and this then describes the structure of the mitochondrial module. I, Complex 1; II, complex 2; III, complex 3; IV,
complex 4; V, complex 5; r1, pyruvate dehydrogenase; r2, citrate synthase; r3, aconitase; r4, isocitrate dehydrogenase; r5,
oxoglutarate dehydrogenase; r6, succinate thiokinase; r7, fumarase; r8, malate dehydrogenase; Cyt_red, cytochrome reduced;
Cyt_ox, cytochrome oxidized; Q, ubiquinol; QH2, ubiquinone; OAA, oxaloacetate; Mal, malate; Fum, fumarate; Suc, succi-
nate; SucCoA, succinyl CoA; IsoCit, isocitrate; Cit, citrate; H_int, internal proton; H_ext, external proton; AcAoA, acetyl-coA.
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light reactions (Fig. 4). The ATP is exported from the
chloroplast to the cytosol by the restarting of the
3-phosphoglycerate/glyceraldehyde 3-P shuttle, gener-
ating ATP at the phosphoglycerate kinase reaction.
The associated extra cytosolic-reducing potential is
accounted for by reactions associated with photores-
piration, which becomes active at this point with an
increasing export of phosphoglycolate throughout re-
gion C (Fig. 4). The gross rate of CO2 fixation increases,
as that released by photorespiration more than replaces
the declining mitochondrial production. Net evolution
of O2 from the chloroplast increases in spite of its uti-
lization in the Rubisco oxygenase reaction, but this is
balanced by increased consumption in the rest of the
cell, as phosphoglycolate is recycled.

Across region D (Fig. 4), photorespiration continues
to increase, accompanied by increasing exchange in the
3-phosphoglycerate/glyceraldehyde 3-P shuttle. The
light reactions generate more O2, which is used in the
photorespiration pathway. There is also an increased
return of CO2 to the chloroplast from photorespiration,
with a further increase in the gross rate of assimilation.

In region E (Fig. 4), Rubisco has become saturated
for both carboxylation and the oxygenase reaction.
Continued increases in the light reactions result in a
further increase in export of O2 from the chloroplast to
the cytosol, where it causes oxidation of ascorbate, and
reductant is exported from the chloroplast to rereduce
the dehydroascorbate. Substrate cycling by the simul-
taneous polymerization and hydrolysis of starch is one
of the ways the excess chloroplastic ATP is dissipated.

Nitrogen Uptake Response

In our model, we consider that the rice leaf metab-
olism can take both NH3 and NO3 as nitrogen sources.
Figure 5 shows that there is a transition between NH3
and NO3 utilization that takes place within region A of
Figure 2. At the very low intensity of light, the model
favors NH3 over NO3, but utilizes both, then the

utilization of NH3 decreases and the NO3 increases,
and finally, at photon flux values above 0.4, only NO3
is consumed. Because the use of NH3 can save energy
compared with NO3, plant leaves may favor the utili-
zation of NH3 at low light intensities to optimize the
energy available for biosynthesis. The shift to NO3
utilization is accompanied by a fall in AQ from 0.98 to
0.87, and at this point, the quantum demand is 16.6
photons per fixed carbon. This certainly reflects the
generation of the additional reductant needed for the
assimilation of NO3.

DISCUSSION

General Model Properties

Reaction Utilization

An effect of minimizing total flux in the network is
to tend to also minimize the total number of reac-
tions used, because if there are two alternative routes
to convert metabolite A into metabolite C (A → C
and A → B → C), the first option will always mini-
mize total flux. This is not to say that the number of
reactions found by this approach is the absolute
minimum, but it does serve to place an upper limit
upon that minimum.

The fact that only 309 of the 1,029 available reactions
were utilized in the solutions found here is therefore
unsurprising and comparable with our previous study
of heterotrophic metabolism in Arabidopsis (Poolman
et al., 2009), in which 232 out of 1,406 available reac-
tions were used. In addition, the solutions refer to only
one physiological state of the cell, and a different set of
reactions would be used during nighttime metabolism.
The number of reactions used here can be associated
with a total of 568 unique genes, although this figure is
certainly an underestimate, as mitochondrial and chlo-
roplast reactions were not represented with BioCyc
identifications.

Figure 5. Variation in nitrogen source
utilization with varying photon flux. Re-
gions A and B are as shown in Figure 2.
Note, however, the different photon flux
range of this figure. [See online article for
color version of this figure.]
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Comparison with Other Models

Our analysis is not readily comparable with that of
previous plant GSMs (Poolman et al., 2009; de Oliveira
Dal’Molin et al., 2010; Dal’Molin et al., 2010; Saha
et al., 2011; Mintz-Oron et al., 2012), as they have not
considered a detailed biochemical analysis of the re-
sponses to light intensity. For example, Saha et al.
(2011) considered two fixed photosynthetic states of
maize, dependent solely on noncyclic photophospho-
rylation and concentrated on intercellular interactions
of C4 metabolism and the properties of mutants in
biosynthetic pathways. Conceptually, our approach is
closer to that of Shastri and Morgan (2005), but as their
subject was the cyanobacterium Synechocystis spp., the
lack of intracellular compartmentation and the differ-
ent mode of life limit the meaningfulness of detailed
comparison.
Boyle and Morgan (2009) reported results for three

states of their C. reinhardtii model (autotrophic, heter-
otrophic, and mixotrophic) and carried out a light in-
tensity scan for mixotrophic growth with acetate, but
this differs in many details from plant metabolism. Chang
et al. (2011) studied the response of C. reinhardtii to light
in great detail, but in the biotechnological context of
predicting the growth rate expected given the spectral
characteristics of the light source.
In effect, the diversity of the studies to date indicates

the wide range of potential applications for genome-
scale metabolic modeling and hints at the scope for
further development.

Utility of LP Constraint Scanning

The results presented here support our original
contention that scanning constraints, as described in
“Materials and Methods,” does reveal potential cor-
related responses in a network, and such observations
can be used to generate further hypotheses concerning
the in vivo behavior of the system. This continues an
approach adopted in the early studies of E. coli me-
tabolism by FBA (Varma et al., 1993; Varma and
Palsson, 1993) before the model was genome derived,
where a series of different metabolic phases were
identified by scanning the oxygen supply rate. Here,
we have restricted ourselves to one dimension by fix-
ing the biomass production rate, so that we essentially
consider the ratio of light intensity to growth rate,
which still gives us a challenging and rich behavior to
analyze. In the future, we need to consider different
phases in the space defined by variation in light, growth
rate, starch deposition, and Suc accumulation.
It is particularly interesting that simply scanning the

light intensity results in the Rubisco oxygenase reac-
tion becoming active at superoptimal photon fluxes.
This is, of course, a well-known phenomenon, but
there are no explicit or implicit features in the model or
its analysis that make this a forgone conclusion. The
observation thus lends further credence to this approach
for the analysis of genome-scale models.

Comparison of Specific Responses to Light with
Experimental Observations

Photorespiration

The fact that photorespiration is spontaneously ac-
tivated at supraoptimal photon flux suggests that the
inhibition of this pathway might not be wholly bene-
ficial to the plant. Plants are always likely to be ex-
posed to supraoptimal light and have to be able to
dissipate excess energy to prevent damage and over-
reduction of the chloroplast. There are several mecha-
nisms that contribute to this, and our results support the
view that photorespiration is among these (Padmasree
et al., 2002). It increases the net supply of CO2 to the
chloroplast and absorbs the extra O2, as the changes
in their fluxes (Fig. 2, C and D) occur with no net
impact on the CO2 and O2 fluxes for the whole cell, as
is further discussed in the next subsection. The sub-
stantial export of glyceraldehyde 3-P and the import of
3-phosphoglycerate in regions C, D, and E (Fig. 2)
show how reductant and ATP are moved out of the
overenergized chloroplast. The importance of mito-
chondrial metabolism in the light for maximization of
photosynthetic performance has been noted by a
number of authors (Padmasree et al., 2002) and is ap-
parent in our model as described further below, but we
have underrepresented its contribution to photores-
piration, because this version of the model is not fully
compartmented and does not assign Gly oxidation to
the mitochondrion.

Quantum Demand and Photosynthetic Yield

The relationships between light absorbed, CO2 fixed,
and O2 evolved are at the center of agronomic and
ecological assessments of the roles of photosynthetic
organisms, but they are difficult to measure experi-
mentally, and the theoretical limiting values are like-
wise hard to calculate from first principles. Both
approaches share some common problems: photosyn-
thesis is potentially simultaneously supporting export
and storage of assimilate, growth, and cell mainte-
nance. At the same time, photorespiration and mito-
chondrial respiration can be taking place with their
own stoichiometries for CO2 and O2. Furthermore, the
instantaneous and long-term, and leaf and whole plant
values are of interest. While metabolic modeling does
not resolve the issue of the relative mix of the different
processes, it does allow rapid calculation for different
well-controlled scenarios, such as different proportions
of biomass and exported assimilate. Our calculations
are for an average cell in an expanding leaf that is not
yet a major exporter of assimilate, so have more in
common with algal cultures than mature leaf or whole
plant measurements.

Previous calculations of the minimum quantum
demand for photosynthetic assimilation (Raven, 1982;
Pirt, 1986) have used older stoichiometries for cyclic and
noncyclic photophosphorylation and have accounted for
fixing CO2 and nitrate or ammonia to biomass on the
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basis of pathway-based calculations of the correspond-
ing ATP and NADPH demands for making the basic
constituents. From the lowest light level at which bio-
mass can be produced in Figure 2, where ammonia is
being used as the nitrogen source and photorespiration
is not active, we compute a quantum demand of 13.4
mol mol–1 (of absorbed photons) with our assumed
maintenance requirement. The point at which nitrate
becomes the nitrogen source for biomass in Figure 5
corresponds to a higher quantum demand of 16.6 mol
mol–1. Raven (1982)’s pathway-based calculations of al-
gal quantum demand led to an estimate of 14.1, after
correction by Pirt (1986), excluding maintenance and
polymerization costs, while Pirt (1986) computed a
lower value of 7.6 on NO3, or 6.4 on NH3. Pirt (1986)
reviewed measurements on algae and concluded that
the minimal quantum demand (corrected for mainte-
nance) was likely less than 8.0. Hence, our network-
based calculations are essentially similar. The quantum
demand reported for the GSM of the cyanobacterium
Synechocystis spp. was 13.9 to 14.7 using nitrate as the
nitrogen source (Nogales et al., 2012). Experimental
measurements on mature (i.e. nongrowing) leaves of C3
plants reviewed by Skillman (2008) gave an average
value of 19.2 mol mol–1, presumably with maintenance
included, under ambient atmospheric conditions. In
measurements where photorespiration was suppressed,
the median measurement fell to 10.4, but with a wide
variation depending on the methodology.

The simplistic view of photosynthesis is that the AQ
is 1, i.e. one CO2 fixed per O2 released, and this figure
is often assumed in calculations of photosynthetic
performance. As pointed out by several authors over
many decades (Raven, 1982), this is naive and over-
simplified, because the elemental composition of the
majority of biomass components requires that more O2
must be released than CO2 fixed to balance the stoi-
chiometric equations for their formation. For example,
Raven (1982) computed an AQ of 0.71 for algal growth
with NO3 as nitrogen source and 0.89 with NH3. Our
corresponding values for rice leaf biomass are 0.87 and
0.98, respectively, reflecting the substantial proportion
of cellulose. It is often assumed that mitochondrial
respiration and photorespiration will have significant
effects on the value of AQ (Skillman, 2008), but though
it may seem surprising, even at the highest light levels
in our model, neither changes in mitochondrial respi-
ration nor photorespiration have any effect on AQ. We
are conducting a more detailed examination of the
reasons for this.

A number of experimental studies (Searles and
Bloom, 2003; Cousins and Bloom, 2004; Rachmilevitch
et al., 2004) showed that the AQ was about 0.1 higher
for growth on NH3 compared with NO3 in ambient
atmospheric conditions for wheat, maize, tomato (So-
lanum lycopersicum), and Arabidopsis, in agreement
with our calculation for rice. However, the lower AQ
for NO3 was not seen under conditions where photo-
respiration was suppressed, such as elevated CO2 or
reduced O2, and NO3 assimilation was reduced. This

led to the suggestion (Rachmilevitch et al., 2004) that
NO3 assimilation depended on photorespiration. This
is not supported by our model, which exhibits un-
changed nitrogen uptake characteristics from those
shown in Figure 5 when the Rubisco oxygenase reac-
tion is blocked. This implies that such experimental
observations do not reflect a stoichiometric coupling
but a kinetic or regulatory interaction.

Mitochondria and Chloroplasts

The involvement of mitochondrial reactions in the
solutions across the photon flux range (Fig. 2, A–E) is
support for the accumulated evidence that mitochon-
drial respiration has a role in optimizing photosyn-
thetic performance (Padmasree et al., 2002). A number
of the aspects of plant mitochondrial metabolism in the
light described in their paper are evident in our results:

(1) Oxidation of pyruvate and malate during pho-
tosynthesis (Fig. 4), prevention of overreduction of the
chloroplast, and support of maximal photosynthesis.
At lower light levels (Fig. 4, A–C), the oxidation of
pyruvate and malate is associated with the generation
of ATP to support cytosolic metabolism. For an elec-
tron pair moved between water and NADPH, mito-
chondria can generate more ATP and are therefore
more effective at rebalancing reductant and ATP re-
quirements than chloroplasts. The mitochondrial ETC
is active at all light levels, and the reductant being used
is derived from the chloroplast light reactions. At high
light levels, the model shows a shift to use of the al-
ternative oxidase. (The flux in complex 4 in region E
goes to zero [Fig. 4], so that disposal of reductant is not
linked to generation of ATP, which is now provided in
excess by the chloroplast.) This is consistent with the
experimental evidence that the alternative oxidase is
necessary to protect against the harmful effects of ex-
cess light (Bartoli et al., 2005)

(2) Export of 2-OG derived from pyruvate and C4
precursors to support nitrogen metabolism and amino
acid synthesis. This activity continues at all light levels
in our scan, though this invariance is because we have
modeled a constant biomass production. There is some
experimental evidence for export of citrate and its
conversion to 2-OG by the parallel cytosolic reactions
(Plaxton and Podestá, 2006), which we do not see in
our solutions.

(3) Operation of an incomplete TCA cycle. Succinate
dehydrogenase (complex 2), and hence the complete
TCA cycle, is only active at the lower light levels in
Figure 2, A to C, becoming active through region A
and reaching its maximum level in region B before
declining in C, whereas the other electron transport
complexes and ATP synthesis continue at a low level
in regions D and E. As a result, the responses to light
intensity of the three neighboring enzymes succinate
dehydrogenase, fumarase, and malate dehydrogenase
are all different, as emphasized in Figure 4. This ability
of the TCA cycle reactions in plants to reconfigure to
fulfill different needs has also been pointed out by
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other authors (Sweetlove et al., 2010), and some of the
flux patterns shown in that paper can be seen in Figure
4. Also, the phenotypes of transgenic plants with re-
duced activities of succinate dehydrogenase and fu-
marase are different; tomato plants with fumarase
reduced sufficiently to inhibit mitochondrial respira-
tion have a reduced rate of photosynthesis and growth
(Nunes-Nesi et al., 2007), while the opposite is the case
for tomato and Arabidopsis with reduced succinate
dehydrogenase (Araújo et al., 2011; Fuentes et al.,
2011). In both cases, the primary mechanism of the
effect is reported to be through effects on stomatal
conductance, possibly caused by metabolite signaling
to the guard cells, rather than an effect on photosyn-
thetic capacity. However, even if signaling is the
dominant mechanism, the usefulness of fumarate and
malate levels as signals could well be related to the
reconfiguration of fluxes in this part of the TCA cycle
at different light levels. Though succinate dehydro-
genase is active in our optimal solutions obtained in
light level regions A to C (Fig. 2), it is not essential for
biomass generation by photosynthesis, because solu-
tions, albeit suboptimal, are obtained when its activity
is deleted from the model.
(4) Light inhibition of pyruvate dehydrogenase. Al-

though this enzyme is present in solutions throughout
the light range, its activity is at its maximum at the
lower light levels of region B (Fig. 2) and then falls
away to the much lower level needed for synthesis of
2-OG. It carries the same flux as the pyruvate trans-
porter Pyr_tx.
It is, perhaps, surprising that the model can capture

such a range of realistic behavior of plant metabolism
without having included any explicit regulatory mech-
anisms or enzyme kinetics. Pyruvate dehydrogenase
offers an interesting illustration, as it is known to be
inactivated by light (Padmasree et al., 2002). The as-
sumption that metabolism will be optimal, combined
with the stoichiometric constraints, leads to the con-
clusion that its activity should fall at high light levels,
which implies the existence of a mechanism to achieve
this without its having been specified in the model.
The results also show that the metabolic interactions

between the plant organelles in the light are not fixed
but shift according to the conditions. For this reason,
we cannot expect to capture all the behavior shown by
a C3 plant in experiments, as we have so far only
considered a leaf growing at a fixed rate with an ad-
equate supply of CO2 and not yet exporting nutrients
to the rest of the plant. Because a mature leaf can
produce variable proportions of starch, Suc, and amino
acids and operate at different levels of CO2 and light,
we expect the model to reveal more potential for
plasticity as we interrogate it in more detail.
There are aspects where we do not yet replicate some

experimental observations reviewed in Padmasree et al.
(2002). One comes from the representation of photo-
respiration. The model does not yet fully represent the
compartmentation of the reactions involved nor that the
NADH generated by Gly decarboxylase is preferentially

oxidized by mitochondrial pathways that do not gen-
erate ATP (Igamberdiev et al., 1997). Hence, we do not
show the total O2 consumption and CO2 production of
the mitochondria at high light levels nor the associated
interchange of amino groups between mitochondria
and chloroplasts.

Nitrogen Assimilation

The model showed a transition between the use of
NH3 and NO3 as light intensity increased from the
lowest level able to support biomass formation. For
our simulation, we assumed a fixed biomass genera-
tion rate and varied the light flux; hence, the result
more generally shows the tradeoffs between nitrogen
source, growth rate, and photosynthetic rate. Because
the photon demand is smaller for growth on NH3,
wherever light intensity is limiting, faster growth will
be possible using NH3 than NO3. At higher light in-
tensities, the use of NO3 provides a sink for reductant
generated by the excess photons. This illustrates the
utility to the plant of having access to both nitrogen
sources.

CONCLUSION

Overall, having added very few kinetic constraints
to our stoichiometric model (saturation of Rubisco, or
the dark reactions of the Calvin cycle, and the limita-
tion that cyclic photophosphorylation rate cannot exceed
the noncyclic rate), we find that realistic physiological
behavior emerges. This suggests that important aspects
of plant photosynthetic metabolism are determined by
stoichiometric imperatives and that the specific kinetic
and regulatory features are a way to satisfy these con-
straints and achieve a steady state. In turn, this implies
that metabolism can only be fully understood at the
whole network level, not as a mosaic of separate
pathways.

MATERIALS AND METHODS

Model Construction and Curation

Construction: General

The model was built using the same approach as for our previous model of
Arabidopsis (Arabidopsis thaliana; Poolman et al., 2009). An initial reaction set
was generated from a publically available database. This set was curated and
combined with a set of smaller submodels (modules) defining various func-
tionality not present in the set obtained from the database (described below).

The initial reaction set was extracted from the RiceCyc database (http://
www.gramene.org/pathway/ricecyc.html; Youens-Clark et al., 2011) derived
from International Rice Genome Sequencing Project’s annotation of the rice
(Oryza sativa japonica ‘Nipponbare’) genome sequence. This database is
available as part of the BioCyc collection (Karp et al., 2005).

The BioCyc format is particularly useful for metabolic reconstructions, as it
clearly defines the hierarchical relationships between genes ↔ proteins ↔
enzymes ↔ reactions ↔ metabolites and, where the database is under active
curation by domain experts, these relationships get updated rather than being
frozen as ancillary data in the metabolic model.

The ScrumPy software package used here allows models to be defined in a
modular manner such that logically separate groups of reactions are placed in
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separate files. This greatly facilitates data management and curation in situations
where reactions defined in a database are combined with those from other sources.

In addition to the module defined by the reactions obtained from RiceCyc,
two important extra modules were those defining the chloroplast and mito-
chondrial compartments. Other modules were included for convenience and
are more completely described in Supplemental Data S1.

The Chloroplast Module

The chloroplast module comprises the light reactions, Calvin cycle, the
Rubisco oxygenase reaction (other reactions of photorespiration were treated as
cytosolic, as there is no explicit peroxisome compartment in this version of the
model), starch metabolism, and reactions (that in the cytosol would be de-
scribed as glycolytic) from phosphoglycerate to pyruvate and malate dehy-
drogenase. Full details are given in Supplemental Data S1 and S2.

The light reactions were represented as two lumped reactions, one for cyclic
and one for noncyclic photophosphorylation. The stoichiometries were de-
termined from the elementary modes analysis of a detailed model of the light
reactions constructed on the basis of stoichiometries of the underlying mo-
lecular processes (Allen, 2003). The equations used for cyclic and noncyclic
photophosphorylation were, respectively,

7  n þ 3 ADPþ 3  Pi→3 ATP

and

28n þ 9ADPþ 7NADP þ 9Piþ9H2O→

7 Oþ 7 Hþþ7 NADPHþ 9 ATP

In steady-state photosynthesis, noncyclic and cyclic photophosphorylation
are the major contributors in rice leaves (Makino et al., 2002). Though the
water-water cycle (also known as the Mehler peroxidase reaction) can supply
extra ATP needed in plant leaf metabolism, its maximum contribution is
reported to be less than 5% of the linear electron flow in C3 leaves (Ruuska
et al., 2000; Kramer and Evans, 2011). In addition, it is mainly functional
during photosynthetic induction of rice leaves and not steady state, so these
reactions were not included.

Consideration was also given to the potential impact of a plastid terminal
oxidase reaction (Carol et al., 1999; Josse et al., 2000; Sun and Wen, 2011),
which acts to oxidize plastoquinol to plastoquinone and has thus been pro-
posed to act as a safety valve under stress conditions.

When incorporated in the light reaction model, one new elementary mode
was found, but the net stoichiometry was identical to that of the cyclic pho-
tophosphorylation mode above. Therefore, under the conditions investigated
here, although plastid terminal oxidase reaction may carry flux, this will not
impact the behavior of the rest of the model.

The model used to generate these elementary modes is provided in
Supplemental Data S4.

The Mitochondrial Module

The mitochondrial module was that used and described by Poolman et al.
(2009) and comprises the TCA cycle, ETC, and oxidative phosphorylation (see
also Supplemental Data S3 and Fig. 4B).

Curation

For the results generated by amodel to be of use, it is essential that a number
of criteria are met; failure so to do would generate results implying violation of
mass and/or energy conservation.

The first step in ensuring mass conservation is simply to determine the
atomic balance of individual reactions. This check is readily achieved, as BioCyc
databases contain the empirical formulae of most metabolites. Attention must
then be turned to those for which no empirical formula is available. The most
common of these are polymers, and reactions involved with these must be
treated with some caution if serious errors are to be avoided (Poolman et al.,
2006). The problem arises when different reactions utilize different numbers of
monomeric subunits; for example, starch synthase catalyzes the addition of a
single Glc subunit to starch, but amylase removes two. The two reactions
together would thus allow the generation of two Glc molecules from one. The
issue can be easily resolved by defining the smallest monomeric subunit and
rescaling stoichiometric coefficients to reflect this. Thus, the problem in the
previous example may be resolved by considering Glc as the smallest

monomeric subunit of starch and defining the amylase reaction to produce
one-half molecule of maltose.

Energy and redox conservation may be readily checked using the linear
program described in Equation 1 below. All inputs and outputs are set to zero
and a demand for energy imposed in the form of flux in, for example, a generic
ATPase reaction. If a solution exists, then it will contain at least one reaction
with incorrectly defined direction or reversibility. Happily, it is our experience
that such solutions contain only a small number of reactions that may be
conveniently checked against online databases or other sources.

Another potential problem related to reaction irreversibility is that of in-
consistent subsets. In brief, an enzyme (or reaction) subset is a set of (possibly
not contiguous) reactions that carry steady-state flux in a fixed ratio, a simple
linear pathway being a trivial example (Pfeiffer et al., 1999). If two or more
reactions in a subset have been defined as irreversible in opposing directions,
then no steady-state flux is possible in the reactions comprising the subset.
Subsets are identified from analysis of the null space of the system, a subject
beyond the scope of this paper, but see Fell et al. (2010) for further details.
When inconsistent subsets are identified, a judgment must be made as to the
correct directionality of the irreversibility of the reactions within it.

A final check was to verify the stoichiometric consistency of the network
with respect to carbon, nitrogen, phosphorus, and sulfur, as described by
Gevorgyan et al. (2008).

Biomass Composition

The model described here corresponds to a mesophyll cell in an expanding
leaf, i.e. one that is producing cell components for a growing leaf, but not yet
exporting material via the phloem to the rest of the plant. The relative pro-
portions of the leaf components were taken from data by Juliano (1986), except
for the nucleic acid content and composition, which were estimated from the
results of Kwon and Soh (1985). The other biomass components were amino
acids for protein plus b-Ala; nucleoside and deoxynucleoside mono-
phosphates for DNA and RNA; polymerized Glc for starch and cellulose;
coniferyl, coumaryl, and sinapyl alcohols for lignin; linoleic acid for lipid and
Glc; and Suc for soluble metabolites.

Biomass components were assigned an individual transporter, whose flux
can be set independently, providing a more convenient mechanism to inves-
tigate variations in biomass composition than defining a single biomass re-
action consuming all components, which has the disadvantage of making
compositional variables into parameters as stoichiometric coefficients. The rates
are represented as moles per arbitrary time unit and are given in the model files
in Supplemental Data S1.

An ATP hydrolysis reaction was included to represent the energy costs of
polymerization, turnover, and cellular maintenance. In our previous applica-
tion of genome-scale modeling to Arabidopsis root cells in culture (Poolman
et al., 2009), we determined a value of 7.1 mmol g–1 dry weight–1 h–1, which is
in the range of experimental values reported for both bacteria and algae. This
corresponded to approximately one-half the substrate input being used to
meet this energy requirement, though this is probably higher than for a plant
cell in its natural surroundings. Accordingly, we set the generic ATPase re-
action at 0.1 light flux units, which implies a photon demand of 0.1 to 0.2 light
flux units depending on the routes used to generate the ATP.

Model Analysis

Apart from the determination of inconsistent subsets and stoichiometric
consistency, a linear programming approach was taken for the major part of the
analysis. This was defined as:

minimize  :  v

subject  to

8>><
>>:

Nv ¼ 0
vi::j ¼ t
vATPase ¼ ATPase
vn ¼ n

ð1Þ

Thus, we minimize total flux, subject to a number of constraints: Nv = 0 defines
steady state, vi..j = t defines the constraints imposed by the requirement for
individual biomass components (inputs of CO2 and inorganic nutrients along
with the O2 output flux were left unconstrained), vATPase = ATPase defines the
energy demand for polymerization and cell maintenance, and vv = n is the
photon flux into the system.

A number of variants of this were used in the curation phase; for example,
setting vi..j and n to zero while setting ATPase to an arbitrary positive value
was used to check energetic consistency as described above.
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Light Scanning

As light intensity varies more rapidly (diurnal and transient) and over a
much greater magnitude than the availability of CO2 or mineral nutrients, this
is the natural place in which to start our response analysis. Hence, for this
study, we have analyzed the responses of the solution of Equation 1 to vari-
ation in n. The range investigated was from zero (where obviously no solution
is found) up to the point beyond which all flux responses remain linear. The
minimum flux below which no solution is possible was identified from a
simple bisection search.

Two additional constraints were imposed for this aspect of the study: cyclic
photophosphorylation could not exceed noncyclic and an arbitrary limit set on
the sum of the Rubisco carboxylase and oxygenase reactions to implement the
limit on Calvin cycle flux as mentioned previously. To check the effect of the
limitation on cyclic photophosphorylation, we repeated the light scans at
different settings, and this only affected the photon flux values at which the
various transitions described in “Results” occur, specifically the region B to C
transition. The key features of the flux distributions in the mitochondria and
chloroplast remain.

Software

All computation was achieved using the software package ScrumPy
(Poolman, 2006). This includes facilities for performing linear programming
(using the Gnu Linear Programming Kit, http://www.gnu.org/software/
glpk/) and interrogating BioCyc flat-file databases.

The package and further information can be obtained from http://
mudshark.brookes.ac.uk/ScrumPy or by contacting Mark Poolman.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Data S1. The “Model” sub-directory contains the model in
ScrumPy (.spy) and SBML format.

Supplemental Data S2. The file “Chloroplast.pdf” contains a structural
diagram of the chloroplast module (Model/Chloroplast.spy).

Supplemental Data S3. The file Model/Mito.spy describes the mitochon-
drial module.

Supplemental Data S4. The file LightReacs.spy contains a detailed struc-
tural model of the light reactions. The elementary modes of this model
define the stoichiometries of the lumped light reactions used in the chlo-
roplast module.
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