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Developmental differences between species commonly result from changes in the tissue-specific expression of genes. Clustering
algorithms are a powerful means to detect coexpression across tissues in single species but are not often applied to multidimensional
data sets, such as gene expression across tissues in multiple species. As next-generation sequencing approaches enable interspecific
analyses, methods to visualize and explore such data sets will be required. Here, we analyze a data set comprising gene expression
profiles across six different tissue types in domesticated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii). We find
that self-organizing maps are a useful means to analyze interspecies data, as orthologs can be assigned to independent levels of a
“super self-organizing map.” We compare various clustering approaches using a principal component analysis in which the
expression of orthologous pairs is indicated by two points. We leverage the expression profile differences between orthologs to
look at tissue-specific changes in gene expression between species. Clustering based on expression differences between species
(rather than absolute expression profiles) yields groups of genes with large tissue-by-species interactions. The changes in
expression profiles of genes we observe reflect differences in developmental architecture, such as changes in meristematic
activity between S. lycopersicum and S. pennellii. Together, our results offer a suite of data-exploration methods that will be
important to visualize and make biological sense of next-generation sequencing experiments designed explicitly to discover
tissue-by-species interactions in gene expression data.

The hypothesis that cis-regulatory changes in gene
expression are sufficient to cause morphological differ-
ences between species has been demonstrated multiple
times (Britten and Davidson, 1969, 1971; King and
Wilson, 1975; for review, see Doebley and Lukens, 1998;
Romero et al., 2012). In many of these examples, the
changes in regulation do not necessarily affect gene ex-
pression levels per se but rather alter the spatiotemporal
pattern of expression. One of the most intuitive examples
of how changes in the spatial expression of genes can
modify form is the Hox genes, the ever-shifting, aug-
mented, and diminished expression of which across
modular animal body plans has created a staggering
diversity of morphologies (Carroll, 2000). Changes in
gene expression profiles across tissues between species
are an example of “heterotropy,” describing spatial
differences (rather than temporal, as in heterochrony)
between species (Carroll, 2008). Both heterotropy and

heterochrony are important factors when analyzing
differences in gene expression between plant species,
which iteratively produce different types of organs
(Chitwood et al., 2012b; Chitwood and Sinha, 2013).

Our understanding of how cis-regulatory changes
and the modulation of spatial expression affect mor-
phological change has been limited by technology.
Whereas previously, forward and reverse genetic ap-
proaches were used to study a single gene or a few
genes in great detail, microarrays and next-generation
sequencing now allow transcriptome-wide assess-
ments of expression levels to be determined (Wang
et al., 2009). To date, a number of studies have used these
technologies to create expression atlases in plants, albeit
in a single species. Cell-type resolution of gene expression
in the root (Birnbaum et al., 2003; Brady et al., 2007;
Dinneny et al., 2008), temporal and spatial expression
patterns in leaves and the meristem (Efroni et al., 2008;
Jiao et al., 2009; Li et al., 2010; Park et al., 2012; Takacs
et al., 2012), and comparisons of gene expression across
mutant genotypes in specific tissues (Eveland et al., 2010)
are just a few examples of the unprecedented perspective
into the developmental regulation of gene expression that
transcriptomic approaches provide.

Nonetheless, transcriptome-wide changes in spatial
expression between species remain understudied. Re-
cently, a comparison of gene expression in six different
organs of 10 different mammals and birds revealed
lineage-specific changes in expression profiles and
determined the role of selection in modulating spatial
expression profiles (Brawand et al., 2011). In plants, a
comparison of gene expression in floral organs among
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angiosperms demonstrated increasing canalization and
organ-specific expression in derived lineages (Chanderbali
et al., 2010).

Interspecies studies, such as the above, will undoubt-
edly become more commonplace as next-generation se-
quencing obviates the deficit of sequenced genomes/
transcriptomes in nonmodel organisms through de novo
assembly. Such studies will require exploratory statisti-
cal methods to quantitatively analyze the overwhelming
number of tissue expression patterns and their possible
differences between species. Statistical models that can
identify genes with significant tissue-by-species interac-
tion effects (i.e. changes in the tissue-specific expression
of genes between species) exist, but they are incapable of
informing about patterns across multiple tissues. Addi-
tionally, a researcher may be concerned with overall
patterns of tissue-by-species changes in the data set and
not just those that pass an arbitrary statistical signifi-
cance threshold. Another problem facing interspecies
comparisons is orthology. Beyond the immediate prob-
lem of identifying orthologs is whether orthologs should
be analyzed independently or somehow comparatively
as pairs. Although powerful, commonly used clustering
methods, such as hierarchical clustering and k-means
clustering, are often used to cluster across a single factor,
such as tissue, and are not designed to deal with mul-
tidimensional data sets (such as when a gene has mul-
tiple expression patterns for each ortholog).

Here, we analyze a data set sampling the tran-
scriptome of six different tissues in two different species:
domesticated tomato (Solanum lycopersicum ‘M82’) and a
desert-adapted wild relative, Solanum pennellii. We find
that self-organizing maps (SOMs), a type of artificial
neural network, are convenient for clustering in the
context of multiple factors (Kohonen, 1997; Tamayo
et al., 1999; Wehrens and Buydens, 2007). Our SOM
clusters yield groups of genes with similar expression
profiles that have a biological basis, as revealed
through Gene Ontology (GO) enrichment analysis and
the inclusion of relevant genes with known tissue-
specific functions. We also find that the manner in
which the expression profile of a gene changes between
species depends on overall tissue-specific expression.
That is, ortholog pairs assigned to specific clusters,
based on their overall expression profile across tissues,
exhibit distinct changes in the patterns of their expres-
sion profiles between species. Clustering genes based
not on their absolute expression profile but rather on
their change in expression pattern between species re-
veals a group of genes that have increased expression in
the meristematic tissues of S. lycopersicum, reflective of
the increased meristem size in this species relative to S.
pennellii. Included in this group of genes are LeT6,
WIRY4, and the PIN1 tomato (Solanum spp.) ortholog,
all known modulators of tomato shoot apical meristem
development (Janssen et al., 1998a, 1998b; Kim et al.,
2003; Reinhardt et al., 2003; Pattison and Catalá, 2012;
Yifhar et al., 2012). Our results provide a means to ex-
plore the tissue-specific expression of genes between
species and demonstrate the utility of next-generation

sequencing approaches in exploring themolecular changes
associated with morphological evolution.

RESULTS

SOMs and superSOMs

A number of methods exist to cluster genes into
groups, the members of which possess similar expres-
sion profiles over the levels of a factor (e.g. genes with
similar expression profiles measured across tissues).
The various solutions to this problem carry different
limitations (Tamayo et al., 1999). Human-guided clus-
tering has obvious advantages, as nuanced criteria dif-
ficult to express algorithmically can be used to discern
complex phenomena. Unfortunately this method is
subjective, does not scale well, and has rarely been used
(Cho et al., 1998). One of the most commonly used
approaches is hierarchical clustering, in which genes are
placed into a rigid hierarchy of subset groups (Eisen
et al., 1998). This may be the ideal way to describe some
data sets. However, the numerous patterns of gene ex-
pression across the tissues of an organism are not neces-
sarily hierarchically organized. Another popular approach
is k-means clustering, in which a set number of clusters
(“k”) divides the space describing all expression patterns
such that the distance of all gene expression profiles to
cluster geometric centers (“centroids”) is minimized
(Tavazoie et al., 1999). A disadvantage of k-means
clustering is that it does not take into account the to-
pology of clusters to each other; it merely partitions the
gene expression space (similar to a Voronoi diagram;
Aurenhammer, 1991).

SOMs are another commonly used method to cluster
gene expression profiles (Tamayo et al., 1999). SOMs
result from a process in which neighboring clusters
influence each other, resulting in a network topology
reminiscent of biological systems (especially neural net-
works; Kohonen, 1982, 1997; Kangas et al., 1990; Wehrens
and Buydens, 2007). The process begins by randomly
assigning data to clusters. That is, a gene expression
profile is at random assigned to a cluster, becoming its
“codebook vector.” The codebook vector is the gene ex-
pression profile that represents the cluster in subsequent
training. An expression profile is then randomly selected
and assigned to the closest “winning cluster,” based on
proximity to the cluster codebook vector using a distance
metric. When assigned to a cluster, the data alter the re-
spective cluster’s codebook vector as a weighted average.
SOMs are spatially constrained in that the influence of
data assigned to a winning cluster extends beyond the
winning cluster to neighboring clusters. This is a key
difference from k-means clusters: SOMs literally arrange
clusters as a map (for an example, see Fig 1, E, F, H, and I)
and, therefore, have a topology. This spatial constraint
influences the extent to which neighboring clusters alter
each other. The process described above is repeated over
a specified number of iterations as the clusters adapt to
the given data set. At the end of this training period, data
are given a final assignment to winning clusters.
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The influence of neighboring clusters on each
other is not unlike the Hebbian theory of “neurons
that fire together wire together,” and indeed, SOMs
are classified as “artificial neural networks” (Hebb,
1949). The principle of clustering using spatial con-
straints and topology has ramifications in develop-
mental biology and the creation of gene expression
atlases. For example, if gene expression is influenced

by continuous, spatial factors in an organism (e.g.
morphogens and/or hormone gradients) and finite,
discrete subsets of the organism are sampled (e.g.
cell types, tissues, and/or organs), a properly con-
structed SOM can reflect the underlying topology
and relationships between identified clusters of
gene coexpression (Kohonen, 1982; Kangas et al.,
1990).

Figure 1. PCA, SOMs, and superSOMs. A, PCAwas performed on gene expression across tissues. The expression profile of each
gene is represented twice: one point representing the S. lycopersicum ortholog and the other representing the S. pennellii
ortholog. Densities representing overabundant gene expression patterns are easily observed. Variance explained by each PC is
indicated. B and C, Diagrams demonstrating the differences between SOMs and superSOMs. Under a regular SOM approach
(B), S. lycopersicum (S.l.) and S. pennellii (S.p.) orthologs are assigned to clusters without regard to the species they represent.
Using SOM methods, orthologs can be assigned to different clusters. In a superSOM scheme (C), S. lycopersicum orthologs are
clustered in a dimension separate from S. pennellii orthologs. Each ortholog in a superSOM is assigned to the same cluster. D to
I, PCA and clustering results for SOM (D–F) and superSOM (G–I) approaches. D and G, Genes belonging to different SOM (D)
and superSOM (G) clusters are indicated by different colors and projected on the PC space. Note the ability of both methods to
explain major densities represented in the PC space and the high correspondence between the expression profiles of genes
represented by the clusters in each data set (i.e. SOM/superSOM clusters include genes occupying similar regions and densities
in the PC space). Color assignments are arbitrary, and corresponding SOM and superSOM clusters are not the same color. E and
H, Number of genes assigned to each SOM cluster (E) and ortholog pairs assigned to each superSOM cluster (H). Note that there
are half as many assignments to clusters in a superSOM scheme compared with SOMs. F and I, Mean Euclidean distance of
cluster members to codebook vectors in the SOM (F) and superSOM (I). For SOM and superSOM diagrams, the 33 3 hexagonal
topology is shown. Clusters with similar codebook vectors lie closer to each other than those with disparate codebook vectors.
Red indicates low count/Euclidean distance, and white indicates high count/Euclidean distance.
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To explore the utility of SOMs in identifying groups of
genes with similar expression profiles, we analyzed RNA-
Seq data collected from S. lycopersicum and S. pennellii.
Gene expression values from the inflorescence, mature
leaf, root, seedling, stem, and vegetative apex were mean
centered and variance scaled to measure differences at-
tributable to changes in tissue-specific expression rather
than magnitude. Importantly, the expression profiles of
each ortholog (one from S. lycopersicum, the other from S.
pennellii) were scaled across tissues independently. The
result is that purely developmental differences in expres-
sion profiles of orthologs across tissues are being ana-
lyzed. That is, additive species effects (e.g. intrinsically
higher expression in one species compared with the other)
are effectively eliminated. Genes with differential expres-
sion across two species are best analyzed using statistical
methods such as fitting generalized linear models and
focusing on those genes significant for the species model
term (Oshlack et al., 2010). Although we focus on tissue
effects rather than species effects in this study, the
approaches we describe can accommodate species effects
by analyzing ortholog pairs and clustering using the ex-
pression of genes across 12 tissues (six for each species).
Had the analysis been performed this way, patterns of
variance with respect to tissue and species would be
confounded, as witnessed by the correlation of principal
component (PC) values with fold change expression
values between orthologs (Supplemental Fig. S1).

Before clustering, we decided on a cluster number, a
problem of variable and feature selection that plagues
SOMs and k-means clustering alike (Guyon and Elisseeff,
2003). To help inform our cluster number decision, we
visualized the expression profiles of genes through a
principal component analysis (PCA; Fig. 1A; Supplemental
Fig. S2). In this PCA, each gene is represented twice:
one data point representing the tissue expression of
the S. lycopersicum ortholog and the other point rep-
resenting the profile of the S. pennellii ortholog. By
observing densities in the PC space (the densest re-
gions representing many genes with similar expression
profiles), an appropriate cluster number can be esti-
mated. There should be sufficient clusters to describe
distinct, prevalent expression patterns (densities in the
PC space) but not so many clusters that a given ex-
pression pattern is redundantly covered.

After visualizing the PC space and deciding on a
cluster number and SOM topology (3 3 3, hexagonal),
we then created a SOM in which the orthologs from
each species were independently assigned to clusters.
The result of this clustering scheme is that it is possible
for orthologs of a gene to be assigned to different
clusters (Fig. 1B). Genes belonging to different clusters
explain common expression patterns in the data, as
visualized by coloring cluster membership in PC space
and the correspondence of cluster identity with dis-
tinct densities (Fig. 1D). The clusters representing the
most distinct densities (e.g. SOM cluster 7, magenta;
Fig. 1D) can have high cluster membership (which can
contribute to very dense PC regions; Fig. 1E) and lower
Euclidean distances of cluster members to the cluster

codebook vector (essentially the centroid; Fig. 1F).
Clusters representing more diffuse patterns in PC
space (e.g. SOM cluster 5, yellow; Fig. 1D) contain
members with higher Euclidean distances to their
codebook vectors (Fig. 1F).

The robustness of clustering over a single factor
(tissue, in this instance) using a SOM is exemplified by
the fact that k-means and hierarchical clustering yield
comparable results. If the k number of clusters is se-
lected to match that used for the SOM (nine clusters;
Fig. 1D), then genes are assigned to k-means clusters
that bear a striking resemblance in the expression to
genes assigned to SOM clusters (Supplemental Figs. S3
and S4). Similarly, if hierarchical clustering on the
genes used for SOM clustering is performed, genes
assigned to the same SOM cluster often cluster together
(Supplemental Fig. S5). If merely clustering over a single
factor (tissue) were our only goal, then any of these three
widely used clustering approaches (SOM, k-means clus-
tering, hierarchical clustering) could be used.

However, none of the methods, as presented above,
can accommodate clustering when two or more factors
are being analyzed. Such a consideration is important
in evolutionary and developmental studies, in which
species is an additional factor to that of tissue. Allowing
orthologs to cluster independently does not satisfy the
reality that each is a presumed, derived variant of a
common ancestral gene. Is there a way that clustering
could proceed considering the relationship of ortho-
logs to each other? SOMs are particularly well suited
to this question of dimensionality (in this instance, the
additional dimension, or factor, of species identity).
In a “superSOM,” clusters have dimensionality and
a separate identity associated with each data set, but
ultimately, data must be assigned to the same cluster
(Wehrens and Buydens, 2007). The distance of data to
a cluster is measured as a weighted sum between the
identities associated with each data dimension. The
dimensionality of superSOMs has obvious relevance to
measuring gene expression data between orthologous
groups of genes across species.

Using a superSOM, orthologous pairs of genes were
assigned to clusters based on their expression profile
within each species (Fig. 1C). Compared with a SOM
approach, in which all genes, regardless of their spe-
cies affiliation, were clustered, the results are remark-
ably similar. Using a 3 3 3 hexagonal topology, both
SOM and superSOM clusters explain similar densities
in PC space (Fig. 1, D and G; note that colors indicating
SOM and superSOM clusters in PC space are arbitrary
and not the same between corresponding clusters, so
that SOM and superSOM clusters, which are different,
are not confused for each other). For example, SOM
cluster 7 and superSOM cluster 9 both contain genes
residing in a similar region of PC space (Fig. 1, D and
G), have relatively high cluster membership counts
(Fig. 1, E and H), and have low member Euclidean
distances to the codebook vector profile (Fig. 1, F and
I). Similarly, SOM cluster 5 and superSOM cluster 5
contain members occupying a sparse region of PC

540 Plant Physiol. Vol. 162, 2013

Chitwood et al.

http://www.plantphysiol.org/cgi/content/full/pp.112.213546/DC1
http://www.plantphysiol.org/cgi/content/full/pp.112.213546/DC1
http://www.plantphysiol.org/cgi/content/full/pp.112.213546/DC1
http://www.plantphysiol.org/cgi/content/full/pp.112.213546/DC1
http://www.plantphysiol.org/cgi/content/full/pp.112.213546/DC1
http://www.plantphysiol.org/cgi/content/full/pp.112.213546/DC1


space (Fig. 1, D and G) and have members with high
Euclidean distance to the codebook vectors (Fig. 1, F and I).
The correspondence between SOM and superSOM

clusters is best realized by comparing codebook vectors
(Fig. 2A). The codebook vectors of the resultant super-
SOM and SOM clusters are highly correlated. Addi-
tionally, within the superSOM results, the S. lycopersicum
and S. pennellii codebook vectors are highly correlated.
For example, SOM cluster 6 and superSOM cluster 1 are
both highly expressed in the leaf relative to other tissues
(Fig. 2A). Both the S. lycopersicum and corresponding S.
pennellii orthologs assigned to superSOM cluster 1 have
a similar high leaf expression profile, although there are
some differences (S. lycopersicum has higher stem ex-
pression relative to S. pennellii). superSOM and SOM
results vary from one analysis to another (as do the re-
sults from k-means and many other clustering methods)
due to the random selection of initial data inputs.
However, the similarity between the results in this

instance demonstrates the consistency of SOM methods
when applied to tissue-by-species gene expression data sets.

To ask if SOM-based clustering yields biologically rel-
evant results, we performed GO enrichment analysis of
the clustered genes (Supplemental Tables S1 and S2). We
found compelling GO enrichments in many clusters. For
example, SOM cluster 1/superSOM cluster 2 genes ex-
hibit high inflorescence expression (Fig. 2A) and are sig-
nificantly enriched for GO terms relating to cell division,
differentiation, embryo and flower development, and
epigenetic regulation (Supplemental Table S2). Included
in these clusters are CRABS CLAW, ARGONAUTE4,
DUO POLLEN1, SQUAMOSA PROMOTER-BINDING
PROTEIN-LIKE3/SQUAMOSA PROMOTER-BINDING
PROTEIN-LIKE8, ABNORMAL FLORAL ORGANS,
STYLISH1, REDUCED VERNALIZATION RESPONSE1,
VERNALIZATION INSENSITIVE3, AGAMOUS, UN-
USUAL FLORAL ORGANS, APETALA1/APETALA3,
SEPALLATA1/SEPALLATA2/SEPALLATA3/SEPALLATA4,

Figure 2. Correspondence between SOM and
superSOM results. A, Codebook vector values
representing the identities of SOM and super-
SOM clusters used in this study. SOM and
superSOM clusters correspond based on their
overall expression profiles and positions in PC
space (Fig. 1). Codebook vectors representing
SOM clusters (blue) and superSOM clusters (S.
lycopersicum [S.lyco.] in orange and S. pennellii
[S.penn.] in gray) exhibit high correlation. B,
Comparison of the sum of variances for PCs
explaining variation in gene expression across
clusters using SOM and superSOM approaches.
As expected, because orthologs are forced to
occupy the same cluster in a superSOM ap-
proach, superSOM cluster members exhibit
higher variance in gene expression relative to
SOM clusters. Inf., Inflorescence; Lf., leaf; Rt.,
root; Sd., seedling; St., stem; Veg., vegetative
apex. [See online article for color version of this
figure.]
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CURLY LEAF, INCURVATA2, KRYPTONITE, EXCESS
MICROSPOROCYTES1, and PISTILLATA homologs,
all known regulators of inflorescence development
(Supplemental Table S1). Likewise, genes with high
expression in the vegetative apex (SOM cluster 2/
superSOM cluster 7; Fig. 2A) are significantly enriched
for GO terms associated with development, tran-
scriptional regulation, and translation (Supplemental
Table S2). Included among these genes are homologs
of the stomatal regulators MUTE, SPEECHLESS,
FAMA, TOO MANY MOUTHS, and STOMATAL
DENSITY AND DISTRIBUTION and the regulators of
shoot apical meristem development SAW1, ASYM-
METRIC LEAVES2, TCP DOMAIN PROTEIN4/TCP
DOMAIN PROTEIN5/TCP DOMAIN PROTEIN12,
YABBY2/YABBY5, MERISTEM LAYER1, and PRESSED
FLOWER (Supplemental Table S1). SOM cluster 3/
superSOM cluster 4 genes are highly expressed in
photosynthetic structures such as leaves, the vege-
tative apex, and seedlings (Fig. 2A) and are predictably
enriched for terms relating to photosynthesis, thykaloids,
plastids, and biosynthetic processes (Supplemental Table
S2). Genes that possess relatively high expression in tissues
with vascular transport and translocation functions, such
as the stem and root (SOM clusters 7 and 9/superSOM
clusters 9 and 3; Fig. 2A), are enriched for transport, en-
doplasmic reticulum, Golgi apparatus, and carbohydrate
metabolic GO terms (Supplemental Table S2). Transporters
and secretion pathway genes, including nitrate, am-
monium, potassium, zinc, and sugar transporters;
cation efflux proteins; PHOSPHATE1; major facilitator
superfamily transporters; multi antimicrobial extru-
sion protein transporters; sodium-calcium exchangers;
general secretory pathway members; proton-dependent
oligopeptide transporters; expansins, invertases, pectin
esterases, pectin methylesterase inhibitors, hydrolases,
transferases, and proteases; nodulin-like proteins; syn-
taxins; SUCROSE SYNTHASE6; and GNOM are repre-
sented in these clusters (Supplemental Table S1).

Despite similarities in the SOM and superSOM results
presented above, differences do exist. For example, be-
cause of the constraint that orthologs occupy the same
cluster in a superSOM, the variance of gene expression
patterns for genes assigned to superSOM clusters is
higher than that for those assigned to SOM clusters (Fig.
2B). This observation is reflective of the “compromise”
made in assigning a pair of orthologs to a cluster, com-
pared with assigning the ortholog from each species to
its ideal cluster in a SOM scheme (Fig. 1, B and C). The
greatest dissimilarity between SOM and superSOM re-
sults, however, lies in comparing ortholog expression
across species, which we detail in the next section.

Species Differences in Expression between
superSOM- and SOM-Assigned Orthologs

As presented, SOM-based approaches consistently as-
sign genes with similar tissue-specific expression patterns
to clusters. Within this context, we wanted to determine
the best way to visualize the additional factor of species,

and more importantly, tissue-by-species interactions. Such
changes in the tissue-specific regulation of gene ex-
pression between species are key to understanding the
transcriptome-wide changes that track morphological
evolution. We began by examining differences between
orthologs assigned to superSOM clusters. Assignment of
both members of an orthologous pair to the same cluster
simplifies matters, as a within-cluster comparison of
species differences in tissue expression can be made.

To aid the analysis of gene expression over six tis-
sues, we use PCs as a distance metric. Calculating the
Euclidean distance in PC space between orthologs
yields a distribution skewed toward longer distances
(Fig. 3A). To focus on the most extreme changes in
tissue-specific expression, we examined only those
orthologs occupying the upper quartile of Euclidean
distance from each other. In three examples, super-
SOM clusters 1 (purple), 6 (black), and 8 (green), the
distance between orthologs with the most divergent
expression patterns can be visualized as lines con-
necting their positions in PC space (Fig. 3B).

An analysis of the overall distribution of S. lyco-
persicum and S. pennellii orthologs belonging to each
cluster gives a better idea of the tissue-specific differ-
ences in expression between species orthologs. Clear
shifts in expression profiles can be observed in PC
space using this method (Fig. 3C). The S. lycopersicum
orthologs in superSOM cluster 1, for example, have
lower PC1 and PC2 values and are bimodally distrib-
uted around their S. pennellii counterparts in PC3-PC4
space. Of course, these shifts in PC space represent
changes in the expression patterns of the genes be-
tween these two species (Fig. 3D). superSOM cluster
1 genes are highly expressed in the leaf in both species,
but S. pennellii orthologs show higher expression in the
leaf and lower expression in the stem compared with
S. lycopersicum. Another way to interpret these results
is that in S. lycopersicum these genes have more inter-
mediary expression between the stem and leaf but
more disparate expression in S. pennellii, a recurring
theme in the transcriptome-wide differences between
these species that we discuss again later. Similarly,
superSOM cluster 6 genes are expressed differentially
in the root and stem, with lower S. lycopersicum expres-
sion in the root and higher expression in the stem relative
to S. pennellii. The shifts in tissue-specific expression be-
tween species for superSOM cluster 8 are complex but are
distinct when viewed in PC space and demonstrate the
importance of using methods such as these to visualize
tissue-by-species changes in gene expression.

Shifts in tissue-specific expression between ortho-
logs can be interpreted using SOM results as well.
Because orthologs are independently assigned to
clusters in this scheme, one way to interpret shifts in
expression is to focus on those orthologs assigned to
different clusters. Approximately 39% of orthologs are
assigned to different SOM clusters (4,073 orthologs out
of 10,516 with significant tissue terms analyzed in this
study). For those orthologs assigned to different clus-
ters, we visualized their assignments as a directional
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network (arrows point from S. pennellii to S. lycopersi-
cum orthologs), in which edge size is proportional to
the number of displaced orthologs (Fig. 4; note that the
directionality of an arrow is only used to indicate
differences in expression between orthologs and is not
meant to convey information about evolutionary di-
rection.). Clear biases in the distribution of orthologs
were observed for clusters, many of which reflect the
tissue-by-species changes in expression observed in
the superSOM data (Fig. 3). Many of the displaced
orthologs are assigned to neighboring clusters in PC
space. For example, the S. lycopersicum orthologs cor-
responding to the S. pennellii orthologs assigned to SOM
cluster 7 are predominantly assigned to SOM cluster 8
(Fig. 4). There is a similar displacement between SOM
clusters 8 and 9, both of which occupy a similar place in
PC space and are characterized by genes with high

expression in the stem and root (Figs. 1D and 2). The
overall tendency of S. lycopersicum orthologs to be dis-
placed in a SOM cluster 7 → cluster 8 → cluster 9 di-
rection is reflective of the differences in expression seen
in superSOM cluster 6 (Fig. 3, C and D), in which S.
lycopersicum genes have lower expression in the root
and higher expression in the stem. Similarly, the dis-
placement of S. lycopersicum orthologs away from SOM
cluster 4 to SOM clusters 1 and 5 (Fig. 4) reflects the
lower root expression and higher seedling expression
observed in S. lycopersicum orthologs occupying super-
SOM cluster 8 (Fig. 3, C and D).

What is the biological basis of these shifts in the tissue-
specific expression of genes between species? As the or-
gans we sampled represent homologous structures, the
predominant cause of these shifts represent (1) changes in
the expression levels of genes, (2) differences in the overall

Figure 3. Differences in tissue-specific
expression of superSOM clustered ortho-
logous pairs. A, Distribution of Euclidean
distances between corresponding ortho-
logs in PC space. This metric represents
the overall difference in tissue-specific
expression between orthologs. To focus on
those genes with the greatest tissue-by-
species differences, we analyze only those
orthologs belonging to the upper quartile
of the distribution (indicated by the red
line). B, Lines connecting the positions of
orthologs in PC space for three select clus-
ters: superSOM cluster 1 (purple), cluster 6
(black), and cluster 8 (green). C, An easier
way to analyze the tissue-specific expres-
sion of different species is to look at the
overall distribution of orthologs in PC
space. Shown are the PC positions of genes
belonging to each cluster, separated by
ortholog identity and layered with contour
plots to aid visualization. Note the different
regions of PC space that orthologs from
S. lycopersicum (S. lyco.) and S. pennellii
(S. penn.) occupy. D, Differences in PC
space occupied by orthologs translate into
tissue-by-species changes in expression
patterns: superSOM cluster 1 genes, for ex-
ample, exhibit lower expression in leaves and
higher expression in stems in S. lycopersicum
compared with S. pennellii. Inf., Inflores-
cence; Lf., leaf; Rt., root; Sd., seedling; St.,
stem; Veg., vegetative apex.
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architecture of the organs sampled (i.e. different mor-
phologies and proportions of specific tissues in organs), or
(3) developmental differences between organs at the time
of sampling. Each is informative with respect to the nature
of the differences between species, the former with respect
to gene expression and the latter two with respect to the
developmental consequences of changes in gene regula-
tory networks. An important caveat in the interpretation of
results such as these is that the effects on gene expression
from the above sources are confounded. Additional mea-
sures, such as time series data or modeled correction for
growth rate (Chitwood et al., 2012a, 2012b; Chitwood and
Sinha, 2013), are required to separate these important
contributors to variance in biological data. Furthermore,
tissue effects are confounded with environmental effects
due to the necessity to grow younger and older tissues in
different locations for which different growth conditions
were used (as explained in “Materials and Methods”).

Cluster-Specific Changes between Ortholog
Expression Profiles

The SOM and superSOM methods described above
cluster based on scaled expression across tissues (Figs.

1 and 2). Only after clustering are differences in the
expression profiles of orthologs analyzed (Figs. 3 and 4).
That is, the differences in expression between orthologs
are only being analyzed indirectly, as an after-the-fact
comparison. Nonetheless, using the above approaches,
distinct changes in gene expression profiles are ob-
servable. For example, the genes in superSOM cluster
1 have high expression in the leaf and vary in their leaf
and stem expression between S. lycopersicum and S.
pennellii (Fig. 3, C and D). However, the orthologs in
superSOM cluster 6 have high expression in the root
and stem and vary mostly between species in these
tissues (compared with the leaf and stem in superSOM
cluster 1). The tissue-specific changes in species ex-
pression patterns are exhibited by the SOM data as well,
and clusters have differing propensities to share dis-
placed orthologs with other clusters (Fig. 4). In both
cases, these methods can be used to highlight particular
groups of genes that show specific changes in tissue
expression patterns between species.

To explore changes in gene expression patterns more
directly, in a manner that is not obscured by their innate
tissue-specific expression, we developed a vector-based
metric based on displacement between orthologs in PC

Figure 4. Displacement of orthologs to
different clusters under a SOM clus-
tering scheme. Using a traditional
SOM approach, orthologs can be
assigned to different clusters. Shown is
a network representation of the as-
signment of orthologs to different SOM
clusters. Arrows represent the dis-
placement of S. lycopersicum (S. lyco.)
orthologs (arrow tips) to clusters other
than those occupied by their S. pen-
nellii (S. penn.) counterparts (arrow
bases). Arrow sizes are proportional to
the number of displaced orthologs.
Some trends, such as the tendency for
S. pennellii → S. lycopersicum dis-
placement in a SOM cluster 7 →
cluster 8 → cluster 9 direction, are
similar to trends observed in super-
SOM clusters (Fig. 3). For example, the
SOM cluster 7 → cluster 8 → cluster 9
trend reflects lower expression in the
root and higher expression in the stem
of S. lycopersicum orthologs, a pattern
exhibited by superSOM cluster 6. Pie
charts adjacent to each cluster are
proportional in size to the number of
genes to which they are assigned and
depict the relative ratio of S. pennellii
(black) and S. lycopersicum (orange)
members. Box plots next to each cluster
show the expression pattern of cluster
members. inf, Inflorescence; lf, leaf; rt,
root; sd, seedling; st, stem; veg, vege-
tative apex. [See online article for color
version of this figure.]
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space (Fig. 5A). In this approach, the PC coordinates of
both orthologs are recentered such that the S. pennellii
ortholog resides at the origin. Each ortholog pair then
corresponds to a vector, centered at the origin, the tra-
jectory of which represents the changes in the expres-
sion profile that occur between S. pennellii and S.
lycopersicum. Collectively, the ortholog vectors emanate
without obvious biases in all directions from the origin,
demonstrating that most of the possible differences in
ortholog expression are represented (Fig. 5B).
To assay the changes in expression associated with

different expression profiles, we looked at the SOM
clusters to which S. pennellii genes were assigned. If the
vectors are examined on a per cluster basis, obvious
biases in vector direction are revealed that vary by
cluster (Fig. 5C). These biases are connected with the
overall innate tissue-specific expression of the cluster.

If a comparison is made with SOM cluster position in
PC space (Fig. 1D), there is a tendency for vectors to be
oriented “inward” toward the origin (Fig. 5C). As the
genes used for clustering are those that showed sig-
nificant differential expression between species, they
occupy extreme expression patterns (the periphery of
the PC space shown in Fig. 1D). Because ortholog
vectors are oriented inward (a region of PC space with
more generic, rather than disparate, tissue expression
patterns; i.e. the center of PC space represents an ex-
pression pattern that is “flat,” with equal expression
across all tissues), the implication is that S. lycopersicum
orthologs possess more “generic” profiles (i.e. less variable)
across tissues compared with S. pennellii.

The propensity for less variable S. lycopersicum ex-
pression profiles is transcriptome wide (Fig. 5C). Whether
this is a phenomenon specific to tomato or widespread

Figure 5. Expression differences between
species are biased by tissue context. A, In or-
der to focus on changes in expression profiles,
a vector-based approach was used. Ortholog
pairs are represented as multidimensional
vectors, the magnitude and direction of which
represent changes in the expression profiles of
genes between species. To focus only on ex-
pression changes, vectors were translated in
coordinate PC space such that they originate
at the origin. Arrow bases represent S. pen-
nellii (S. penn.) orthologs, and arrow tips
represent S. lycopersicum (S. lyco.). B, All
such vectors represented in the data set orig-
inating from the origin. Note that major biases
in the change of expression pattern between
species are not evident and that most possible
changes in expression pattern are represented.
C, Vectors representing changes in tissue-
specific expression for each SOM cluster are
shown. Vectors belonging to orthologs from
each cluster are in solid colors overlaid upon
all other transparent vectors. Orthologs belonging
to different clusters show distinct changes in their
tissue-specific expression pattern between spe-
cies, indicating that genes with particular ex-
pression profiles are biased toward a specific set
of tissue by species change. Much of this bias is
imposed by extreme expression patterns (such as
those that occupy the edges of PC space shown
in Fig. 1) in S. pennellii and S. lycopersicum
expression profiles possessing more generic ex-
pression patterns.
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throughout domesticated species and their wild relatives
remains to be investigated. Another possibility is that this
phenomenon results from environmental effects. For ex-
ample, perhaps S. pennellii activates tissue-specific stress
responses when grown in a greenhouse/chamber com-
pared with S. lycopersicum, which is bred for the culti-
vated conditions used for this experiment. It remains to
be seen if these trends would hold if, instead, the exper-
iment were performed under the xeric conditions to
which S. pennellii is adapted.

Clustering by Changes in Expression Profile

When analyzing species-by-tissue interactions, we
are most interested in groups of genes that change
their tissue-specific expression between species in a
distinct manner, regardless of their actual innate ex-
pression profile. Take, for example, a group of genes
with varied expression patterns (root genes, leaf genes,
stem genes, genes expressed in multiple tissues, and so
on) that have higher expression in the root in S. pen-
nellii compared with S. lycopersicum. Instead of this
diverse group of genes being clustered together by
their attribute of higher root expression in S. pennellii,
they would instead be categorized into a number of
clusters based on their varying expression profiles. Is
there a way to cluster genes based on the changes in
their expression profile between species?

In order to group genes by changes in expression
pattern between species, irrespective of their overall
tissue specificity, we first took the difference in PC
values between orthologs for each PC, or DPC (calcu-
lated for each of six PCs, representing the entirety of
expression profile variance in the data set). DPCs 1 to 6
were assigned to different levels of a six-layer super-
SOM. The weight of each layer is equal to the variance
explained by each PC (Supplemental Fig. S2). The re-
sult is that the Euclidean distance of each gene to a
cluster is determined as a weighted sum of its DPC
values 1 to 6, in a manner that is proportional to the
amount of variance explained by each PC. By this
method, orthologs are clustered by their displacement
through PC space rather than their absolute position in
PC space. In other words, genes are clustered by the
difference in their expression profiles between orthologs.

The result of the clustering predictably reveals groups of
ortholog vectors, defined by expression profile changes
between S. lycopersicum and S. pennellii, that move through
PC space in a similar fashion (Fig. 6; Supplemental Table
S3). These are groups of genes that exhibit similar changes
in expression profile but not necessarily a similar expres-
sion profile. The similar changes in expression profile can
also be observed as differences in scaled gene expression
between S. lycopersicum and S. pennellii orthologs in each
tissue (Fig. 7). Just like groups of genes with similar
profiles (Fig. 2), clusters of genes with similar changes
in expression (“distance clusters”) possess members of
functional relevance. For example, distance cluster 7
genes exhibit higher root and stem expression in S.

lycopersicum relative to S. pennellii (Fig. 7). Among
these genes are SUCROSE SYNTHASE6 and AL-
TERED PHLOEM DEVELOPMENT homologs, as well
as proton-dependent oligopeptide, inorganic phos-
phate, myoinositol, and multi antimicrobial extrusion
protein efflux transporters, all genes associated with
the vascular and transport functions of the root and
stem (Supplemental Table S3). Distance cluster 9 genes
are up-regulated in the S. lycopersicum inflorescence and
down-regulated in leaves relative to S. pennellii (Fig. 7).
Among these genes is SELF-PRUNING3D (the tomato
TFL1/FT homolog) as well as STERILE APETALA and
NO TRANSMITTING TRACT homologs, all with inflo-
rescence- and flowering-specific functions (Supplemental
Table S3).

Increased Shoot Apical Meristem Activity in
S. lycopersicum

A GO enrichment analysis (Supplemental Table S4)
focused our attention to distance clusters 3 and 6,
which are enriched for terms similar to those asso-
ciated with genes with high inflorescence and vege-
tative meristem expression (Supplemental Table S2).
Distance cluster 3 is enriched for terms related to
translation (an indication of active cell growth), and
distance cluster 6 is enriched for “cell cycle” and
“multicellular organismal development” terms. Both
clusters exhibit changes in expression such that genes
are more highly expressed in meristem-enriched tis-
sues (inflorescence, vegetative meristem, seedling) in
S. lycopersicum (Fig. 7). Because we are describing
changes in expression profiles, we revisited the dis-
placement of orthologs between SOM clusters (Fig.
4). Distance cluster 3 genes are predominantly dis-
placed to SOM cluster 5, which exhibits high seedling
expression (Fig. 8A). This is consistent with the very
high seedling expression in S. lycopsersicum relative
to S. pennellii in this group of genes (Figs. 7 and 8B).
Additionally, distance cluster 3 genes are more highly
expressed in the vegetative apex of S. lycopersicum and
the stem of S. pennellii. Likewise, distance cluster 6 genes
are predominantly displaced from SOM cluster 9 to
SOM cluster 1, which contains genes with high vegeta-
tive apex expression (Fig. 8A). This group of genes are
highly expressed in the inflorescence and vegetative
apex of S. lycopersicum, and, like distance cluster 3, show
high expression in the stem (a differentiated structure) of
S. pennellii (Figs. 7 and 8B).

Together, distance clusters 3 and 6 represent a major
trend in our data set: a propensity for S. lycopersicum
genes to be more highly expressed in the meristem-rich
tissues of the seedling, inflorescence, and vegetative
meristem and less expressed in the differentiated stem
relative to S. pennellii. These genes are enriched for
terms related to active cellular growth, translation, and
development and are displaced to SOM clusters in S.
lycopersicum with high expression in the seedling and
vegetative apex.
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Are there any morphological features that correspond
to these trends in gene expression? One of the most
conspicuous differences between S. lycopersicum and its
wild relatives is the size of its vegetative meristem and
cells (Fig. 8C). The vegetative meristem of S. lycopersicum
is two to three times the size of S. pennellii, with many
more cells. Additionally, the leaf primordia of S. pennellii
are larger than those of a similar developmental stage in
S. lycopersicum, and possess larger, more vacuolated
cells. Collectively, the active growing region of S. lyco-
persicum exhibits morphological features consistent with
prolonged indeterminacy and delayed differentiation
relative to its desert relative S. pennellii (Fig. 8C).
Among the genes included in distance cluster 6

(which exhibits the highest increase in vegetative apex
expression in S. lycopersicum; Fig. 7) are known regu-
lators of shoot apical meristem development. LeT6 (a
tomato Knotted1 homolog) and PIN1 and CURLY LEAF

homologs regulate indeterminacy, the specification of
primordia, and epigenetic states of the shoot apical mer-
istem, respectively (Goodrich et al., 1997; Janssen et al.,
1998a, 1998b; Reinhardt et al., 2003; Xu and Shen, 2008;
Pattison and Catalá, 2012). Additionally included in this
cluster are WIRY4 (the SUPPRESSOR OF GENE SI-
LENCING3 homolog involved in specifying adaxial fate)
and an ORGAN BOUNDARY1 (or LIGHT-SENSITIVE
HOMOLOG3) homolog, which are known regulators of
leaf complexity (Kim et al., 2003; Cho and Zambryski,
2011; Yifhar et al., 2012), which dramatically varies be-
tween S. lycopersicum and S. pennellii.

Together, the enrichment of GO terms and the inclu-
sion of known shoot apical meristem regulators validates
the concept of clustering by differences in gene expres-
sion between species as a means to discover those genes
closely associated with morphological change during
evolution.

Figure 6. Clustering based on changes in ex-
pression profile between species. A, Key for
the color scheme used. To aid the visualiza-
tion of vectors, the angular direction of vec-
tors (within the context of the PCs graphed) is
indicated by color. The result is that vectors
with similar direction (changes in expression
profile between species) are shown in similar
colors. B to J, Vectors (arrow base representing
S. pennellii [S. penn.] and arrow tip repre-
senting S. lycopersicum [S. lyco.]) were clus-
tered based on changes in their component
PC values. Changes in PC values were each
assigned to an independent layer of a super-
SOM, the weight of which is proportional to
the variance explained by the PC. The result of
the cluster analysis is groups of genes with
similar changes in their expression profiles
between species, regardless of their overall
tissue-specific expression. Change in direction
in PC space is multidimensional, which must
be considered when analyzing the shared
properties of vectors belonging to a distance
cluster.

Plant Physiol. Vol. 162, 2013 547

Dynamic Transcriptomic Profiles in Tomato



DISCUSSION

Finding trends in tissue-by-species gene expression
data that are congruent with observed biology is diffi-
cult to achieve. Statistical models that fit individual
genes with significant interaction terms are a powerful
tool but may fail to identify large groups of coexpressed
genes or genes expressed in a particular fashion that
make sense with respect to a relevant biological ques-
tion. Exploratory data analysis can help identify trends

but can be difficult to implement with multidimen-
sional data sets, such as when studying changes in gene
expression across tissues and species. Popular methods,
such as k-means and hierarchical clustering, sidestep
this issue by either concatenating data sets or not dis-
tinguishing between different levels of important fac-
tors. With regard to orthologous sets of genes, as
encountered in a tissue-by-species data set, clustering
using a superSOM approach is particularly powerful
(Figs. 1–3). By clustering groups of orthologs rather

Figure 7. Changes in gene expression be-
tween species by tissue, in clusters grouped
by change in gene expression profile. For
distance clusters (Fig. 6) that possess genes
with similar displacement in PC space, the
difference in scaled gene expression values
between species (S. lycopersicum [S. lyco.]–S.
pennellii [S. penn.]) for each tissue is shown.
For example, distance cluster 9 genes show
higher expression in the inflorescence and
lower expression in leaves in S. lycopersicum
compared with S. pennellii. Relevant genes in
each cluster, the biology of which are reflec-
tive of the gene expression pattern, are dis-
cussed in the text. Inf., Inflorescence; Lf., leaf;
Rt., root; Sd., seedling; St., stem; Veg., vege-
tative apex. [See online article for color ver-
sion of this figure.]
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Figure 8. Bias toward meristematic expression in S. lycopersicum (S. lyco.) relative to S. pennellii (S. penn.). A, Distance
clusters 3 and 6, which are enriched for GO terms associated with meristematic tissues, were examined with respect to the
displacement of orthologous genes between different SOM clusters. The orthologs assigned to S. pennellii SOM clusters (black
arcs) and the corresponding S. lycopersicum SOM clusters (orange arcs) are indicated by arrows (S. pennellii→ S. lycopersicum
direction). Note that unlike Figure 4, genes belonging to the same cluster are indicated. There is a trend for S. lycopersicum
orthologs to become displaced to clusters with high expression in meristematic tissues. For example, in distance cluster 3, S.
lycopersicum orthologs tend to occupy SOM cluster 5, with high seedling expression. In distance cluster 6, S. lycopersicum
orthologs become displaced toward SOM cluster 1, with high vegetative apex expression. B, The displacement of distance
cluster genes toward meristematic SOM clusters in S. lycopersicum is reflected in their expression profiles. Distance cluster 3
genes show much higher expression in the seedling (and somewhat in the vegetative meristem) in S. lycopersicum relative to S.
pennellii. Distance cluster 6 genes show much higher vegetative apex expression (and somewhat higher in the inflorescence) in
S. lycopersicum relative to S. pennellii. Both clusters show higher expression in the stem (a differentiated structure) in S.
pennellii relative to S. lycopersicum. Inf., Inflorescence; Lf., leaf; Rt., root; Sd., seedling; St., stem; Veg., vegetative apex. C, The
higher expression of genes in the meristematic tissues of S. lycopersicum is consistent with species differences relative to S.
pennellii. The vegetative meristem of S. lycopersicum is much larger than that of S. pennellii, with more cells. Furthermore, the
differentiated primordia of S. pennellii are larger, with more vacuolated cells, relative to the primordia of a similar stage in S.
lycopersicum, indicating premature differentiation relative to S. lycopersicum. [See online article for color version of this
figure.]
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than genes, and independently taking into account
patterns of variance within each species, comparisons
between orthologs remain relevant. Clustering without
multiple levels can still yield insights, albeit in a more
complicated form as a network of displaced orthologs
assigned to different clusters (Fig. 4).

Such methods principally cluster on a single factor
(tissue) and afterward look for differences in the other
(species; Figs. 1–4). Groups of identified genes may be
confounded for two different aspects of their differ-
ential expression: their overall tissue-specific expres-
sion and tissue-by-species differences. Indeed, we
show that groups of genes with distinct gene expres-
sion profiles exhibit biases in their tissue-by-species
changes in expression (Fig. 5). One way to separate
these effects is to find groups of genes with similar
changes in expression pattern, regardless of their
overall tissue-specific expression. A method to achieve
this is to cluster genes based on their displacement in
PC space, representing the changes in their gene ex-
pression profiles between species (Figs. 6 and 7). In our
data set, such an approach reveals a trend of higher ex-
pression of S. lycopersicum genes in meristem-containing
tissue relative to its wild relative S. pennellii, a pattern
consistent with observed biology (Fig. 8). Moreover,
within such clusters, we identify key components of
gene regulatory networks governing indeterminacy
and shoot apical meristem development in tomato,
including LeT6, WIRY4, and PIN1, validating our ap-
proach (Janssen et al., 1998a, 1998b; Kim et al., 2003;
Reinhardt et al., 2003; Pattison and Catalá, 2012; Yifhar
et al., 2012).

As next-generation sequencing enables transcriptomics
to become widespread, multidimensional analyses, simi-
lar to the one presented here, will become commonplace.
Eventually, in addition to tissue and species factors, de-
velopmental time and environmental components will be
analyzed to yield comprehensive data sets approaching
the totality of gene expression present in evolving
populations. Major changes in our thinking about the
analysis of such data sets will be required to reveal
underlying trends in gene expression consistent with,
and eventually explaining, complex phenotypic phe-
nomena. Although the methods outlined here are only a
first step, we show how multilevel SOMs and clustering
of gene expression changes can begin to reconcile phe-
notypic differences between species with tissue-by-species
interactions in gene expression.

MATERIALS AND METHODS

Plant Materials

Solanum lycopersicum ‘M82’ and Solanum pennellii (LA0716) were donated
by Dani Zamir (Hebrew University of Jerusalem). Seeds were germinated on
Murashige and Skoog plates kept in the dark for 3 d. Plates were then exposed
to light and grown upright at 22°C. After 10 d, seedlings were transferred to
soil and kept in chambers until anthesis. After flowering, plants were trans-
ferred to the greenhouse. Roots and aerial seedling tissue were collected
10 d after germination. Vegetative apices were collected from plants when the
third leaf reached approximately 1 mm. The stem between the fourth and fifth

leaves and inflorescences were collected when fully formed (50 d after ger-
mination for S. lycopersicum and 56 d after germination for S. pennellii). Total
RNA from all tissues was extracted using Trizol (Invitrogen) according to the
manufacturer’s standard protocol. Histology was performed using eosin Y
staining and standard histology protocols.

Library Preparation and Sequencing

RNA-Seq libraries for the transcriptome experiment were prepared using
the Illumina RNA-Seq sample preparation kit (RS-100-0801). Custom paired-
end adapters were used to multiplex libraries. Eight paired-end adapters
with a unique 3-bp barcode sequence (AAA, AGG, CAC, CGT, GCT, GTC,
TCA, and TTG) at the end of the adapter were used for the library preparation.
Barcodes were chosen so any one sequencing error in the barcode cannot
transform one barcode into another, dramatically reducing the chance of
contamination between libraries due to sequencing errors.

PE1 and PE2 primersweremixed in annealing buffer (10mMTris-HCl, pH 7.5,
1 mM EDTA, and 50 mM NaCl) and annealed by heating to 95°C and gradually
cooling down to 4°C. The complementary DNA (cDNA) libraries were quanti-
fied using Bioanalyzer (Agilent), then pooled in random subsets of eight samples
and sequenced (paired end, 85 bp each) in the Illumina genome analyzer GAII.

A total of 57 libraries from S. lycopersicum and S. pennellii (as well as Solanum
pimpinellifolium LA1589 and Solanum habrochaites LA1777, the data from which
are not analyzed here) were sequenced in 14 lanes from seven different 84-cycle
runs of the Illumina GAII. These sequencing runs resulted in 406,874,298 85-bp
reads and 169,290,821 paired-end and single-end reads. Ninety-five percent of
these reads contained the expected barcodes and were separated by library.
Illumina adapter sequences and low-quality bases (coded as B in the fastq files)
were trimmed from the 39 ends of the reads. A total of 480,097,244 reads that
were 50 bp or longer after trimming were used for our analyses.

Generation of Matched cDNA References

To facilitate mapping and accurate expression analysis of RNA-Seq reads to
different species across the tomato complex, we took advantage of a draft S.
pennellii genomic sequence (version 0.6.1; S. pennellii Consortium, unpublished
data) to build a matched set of reference cDNAs for S. lycopersicum and S.
pennellii. The goal was to obtain a matched set of references of equal length
containing sequences known to exist in both species and retaining species-
specific polymorphisms. The following steps were used for each coding se-
quence (CDS) defined in the ITAG2.3 set. (1) S. lycopersicum CDSs were used to
BLAST against S. pennellii scaffolds using megaBLAST (Zhang et al., 2000;
settings: -e 1e-50 -m 7 -N 2 -t 18 -W 11 -A 50) to identify the appropriate
scaffold and region. (2) S. pennellii scaffold sequence encompassing the BLAST
hit region and an additional 2 kb on either side was retrieved, and GMAP (Wu
and Watanabe, 2005) was used to thread the S. lycopersicum CDS onto the S.
pennellii scaffold (settings: -n 1 -f 1). (3) GMAP output was parsed to create
matching S. lycopersicum and S. pennellii CDSs. Only the matching regions
were retained. (4) The matched sets were then filtered to only retain good hits.
To accomplish this, the predicted S. pennellii CDSs were BLASTed against the
full S. lycopersicum CDS set (a reciprocal BLAST) using megaBLAST (settings
as above). To retain matched pairs, we required that the best reciprocal BLAST
hit was to the original ITAG CDS, that the best BLAST hit had an e-value at
least 103 more significant than the second best hit, and (because we were also
interested in obtaining upstream promoter regions not used in this work) that
the 59 high-scoring segment pairs be at least 50 bp, have a 90% identity, and be
within 300 bp of the query start. In this way, from the original 34,727 anno-
tated ITAG CDSs (median length of 834), we created 28,801 matched CDS
pairs (median length of 849). While a number of gene models are lost using
this technique, it is justified for differential expression analysis by the in-
creased short-read mapping accuracy allowed by the matched set.

We used BWA and Samtools to map RNA-Seq reads to the matched ref-
erence cDNA set. The parameters for BWA were “-n 0.1 -e 12 -k 1 -l 25”;
Samtools was used with -n 1 to select reads that mapped unambiguously to
the reference. Read counts from this alignment were used in the analysis of
differential expression.

Analysis of Differential Gene Expression

Sequences were filtered, trimmed, and mapped to the appropriate matched
cDNA reference. To reduce the loss of counts due to inefficient mapping of
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paired ends to the shortened matched cDNA sequences, we mapped only the
first paired end for our expression analysis. Matched cDNA references were
screened out of the analysis if reads from both species showed biased mapping
to one of the species-specific matched cDNAs (log fold change . 1 for both S.
lycopersicum and S. pennellii reads). Poor samples were identified and removed
using a combination of replicate correlation coefficient, correlation plots, and
MA plots. The raw count data were then normalized using a modified trim-
med mean of M values method (Robinson and Oshlack, 2010). Low expressed
genes were filtered on a minimum sum of 20 counts over all samples for
further analysis. Genes that did not pass this threshold were considered not
expressed. Differential expression was calculated by fitting a quasi-Poisson
generalized linear model at the gene level using tissue, species, and tissue-
by-species interaction as factors and extracting significance using an F test.

SOMs

Only those genes with a tissue multiple test-corrected P, 0.05 (determined
from the model described above) and model-fitted expression values for both
S. lycopersicum and S. pennellii were used for subsequent analysis. Thus, only
genes that vary significantly in expression across tissue types and can be
compared between species are analyzed. In order to remove differences due to
the magnitude of gene expression and focus only on gene expression profiles,
expression values were mean centered and variance scaled using the scale
function (R base package; R Development Core Team, 2012) separately in S.
lycopersicum and S. pennellii.

To cluster S. lycopersicum and S. pennellii genes across tissues, a multilevel
33 3 hexagonal SOMwas used (Kohonen, 1997; Wehrens and Buydens, 2007).
For the analysis referred to as superSOM, matching genes between species
were assigned to separate superSOM levels of equal weight using the super-
som function (R Kohonen package). For the analysis referred to as SOM, all
genes, regardless of the species to which they belong, were clustered under a
typical SOM scheme (som function). Under both methods, 100 training iter-
ations were used during clustering, over which the a-learning rate decreased
from 0.05 to 0.01. The final assignments of genes to winning units form the
basis of the gene clusters discussed in this work. Further analyses of SOM and
superSOM cluster memberships were carried out using PCA and various
graphical and network visualization methods, described below. Codebook
vectors were retrieved from the SOM and superSOM analysis to understand
the expression patterns represented by each cluster.

Clusters of genes were then analyzed for the enrichment of GO terms at a
0.05 false discovery rate cutoff (Young et al., 2010; goseq Bioconductor
package).

PCA

The outcome of both SOM and superSOM methods was visualized in PCA
space. Because SOM and superSOM results will vary from simulation to
simulation, it is important to compare and visualize results using an invariant
method such as PCA (1) to ensure that major variance patterns in the data set
are in fact being explained by SOM clusters and (2) to verify the consistency of
clustering methods. The results of the PCA were also used to describe changes
in the difference between expression profiles between species.

Every gene is represented by two points in PCA space, one representing the
tissue expression pattern of the S. lycopersicum member and the other the S.
pennellii member. Genes were assigned PC values based on their expression
profiles across tissues, regardless of their species identity (R stats package,
prcomp function). Details of the variance explained by each PC and the PCA
loadings are given in Supplemental Figure S2.

Visualizing Differences in Expression Profiles
between Species

The PC space is defined by two points for each gene, one representing the
expression profile in S. lycopersicum and the other S. pennellii, providing a
means to visualize and explore the differences in the gene expression profiles
between these species. To focus on those genes with the most exaggerated
expression profile differences between species, we calculated the Euclidean
distance between genes in PC space (using all PCs such that more than 99% of
variance is accounted for). The distribution is skewed toward higher distances,
and we analyzed displacement in PC space for those genes occupying the
upper quartile of Euclidean distance from each other.

For superSOM clusters, differences between corresponding S. lycopersicum
and S. pennellii genes were analyzed on a per cluster basis. A variety of vi-
sualization methods using ggplot2 (Wickham, 2009) in R were used, including
lines connecting the points representing expression profiles between species in
PC space (geom_segment function), contours overlaid upon scatterplots sep-
arated by species identity (geom_point and stat_density2d), and box plots
(geom_boxplot). For SOM clusters, the assignment of genes representing dif-
ferent species to different clusters was visualized using network graphics in
the program Gephi (Bastian et al., 2009). Results were visualized as a directed,
circular layout network. The direction of arrows indicates the assignment of
genes to clusters in an S. pennellii → S. lycopersicum direction. Arrow size is
proportional to the number of genes represented.

Vector Analysis of Differential Gene Expression

To separate change in expression pattern from the actual expression profile of
genes, a vector-based approach was used. To understand the expression profile
changes particular to each SOM cluster, vectors in which the base represents the
S. pennellii expression profile in PC space and the tip representing S. lycopersicum
were translated such that every vector originates from the origin. Vectors were
visualized as arrows using the geom_segment function.

In order to cluster multidimensional vectors representing changes in ex-
pression profiles across PC space, the vector components represented by each
PC were extracted (simply the difference in PC values between species for
each gene). Vectors were then clustered using a superSOM, in which each level
is assigned a different PC vector component and the weight of the level is
equal to the variance explained by the PC. The validity of this method to find
groups of genes with similar changes in gene expression profiles between
species was verified by visualizing the directional changes of genes belonging
to each distance cluster in PC space. Vectors representing the genes in each
cluster were visualized as arrows using the geom_segment function in PC
space. To help further visualize directional change, arrow color was assigned
based on angle with respect to the PC coordinate system being visualized.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. The additional influence of species effects on
gene expression profiles.

Supplemental Figure S2. Principal component analysis statistics.

Supplemental Figure S3. Correspondence between k-means clustering and
SOMs results.

Supplemental Figure S4. Similarity in expression between genes assigned
to corresponding k-means and SOM clusters.

Supplemental Figure S5. Correspondence between hierarchical clustering
and SOMs results.

Supplemental Table S1. SOM and superSOM cluster identities, fitted gene
expression values, and principal component values.

Supplemental Table S2. GO enrichment analysis of SOM and superSOM
clusters.

Supplemental Table S3. Distance cluster identities.

Supplemental Table S4. GO enrichment analysis of distance clusters.
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