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A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the
concerted action of many genes. The use of well-structured recombinant inbred lines in combination with “omics” analysis can
help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively
capture both genetic and epistatic interactions. However, to understand how the environment interacts with genomic-
encoded information, a better understanding of the perception and processing of environmental signals is needed. In a
classical genetical genomics setup, this requires replication of the whole experiment in different environmental conditions. A
novel generalized setup overcomes this limitation and includes environmental perturbation within a single experimental design.
We developed a dedicated quantitative trait loci mapping procedure to implement this approach and used existing phenotypical
data to demonstrate its power. In addition, we studied the genetic regulation of primary metabolism in dry and imbibed
Arabidopsis (Arabidopsis thaliana) seeds. In the metabolome, many changes were observed that were under both environmental
and genetic controls and their interaction. This concept offers unique reduction of experimental load with minimal compromise of
statistical power and is of great potential in the field of systems genetics, which requires a broad understanding of both plasticity
and dynamic regulation.

The use of natural variation to disentangle the ge-
netic (G) mechanisms underlying phenotypic differ-
ences has been very successful both in crop plants and
in the model plant Arabidopsis (Arabidopsis thaliana;
Alonso-Blanco et al., 2009). Most of the variation
within wild or domesticated plant species is of quan-
titative nature determined by G polymorphisms at
multiple loci. Such quantitative trait loci (QTL) can be

analyzed efficiently using experimental mapping pop-
ulations such as recombinant inbred lines (RILs)
derived from directed crosses. Nowadays, many well-
structured RIL populations are available, often accom-
panied with detailed studies of phenotypic variation
(Mitchell-Olds and Schmitt, 2006). The complexity of
quantitative traits is further determined by the inter-
actions between genomic loci (i.e. epistasis) and be-
tween the genotype and the environment (genetic 3
environmental [G:E]). While epistasis can be effectively
identified in QTL analyses, albeit with lower power
than main effects, the detection of G:E interactions
requires experimentation in multiple conditions of in-
terest. Because of the large population sizes often
needed to obtain sufficient statistical power for QTL
detection, G:E interactions are usually ignored in ex-
perimental setups. However, a better understanding
of the perception and processing of environmental (E)
signals is greatly needed, because interactions provide
important insights in adaptation mechanisms and
evolutionary constraints such as balancing and dis-
ruptive selection. To obtain a more detailed view of the
molecular mechanisms underlying phenotypic variation,
genetical genomics studies, in which molecular traits
are genetically analyzed, have been successfully ap-
plied to enhance a directed strategy to identify causal
relationships (Kliebenstein et al., 2006; Keurentjes
et al., 2007a; van Leeuwen et al., 2007; Wentzell et al.,
2007; West et al., 2007; Rowe et al., 2008). The observed
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phenotype is often the resultant of a functional cascade
of gene transcription followed by protein translation
and modification, which finally leads to a highly dy-
namic metabolome underlying emergent properties
(Kooke and Keurentjes, 2011). With the technological
advances made in genomic analytical platforms, such
as transcriptomics, proteomics, and metabolomics, the
large-scale, high-throughput analyses needed for quan-
titative G approaches have become feasible (Jansen and
Nap, 2001; Keurentjes et al., 2008). To incorporate de-
velopmental and E perturbation in the often expensive
and laborious omic analyses, an alternative experimen-
tal setup, coined generalized genetical genomics (GGG),
using balanced fractions of a RIL population has been
proposed (Li et al., 2008). It provides a cost-effective
experimental setup for hypothesis-generating research
in multiple environments. Such an approach aims for
the creation of subpopulations of RILs, one for each
environment to be tested, with an optimal distribution
of parental alleles over all available markers (Li et al.,
2009). When these subpopulations are subjected to E
perturbation, the emerging phenotypes can be explained
by several sources of variation: G variation, E variation,
and G:E variation. Whenever the resulting phenotype is
not or only mildly affected by E interactions (G:E), the
analysis of the different subpopulations can be com-
bined, gaining the full power of a complete population.
However, when a trait shows strong G:E interaction (e.g.
those that only express G variation in specific environ-
ments), the power to detect QTL is dependent on those
subpopulations expressing the G variation. Although
G:E interactions have been detected previously in ge-
netical genomics studies for expression (Li et al., 2006;
Smith and Kruglyak, 2008; Gerrits et al., 2009; Yeung
et al., 2011) and metabolite content (Zhu et al., 2012) by
analyzing all lines in a population under different en-
vironments, the GGG concept offers an effective way of
studying a combination of G and E perturbations and is
of great potential in the field of systems genetics, in
which a broad understanding of both plasticity and
dynamics is required (Li et al., 2008). The fundamental
basis of the experimental design and data analysis using
a full model (Y = E + G + G:E + e), where Y is observed
phenotype and e is residual error, is generally valid and
frequently used (Churchill, 2002; Li et al., 2006; Gerrits
et al., 2009). As a proof of principle, we present experi-
mental data on the G regulation of primary metabolism
in dry and imbibed Arabidopsis seeds using a GGG
design and discuss the application and implications of
such a strategy.

Plants are extremely rich in biochemical compounds,
and major roles in plant development, adaptation, and
defense have been identified for biosynthesis path-
ways and their products (Binder, 2010). The biosyn-
thetic pathways of primary metabolites are well studied
and often well conserved between different taxa
(Peregrín-Alvarez et al., 2009). Nonetheless, quanti-
tative variation for many of these compounds can
be observed between natural variants, which might be
reflected in their different growth characteristics. The

analysis of single-gene mutants, for example, has un-
raveled many key components in biochemical path-
ways and has demonstrated their role in phenotypic
traits (Fiehn et al., 2000). In Arabidopsis, G variation
for many of its metabolic compounds has been ob-
served (Kliebenstein et al., 2001a; Keurentjes et al.,
2006; Rowe et al., 2008), but G:E interactions were ig-
nored in these studies and only addressed by Chan
et al. (2011). Metabolic profiling at different growth
stages has further revealed important fluxes that reg-
ulate plant development and adaptation (de Oliveira
Dal’Molin et al., 2010). Using the accumulated histor-
ical mutations that occur in natural variants in com-
bination with metabolic profiling in a generalized
design offers the unique possibility of identifying G
effects over a series of developmental stages. Here, we
report on the interaction of four different physiological
environments (i.e. developmental stages) in dry and
imbibed seeds with two founder genotypes in a RIL
population. To detect the majority of the most prominent
primary metabolites, we used gas chromatography-mass
spectrometry of polar extracts (Roessner et al., 2000;
Lisec et al., 2008). These include essential metabolites
such as sugars, amino acids, and organic acids, which
are key compounds in reserve storage and catabolism,
growth, and energy metabolism.

The switch from a dry seed, which is equipped for
optimal survival and storage of reserves, toward an
imbibed seed, in which energy needed for germination
is released and which prepares for autotrophic pro-
duction, is remarkable. Reserves that have been stored
during seed maturation are degraded and remobilized
during germination (Bewley, 1997; Shu et al., 2008), a
process that is heavily influenced by the capacity of
carbon/nitrogen partitioning of a maturing seed (Dowdle
et al., 2007). Arabidopsis mutants affected in their oil
reserve content or its mobilization show delayed but
not full inhibition of germination (Kinnersley and
Turano, 2000; Bouché and Fromm, 2004; Shu et al.,
2008; Kelly et al., 2011). This suggests an additional
metabolic switch that occurs during seed desiccation
after seed maturation involving a change from accu-
mulation of oil and storage proteins to the synthesis of
free amino acids, sugars, fatty acids, and their degra-
dation products functioning to prepare for rapid met-
abolic recovery during imbibition (Fait et al., 2006;
Angelovici et al., 2010). Imbibition of mature seeds
specifically shows reduction of the metabolites that
accumulate during the desiccation period. Upon ger-
mination, an increase of many metabolites, including
amino acids, sugars, and organic acids, can be ob-
served again, which reflects the increase of autotrophic
activity (Fait et al., 2006). Profiling the primary met-
abolome over different developmental stages in a
mapping population is therefore expected to reveal the
dynamics of G regulation of many of these important
processes. We will demonstrate here that much of the
observed variation in biochemical profiles can be at-
tributed to genotype-by-environment interactions, which
can be effectively identified in a GGG approach.
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RESULTS AND DISCUSSION

Experimental Design

Previous studies that focused on the comparative
analysis of developmental and metabolic variation
suggest a link between central metabolism and plant
physiology, but G coregulation is not frequently ob-
served (Keurentjes et al., 2006; Meyer et al., 2007). That
said, in several studies in Arabidopsis, a major me-
tabolite QTL cluster is associated with the ERECTA
locus, representing a strong regulator of development,
which is known for its pleiotropic effects (Fu et al.,
2009). To circumvent this strong bias, we used two
natural variants, Bayreuth (Bay-0) and Shahdara (Sha),
which are not polymorphic for the ERECTA locus. The
Bay-0 3 Sha RIL population (Loudet et al., 2002) has
previously been shown to contain G variation for seed
germination (Joosen et al., 2012) and other physiolog-
ical traits (Loudet et al., 2003b, 2005, 2008; Barriere
et al., 2005; Diaz et al., 2006; Reymond et al., 2006;
Meng et al., 2008), anion strength (Loudet et al., 2003a),
carbohydrate content (Calenge et al., 2006), gene ex-
pression (West et al., 2007), and primary (Rowe et al.,
2008) and secondary metabolite levels (Wentzell et al.,
2007).
Powerful mapping of G variation in a RIL popula-

tion is dependent on the size of the population, the
level of recombination, and an evenly genome-wide
distribution of the parental alleles. In this study, a
core set of the Bay-0 3 Sha RIL population (Loudet
et al., 2002) consisting of 165 lines and optimized for
the aforementioned factors was used. This core pop-
ulation was divided in four subpopulations optimized
for the distribution of parental alleles using the R
package DesignGG, aiming at the most accurate esti-
mate of G and G:E effects (Li et al., 2009; Supplemental
Fig. S1).

Comparison of Different Designs Using
Classic Phenotypes

Standard QTL mapping procedures can efficiently
capture G variation and epistasis, but do not take E
perturbation into consideration. Appropriate mod-
eling of the G variance-covariance in the data is of
great importance when combining information from
different environments in QTL analysis (Churchill,
2002). Linear models are particularly well suited for
this. Here, E differences are incorporated as an ad-
ditional variable in a generalized design (GGG de-
sign). To enable mapping of the observed trait
variation and taking the four developmental stages
into consideration, an R script was developed, which
uses functions and data structures from the R/qtl
package (Broman et al., 2003; Arends et al., 2010;
Supplemental File S3). The R script uses a linear
model to calculate the likelihood of genotype-to-
phenotype linkage for each marker with the fol-
lowing formula:

yi ¼ b0 þ b1ei þ b2gi þ b3gi:ei þ «i

where yi is the ith observation of the studied phenotype,
variable gi is the genotype, ei is a vector with seed condi-
tions, and gi:ei the interaction term. The values bj represent
parameters to be estimated, and «i is the error term. The
simplified description (Y = E + G + G:E + «) of this linear
model will be used henceforward. Separate likelihood es-
timates (–log probability, henceforth log of the odds
[LOD] scores) are generated for the E, G, and G:E effects.

To validate the use of a GGG design, we studied
the G and interacting effects between G and E on
phenotypes in four different E conditions. These
phenotypes were obtained by studying different
germination parameters under different E conditions
(Joosen et al., 2012). In total, we compared the power
of different designs by performing QTL analysis for
96 classic phenotypes under four different environ-
ments (Joosen et al., 2012; Table I). Furthermore, we
also investigate the interacting effect between G and
E. The full-model mapping (Y = E + G + G:E + «) was
applied to a full-block design, random design, and
GGG design. Single-marker mapping (Y = G + «) was
applied to a single-block design. The number of
detected QTL and interacting QTL (false discovery
rate = 0.05, based on .10,000 runs permutation) with
the different designs are shown in Table I. In the full-
block design, all samples were allocated to the four
conditions. Obviously, this is the most expensive
way of performing the experiment, as the required
resources and effort are quadrupled. As a conse-
quence of the size of the experiment, the power of
detecting G effects is the best for this design. Unfor-
tunately, we cannot afford such expensive experi-
ments in many situations due to limited resources
and time. The single-block design only focuses on
one of the four conditions, as in most published ge-
netical genomics studies to date. In this way, the
samples size for the selected condition is n, and we
will have equal power, as in the full-block design, for
detecting the G effects for this particular condition.
Clearly, this design will miss the information from
the other three conditions, and interacting effects
between G and E factors cannot be investigated. To
study both G and interacting effects with a limited
budget, the random and the GGG design allocate the
n different samples to the four environments evenly,
measuring n/4 samples in each condition. Although
the possibility to detect G effects is only slightly
better for the GGG design, the detection of interact-
ing QTL is clearly improved in the GGG design
compared with the random design. These results
show that the optimal allocation of samples in the
GGG design clearly improves the ability to detect
both G and interacting effects and that the GGG de-
sign results in the maximization of detected variation
in relation to the necessary resources, with only a
minimal compromise of statistical power compared
with the full-block design.
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Metabolic Analyses

To study the metabolic status of Arabidopsis seeds
during germination, four biologically important devel-
opmental stages of seed germination with expected
variation in metabolite levels to different extent were
selected. The first two stages, being freshly harvested
primary dormant (PD) and after-ripened (AR) nondor-
mant dry seeds, respectively, are expected to comprise a
very similar metabolome, as most, if not all, metabolic
fluxes are arrested in the dry seed. The oil-rich (ap-
proximately 40%) Arabidopsis seeds (Hobbs et al., 2004)
typically desiccate to moisture contents below 5%,
which results in an arrest of all enzymatic reactions due
to the lack of free water. The other two stages repre-
sented 6-h-imbibed (6H) seeds and seeds at radicle
protrusion (RP), respectively. Full rehydration of dry
seeds typically completes in less than 2 h, and although
developmental differences are not yet expected, many
metabolic processes will have started after 6 h of im-
bibition (Nakabayashi et al., 2005; Howell et al., 2009).
RP marks the end point of germination sensu stricto
and is known to be accompanied by a major switch of
both the transcriptome and metabolome (Nakabayashi
et al., 2005; Fait et al., 2006). These four developmental
stages are anticipated to vary to different degrees in
their metabolic profiles, with hardly any difference be-
tween dry seed samples, some differences between dry
and imbibed seeds, and very pronounced differences
between dry seeds and seeds at RP.

To determine the metabolic status of G variants in
these different developmental stages, all individuals in
the four subpopulations and their parental accessions
were subjected to gas chromatography-time of flight-
mass spectrometry. Each sample consists of the polar

fraction of a methanol extract of a bulk of approxi-
mately 700 to 1,000 seeds (20 mg). Samples were an-
alyzed in random order and interspersed with pooled
sample controls to control for experimental errors. The
metabolic profiling of the segregating RILs was per-
formed, and the use of segregation population provided
an intrinsic replication for each genotypic marker (Jansen
and Nap, 2001). In total, 7,537 mass peaks were de-
tected, representing 161 metabolites, according to cen-
trotyping based on retention time and correlation
structure (Tikunov et al., 2011). In total, 63 metabolites
could be annotated using an in-house-constructed li-
brary and a publicly available mass spectra library
(Schauer et al., 2005; Supplemental File S1).

The parental accessions Bay-0 and Sha were mea-
sured in duplicate for all four developmental stages,
allowing us to model the influence of condition and
accession using a multifactor univariate ANOVA:

yi ¼ b0 þ b1conditioni þ b2accessioni þ «i

ANOVA for the parental samples identified 108 me-
tabolites showing significant variation (false discovery
rate , 0.05) between developmental stages (E) and 85
showing variation between the parents (G), with an
overlap of 54 metabolites showing variation between
both variables in an interactive way (G:E; Supplemental
File S2). For 37 metabolites, no significant variation was
detected between the parental accessions or in any of
the developmental stages. A self-organizing map, cre-
ated from the metabolites showing significant variation
between the parents, groups different metabolites ac-
cording to their accumulation pattern over different
genotypes and developmental stages (Fig. 1). Clearly
different patterns of variation can be observed, namely

Table I. Comparing different experimental designs

Comparison of different experimental designs to study G and G:E effects on classic phenotypes in four
different conditions. Each E condition is indicated with different gradient of gray in the blocks. In total
there are n (164) genetically different RILs, and the data were analyzed in four different ways. The last two
rows compare the number of QTLs for main G effect and G:E interacting effect detected using different
design strategies. The numbers in parentheses indicate the QTLs that share confidence intervals (1.5 drop-
off) with the full-block design.

Design QTL Interacting QTL

Full-Block 96 30
Best power for G effect
Most expensive
Best power for G:E effect

Single-Block 93 0
Same power for G effect in the selected condition
Less expensive
Missing G:E effect

Random 78(75) 17(5)
Limited power for G effect
Less expensive
Limited power for G:E effect

GGG 81(67) 27(12)
Optimal power for G effect
Less expensive
Optimal power for G:E effect
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G in Figure 1, A and H, E in Figure 1, C and D, G + E in
Figure 1, B and G, and G:E in Figure 1, E and F, illus-
trating the complex regulation of metabolic processes
and the need for sophisticated analysis methods, such
as principle component analysis or multiple QTL map-
ping (Arends et al., 2010).
Because metabolite levels are varying between both

parents and between the chosen seed germination
stages, a segregation of metabolic accumulation can be
expected in the RIL population of 164 lines. A principle
component analysis of the metabolic profiles, revealing
the internal structure in the data, shows that the first
component clearly separates 6H seeds and seeds at
RP from both PD and AR seeds, explaining 37% of
the total variation (Supplemental Fig. S2). This con-
firms the large metabolic changes accompanying the
transition from dry arrested seeds to the imbibed
and germinating developmental stages. As expected,
no obvious differences could be detected between
the metabolomes of PD and AR dry seeds. The sec-
ond component, explaining 11% of the total varia-
tion, separates the parental accessions, indicating

that this component explains a lot of the G variation
in metabolic profiles. These results demonstrate that
Bay-0 and Sha possess G variation for the accumu-
lation of primary metabolites, which segregates in
their recombinant offspring and which is strongly
influenced by the developmental stage used for pro-
filing.

Transgressive segregation was visualized by com-
paring parental and RIL metabolite level distri-
butions (Supplemental Fig. S3). Some positive and
negative transgression is observed for most of the
metabolites in which the metabolite accumulation in
a RIL is respectively higher or lower compared with
the respectively highest or lowest parent. In addition,
15 metabolites were detected in RILs that were not
present in either parent. This suggests that new allele
combinations in the RIL population resulted in en-
hanced accumulation or even novel formation of
metabolites, although it could also be that those
metabolites were missed in the parents because of the
limits of the technology and methodology used in
this study.

Figure 1. Self-organizing map, grouping different metabolites according to their accumulation pattern over different genotypes,
and developmental stages of significantly variable metabolites (ANOVA F, P , 0.05) measured in the parental lines Bay-0 and
Sha in four developmental stages. Two independent biological replicates were measured for each combination of parent and
developmental stage. [See online article for color version of this figure.]
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G Mapping of Metabolites in a GGG Design

In the experimental setup of this study, the E vari-
ation is defined as variation observed between the four
developmental stages (PD, AR, 6H, and RP). Signifi-
cance thresholds, determined by permutation analysis
(n = 1,000, P , 0.01) for each metabolite, ranged from
LOD 3.43 to LOD 3.50 and was stringently set to LOD
4 for all analyses. Mapping resulted in 120 significant
QTLs in the G component for 83 metabolites and 31
G:E QTLs for 27 metabolites, ranging from one to four
QTLs per metabolite. Thirteen of the G:E QTLs are
significant in the G component as well. For 66 me-
tabolites, no significant QTL was detected. Clustered
heat maps for both the G and the G:E QTL profiles
were created (Supplemental Figs. S4 and S5).

To test the performance of the generalized mapping
procedure, QTLs detected in individual environments
(using the linear model yi = b0 + b1gi + «i, henceforth
Y = G + «) were compared with QTLs detected in the
combined mapping approach (using the linear model
Y = E + G + G:E + «; Fig. 2; Supplemental Table S1).
QTLs were binned in upper or lower chromosome
arms to reduce the effects of small positional shifts.
Results were plotted in a network, with nodes repre-
senting QTLs connected with edges to nodes repre-
senting the mapping populations in which they were
detected (Fig. 2). QTLs are grouped in three sections
according to their detection in the different mapping
procedures. The middle section shows 73 QTLs that
were detected in both the Y = E + G + G:E + « model
and in one or more single-environment mappings us-
ing the Y = G + « model. This shows that most of the G
variation present in the single environments can ef-
fectively be captured by using the generalized model.
The presence of 60 QTLs that were only significantly
detected in the Y = E + G + G:E + « model (right sec-
tion) shows the combined power of the generalized
approach and the usage of more genotypes. These
QTLs are not detected in the single-environment
mapping in which only 41 individuals were used.
Combining all data across all environments in the
linear model increases power to detect QTLs, but it
should be noted that there are also 20 minor QTLs
(left section) that are only significant in the single-
environment mapping with the Y = G + « model.
These QTLs are not detected in the Y = E + G + G:E + «
model. This can be explained by two factors: (1) en-
vironments in which the G variation is not expressed
introduce noise in the experimental data and thereby
decrease mapping power, and (2) deviations from a
balanced allele distribution in the different subpop-
ulations can introduce some stochasticity around the
threshold level, although this is not the case in our
data.

Importantly, all major-to-moderate-effect-size QTLs
could be detected using the generalized model, even
when these QTLs were not detected in the separate
environment models. Although it is difficult to com-
pare power with the latter models, because population

sizes differ, the generalized design efficiently identifies
all relevant QTLs, which were detected by the four
separate models, and in addition, it detects G:E inter-
actions. In a general exploratory study, the reduction
in experimental burden therefore amply outweighs the
incidental failure to detect the limited number of small-
effect QTLs. The application of a GGG design can thus
be an important advancement in evolutionary and eco-
logical studies assessing the contribution of G and E
effects to natural variation in life history traits.

For breeding purposes, the allelic effect size is an
important measure, and differentiation of the envi-
ronment in which the allelic effect is expressed can be
very useful. In the generalized setup, the allelic effect
size of those metabolites with significant QTLs is
separated per environment (Supplemental Files S4 and
S5). For every QTL that is consistently detected in all
four conditions, a LOD score for G effect (Fig. 3, x axis)
is obtained from full-model mapping. For these QTLs,
normalized allelic effect sizes are calculated by Z-score
transformations for each environment (Fig. 3, y axis).
QTLs detected in the G component of the linear model
(Fig. 3A) show an expected linear relationship between
LOD score and effect size in all measured environments.
This correlation is much weaker for QTLs detected in the
G:E component of the linear model (Fig. 3B) because the
G variation is not expressed in all environments. QTLs
of metabolites with strong G:E interaction, therefore,
display larger effect sizes in fewer environments com-
pared with G-component QTLs of similar significance
levels.

Clearly, the choice of environments used in such
study is crucial (Li et al., 2008). Limited power can be
expected when environments vary too much and no
overlapping G variation is present, and contrarily,
there is hardly any additive value of the design when
using very similar environments. In this study, we
carefully selected four biologically relevant develop-
mental stages of seed germination with expected var-
iation in metabolite levels to different extent and
consider them as an E factor in the follow-up statistical
analysis. The selected developmental stages start from
PD dry seeds to seeds at the point of RP. The first two
stages, being freshly harvested PD and AR nondor-
mant dry seeds, respectively, are expected to comprise
a very similar metabolome, as most, if not all, meta-
bolic fluxes are arrested in the dry seed. The other two
stages represent 6H seeds and seeds at RP, respec-
tively. Different levels of E variation were obtained
and could be mapped by the G and/or G:E component
of the linear model.

G Regulation of Metabolic Traits

One of the most rewarding benefits of the general-
ized approach is the possibility to analyze metabolic
fluxes over different environments or developmental
stages in addition to the effect of G variation. The ac-
quired information of both sources of variation can be
effectively displayed in so-called flash cards, in which
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line graphs illustrate the G and E effect and detected
QTLs are plotted in heat bars (Fig. 4; Supplemental Fig.
S6). The individual components of the linear model
Y = E + G + G:E + « provide the valuable measures for
the various sources of variation. For example, Lys
content strongly increases in germinating seeds, indi-
cated by a significant LOD score of 16.1 for the E effect,
but no G variation for Lys could be detected (Fig. 4A).
For this metabolite, G variants vary indistinguishably
from each other over different environments. By con-
trast, fumaric acid shows little variation between the
developmental stages (LOD 0.6), but displays strong G
variation explained by a highly significant QTL (LOD
6.5) for the G effect at the center of chromosome 2.
Higher levels for fumaric acid are detected in all de-
velopmental stages for those lines harboring the Bay-0
allele (Fig. 4B). An example of the additive effect of E
and G factors is the decrease in levels of malic acid in
imbibed seeds. Here, a strong E effect (LOD 13.2) is
accompanied with an additional G effect, explained by
a G QTL (LOD 6.9) at the bottom of chromosome 1.
Note that the G effect here is similar in all environments
(Fig. 4C). This is not the case for gluconic acid, levels of

which are strongly affected by the G:E interaction. A
strong G:E QTL (LOD 10) is detected at the top of
chromosome 4. The Sha allele at this position causes
higher levels of gluconic acid in dry seeds but not in
imbibed seeds (Fig. 4D). This strong negative E effect
(LOD 6.6) is also responsible for the apparent direc-
tional shift of the G:E QTL effect.

Similar to the self-organizing maps in Figure 1,
flashcards can be instrumental in the identification of
metabolic relationships, with the added value of G
regulatory information. This is illustrated by integrat-
ing flashcards of all metabolites that were identified in
this study with a general Arabidopsis metabolic pathway
diagram (http://www.KEGG.jp; Supplemental Fig. S7).
For instance, several pathways in carbohydrate meta-
bolism, such as the biosynthesis routes for Gal, pentose
phosphate, starch/Suc, and amino and nucleotide sug-
ars, are highly interconnected and are therefore subject
to coregulation mechanisms. A number of compounds
involved in different subparts of the carbohydrate net-
work module (e.g. Glc-6-P, maltose, Man, GlcA, and
gluconic acid) share a strong QTL at the top of chro-
mosome 4. This suggests that the observed variation for

Figure 2. Comparison of QTLs detected within single environments (PD, AR, 6H, and RP) by using the simple Y = G + « model
with QTLs detected when combining environments via the full Y = E + G + G:E + «model. QTLs were binned to two regions per
chromosome (i.e. top and bottom region). When comparing QTLs of a single trait from two models, they are considered as
shared ones if QTLs fall in the same region. In total, we found 73 QTLs shared between the two models, as shown in the middle
ellipse. There are 20 and 60 QTLs that are only detected in the simple and full model, respectively. Nodes indicate metabolite
QTLs, and node size shows the degree of connectivity. Nodes are connected by edges, which show the link between a QTL and
a mapping population (single environments versus multiple environments). Separate nodes are created for the G component
and the G:E component. Edge line color represents direction of the QTLs (green for higher levels in Sha and blue for higher
levels in Bay-0). Line width indicates LOD scores. Detailed results comparing overlapping QTLs based on 95% confidence
interval between models are shown in Supplemental Table S1.
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these compounds has a single G basis, possibly affecting
competition for a general precursor or directing feed-
back loops. In addition, many of these compounds show
strong positive or negative correlation due to E control.
G coregulation was also observed for amino acid me-
tabolism. Amino acids are substrate for the synthesis
of aminoacyl-tRNAs, which, in turn, are essential sub-
strates for translation (Sheppard et al., 2008). A single
G:E QTL at the bottom of chromosome 1 was detected
for eight amino acids, explaining a large part of the
observed G variation. The joined analysis of environ-
mentally and genetically induced variation in metabolic
profiles can thus identify causal relationships between
different modular parts of metabolic networks and
associate these connections with relevant biological
processes.

Regulatory Hotspots and Physiological Coregulation

As noted, the accumulation of several metabolites
maps to identical positions, suggesting that these
might be regulated by a common G factor. Although
colocating QTLs can be the result of independent
closely linked G factors, such coinciding QTLs are
expected to occur more or less randomly by chance.
Any deviation from expected frequency distributions
along the genome thus hints at G coregulation (Breitling
et al., 2008). When plotted against their genomic po-
sition, eight of such suggestive QTL hotspots can be
seen (Fig. 5), of which, the two major ones (chromo-
somes 4-MSAT4.8 and 5-NGA139) colocate with pre-
viously identified hotspots for metabolic regulation
(Kliebenstein et al., 2001b; Keurentjes et al., 2006;
Wentzell et al., 2007; Rowe et al., 2008). Interestingly,
both these loci have been shown to play a role in
glucosinolate biosynthesis. The AOP locus at chro-
mosome 4 regulates side-chain modification, while
the MAM locus at chromosome 5 determines chain
elongation, but these compounds are not targeted for
in gas chromatography-mass spectrometry analysis,
which predominantly detects primary metabolites. As

for many glucosinolates, for some metabolites, in-
cluding g-aminobutyric acid (GABA) and maltose,
QTLs were detected at both positions. In other cases, a
single QTL was detected at chromosome 4 or 5, e.g.
Glc-6-P and Tyr, respectively. Although the identified
primary metabolites are not directly connected with
the glucosinolate biosynthesis pathway, such associa-
tions have been reported before (Rowe et al., 2008).
These results might suggest alternative functions for
AOP and MAM or a role in resource competition and
allocation in central metabolism. This suggestion is
further supported by the fact that these loci link to
flowering time and the circadian clock regulation in
the Bay-0 3 Sha population (Chan et al., 2011). It also
cannot be ruled out that other genes overlapping the
AOP or MAM regions are causal for the observed
variation.

Because many metabolites appear to be coregulated,
the strong impact of some loci on central metabolism
might also exert its effect on physiological traits. Re-
cently, the G landscape of seed germination in the
same population has been described, for which seed
germination parameters were acquired under a wide
range of E conditions (Joosen et al., 2012). A compar-
ison between variation in germination characteristics
and metabolite levels might reveal compounds in-
volved in the process of germination. Although no
clear colocation of hotspots for germination and me-
tabolite QTLs could be observed, incidental coinci-
dence between isolated QTLs of both types of traits did
occur. For instance, G variation for seed size colocates
with a large metabolic QTL cluster on the lower arm of
chromosome 1 (approximately 75 centimorgans). This
cluster contains many QTLs for amino acids, but also
many QTLs for components of the TCA cycle (e.g.
fumarate and malate). In plants, Leu, Ile, and Val can
be broken down, and the end products of their cata-
bolic pathways enter the TCA cycle to generate energy.
It has been shown that these amino acids promote their
own degradation, but only during seed germination or
senescence or under sugar starvation (Binder, 2010).

Figure 3. Effect sizes for each individual developmental stage are plotted against the derived LOD score. A, Normalized allelic
effect size per environment against LOD scores from the G component. B, Normalized allelic effect size per environment
against LOD scores from the G:E interaction component. Colors indicate the developmental stages (red for PD, blue for AR,
green for 6H, and orange for RP).
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This suggests that the degradation pathways provide
alternative carbon sources for the plant in extreme
conditions. In addition, branched-chain amino acids
and their derived a-keto acids are cytotoxic, and pre-
venting accumulation through degradation may be an
important detoxification mechanism (Fujiki et al.,
2000). Higher levels of both fumarate and malate, as a
result of the degradation of a surplus of amino acids,
might thus be indicative for larger seed sizes. A second
QTL for seed size on chromosome 5 colocates with a
QTL of opposite effect for GABA accumulation. In-
terestingly, Bay-0 alleles at both QTLs confer larger
seed size, suggesting that there was selection pressure
for large seed size in the environment where Bay-0 was
collected, as was also observed in a different popula-
tion (Alonso-Blanco et al., 1999). However, where
levels of fumarate and malate are increased in larger
seeds, the accumulation of GABA is decreased. GABA
is known to be involved in a range of cellular processes
(Palanivelu et al., 2003) and is rapidly accumulated in
response to biotic and abiotic stresses (Kinnersley and
Turano, 2000). It has been postulated that it has roles in
herbivore deterrence, pH and redox regulation, energy
production, and maintenance of carbon/nitrogen bal-
ance (Bouché and Fromm, 2004). In a recent study,
GABA levels in seeds were shown to increase by ex-
pressing Glu decarboxylase under a seed maturation-
specific phaseolin promoter (Fait et al., 2011). In
accordance with our findings, this resulted in smaller
seed size and reduced seed vigor in T3 plants. No
opposite seed size effect could be detected at a GABA
QTL with increased levels due to the Bay-0 allele at the
top of chromosome 4, but colocating G variation for
germination on abscisic acid, heat sensitivity, and
dormancy was observed at this position. These cases
illustrate the power of joined G analyses of metabolic
and physiological traits for generation of hypotheses
that can help in the functional annotation of plant
metabolites and their possible role in the regulation of
important physiological processes.

Confirmation of Metabolic QTLs

To independently confirm the effect of a single locus,
it must be isolated and tested in an isogenic back-
ground. Several methods can be followed to perform
such an independent confirmation of QTLs. A powerful
approach is the use of residual heterozygosity in early
generations of RILs. The Bay-0 3 Sha RIL population

Figure 4. Normalized metabolite changes during four developmental
stages (PD, AR, 6H, and RP). Each section represents a single metab-
olite and contains information about E variation (green line plot rep-
resents the average over all lines within a single developmental stage)
and G variation (blue lines represent the metabolite levels for lines
carrying the Bay-0 allele for the most significant QTL, and red lines
represent those for the Sha allele-carrying lines). QTL profiles for
metabolites with either G or G:E variation are indicated at the bottom
of each section by a heat bar representing the five chromosomes, and a
false-color scale is used to indicate the QTL significance. For G QTLs,
positive values (light and dark blue) represent a larger effect on the
metabolite content for the Bay-0 allele, and negative values (light and
dark red) represent a larger effect on the metabolite content for the Sha
allele. Interpretation of the color scale for G:E QTLs is less intuitive
because strong negative E effects can result in inversion of the QTL

LOD score (e.g. gluconic acid). The presented effect plot (left line plot)
shows the true allele effect. E variation is expressed as LOD score in
the lower left corner. Depending on the most significant variation,
either G or G:E interaction effects are also indicated with LOD scores
in the lower left corner below or above the heat bar, respectively. A,
L-Lys, showing only E variation. B, Fumaric acid, showing G variation.
C, Malic acid, showing both G and E variation. D, Gluconic acid,
showing interaction between G:E variation.
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(420 lines in total) was genotyped at F6, in which ap-
proximately 97% homozygosity is reached in each line.
This resulted in the presence of residual heterozygosity
in at least a single RIL at almost all genome positions.
Those heterozygous regions are segregating in a Men-
delian fashion in the next generation and can be used to
confirm QTL positions, as it provides a possibility to
study both parental alleles at the locus of interest in an
otherwise homozygous background (Tuinstra et al.,
1997). In a heterogeneous inbred family (HIF), those
heterozygous regions are fixed, and two separate lines
containing the alleles of both parents, respectively, are
maintained.

HIF312 and HIF214 are segregating for regions at
the top of chromosomes 4 and 5 (Fig. 6A), respectively,
and cover the region in which the two major metabo-
lite hotspots were detected. AR dry seeds were used to
profile the HIFs for metabolic content because many of
the QTLs detected in this region showed a large-effect
size at the dry seed stages. Significant differences be-
tween parental alleles using four replicates were de-
fined by a two-tailed Student’s t test (P , 0.05). In
total, 34 out of 64 QTLs could be confirmed using this
approach (Supplemental Fig. S8). For maltose, for in-
stance, two QTLs with opposite direction were found
(Fig. 6B), which could both be confirmed using the two
distinct HIFs (Fig. 6C). In a number of cases, a HIF
effect was observed that was not detected significantly
in the RIL population (e.g. digalactosylglycerol). This
might be the result from the higher power in near
isogenic lines due to the absence of epistatic interac-
tions (Keurentjes et al., 2007b). Nonetheless, a sub-
stantial number of QTLs could not be confirmed by the
HIF lines. The enrichment for small-effect QTLs in the
unconfirmed class suggests that four replicates gener-
ate insufficient power to identify significant differences
for these metabolites in the HIF experiments, although
we cannot rule out that they are false positives from
the QTL analysis. Furthermore, QTLs depending on
epistatic interactions cannot be detected in some near-
isogenic lines. In addition, a number of QTL support
intervals are broader than the region covered by the

HIF, and thus, the causal G polymorphism within the
QTL interval, but outside the region covered by the
HIF, would have been missed.

The analyses of the HIF lines indicate that most of
the large-effect QTLs can be accurately detected using
a generalized genomics approach. Although an un-
derestimation of small-effect QTLs can be expected, this
is largely compensated by the higher power of detecting
G and E interactions.

CONCLUSION

The use of natural variation is a valuable tool to
dissect the genetics of complex traits, and the addition
of powerful omics analysis provides a great resource to
disentangle molecular mechanisms. However, the ex-
pensive nature of many omics experiments limits re-
searchers to deploy perturbation of either environment
or development. New strategies are needed to enable
the switch from genetical genomics to system genetics.
Here, we have reported on a strategy to divide a RIL
population in well-defined subpopulations and to use
those to perturb the environment or developmental
stage. To this end, a novel R script has been created to
enable QTL mapping using a linear model that in-
cludes the possibility to account for G and E variation.
This R script is fast enough to analyze hundreds to
thousands of traits and creates possibilities to extend
the GGG strategy to whole-genome gene expression
analysis by either microarray or next-generation se-
quence approaches (Joosen et al., 2009; Ligterink et al.,
2012).

Efficient QTL mapping is strongly dependent on
the population size and recombination frequency.
Keurentjes et al. (2007b) studied the effect of the pop-
ulation size and showed a linear relationship between
the number of individuals used for mapping and the
smallest detectable G effect. In this light, it might seem
undesirable to split a RIL population in smaller sub-
populations. This is true when G variation is only de-
tectable in a single unique environment or developmental
stage leading to a strong G:E interaction. More often,

Figure 5. Number of significant QTLs plotted against the G location. Metabolic QTLs are represented by the black (G) and
dashed (G:E) lines. Germination-related QTLs (Joosen et al., 2012) are shown by the dotted line.
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variation is subject to the environment, without a
complete abolishment of the G variation. In those
cases, the E effects can be normalized, and the power
of detecting a QTL is increased to the total number
of lines used in the different subpopulations. The
availability of a genome-wide set of HIF lines of the
Bay-0 3 Sha RIL population provides a solid and fast
way to confirm QTLs. By using this approach, we
tested two of the observed QTL hotspots and were
able to confirm many of the detected QTLs. When
resources are limited, this can be regarded as a good
alternative for replicating the whole experiment during,
for example, different growth seasons.
Many studies have shown the highly dynamic na-

ture of molecular mechanisms leading toward seed
germination (for review, see Catusse et al., 2008;
Daszkowska-Golec, 2011; Weitbrecht et al., 2011).
Performing expensive genetical genomic experiments
without any perturbation of the environment will
therefore always raise questions about the possible
extrapolation of the results when slightly different
conditions are used. Information about the flux of a
metabolite within a range of developmental stages or
within a range of environments allows a much more
precise interpretation of the molecular effects. By using
the generalized strategy, we showed that it is possible
to deduct the metabolic fluxes (Fig. 4). This extra level
of information is a very valuable addition and helps to

interpret the effect of G variation in the context of a
dynamic and constantly changing metabolome.

Metabolite hotspots can reveal important loci in-
volved in major metabolic pathway differences be-
tween two natural variants. In several studies, the
detected omics hotspots did not colocate more
than expected by chance with phenotypic hotspots
(Keurentjes et al., 2006; Meyer et al., 2007). How-
ever, in this study, we detected some colocating
QTLs, which might be explained by the narrow
developmental window in which both metabolite
and phenotypic QTLs (Joosen et al., 2012) were
gathered. We detected overlapping QTLs for amino
acid synthesis, TCA cycle compounds, and seed size
at the bottom of chromosome 1 and also colocation
between QTLs for GABA, seed size, and germina-
tion under stress conditions at the top of chromo-
some 5 (Joosen et al., 2012). These colocating QTLs
are interesting leads for further research, which
is necessary to elucidate the true causal molecular
mechanisms.

In conclusion, in the era of large systems genetics
initiatives, we propose to consider the use of a gen-
eralized design for genetical genomics studies. The
simultaneous acquisition of both G variation and de-
velopmental fluxes is a cost-effective approach, en-
abling a much better understanding of the processes
involved. We see great potential in further exploration

Figure 6. QTL confirmation for maltose using
the HIF approach. Two QTL regions (top
chromosome 4 and top chromosome 5) were
analyzed using AR seeds of lines HIF312 and
HIF214 (A). The QTL profile for maltose (B)
shows two significant QTLs (dashed line in-
dicates the LOD 4 significance threshold). The
lower section (C) shows the parental levels for
maltose and the confirmation for both QTLs
by the segregating HIF lines (either fixed for
Bay-0 or Sha alleles at the heterozygous in-
terval). Significant differences (Student’s t test,
P , 0.05) are indicated with an asterisk in
between the two contrasting samples.
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of the generalized design for transcriptome or other
omics-related studies.

MATERIALS AND METHODS

Plant Material

Seeds from the core population (165 lines) of the Arabidopsis (Arabidopsis
thaliana) Bay-0 3 Sha RIL population (Loudet et al., 2002) and HIF lines were
obtained from the Versailles Biological Resource Centre for Arabidopsis
(http://dbsgap.versailles.inra.fr/vnat). The population is mapped with 69
markers, with an average distance between the markers of 6.1 centimorgans
(Loudet et al., 2002). Maternal plants were grown in a fully randomized setup
and, seeds from four to seven plants per RIL were bulk harvested. Plants were
grown on 4- 3 4-cm rockwool plugs (MM40/40, Grodan B.V.) and watered
with 1 g L–1 Hyponex fertilizer (nitrogen:phosphorus:potassium, 7:6:19;
http://www.hyponex.co.jp) in a climate chamber (20°C day, 18°C night) with
16 h of light (35 W m–2) at a relative humidity of 70%. Seeds were either stored
at –80°C 1 week after harvest (PD) or AR at room temperature and ambient
relative humidity until maximum germination potential after 5 d of imbibition
was reached. AR seeds were imbibed on water-saturated filter paper at 20°C
for 6 h and quickly transferred to a dry filter paper for 1 min to remove excess
of water (6H). Manual selection with the help of a binocular was carried out to
harvest seeds, with the radicle at the point of protrusion (RP). Three RP lines
failed the metabolite analysis and were replaced by dry PD samples.

Metabolite Analysis

The metabolite extraction was performed based on a previously described
method (Roessner et al., 2000) with some modifications. Seeds (20 mg) were
homogenized using a microdismembrator (Sartorius) in 2-mL tubes with two
iron balls (2 and 5 mm) precooled in liquid nitrogen. Seven microliters of
methanol:chloroform (4:3) was added together with the standard (0.2 mg mL–1 ri-
bitol) and mixed thoroughly. After 10 min of sonication, 200 mL Milli-Q was
added to the mixture, followed by vortexing and centrifugation (5 min, 13,500
rpm). The methanol phase was collected in a glass vial. Five hundred mi-
croliters of methanol/chloroform was added to the remaining organic phase
and kept on ice for 10 min. Two hundred microliters of MQ was added fol-
lowed by vortexing and centrifugation (5 min, 13,500 rpm). Again, the
methanol phase was collected and mixed with the other collected phase. One
hundred microliters was dried overnight using a SpeedVac (35°C, Savant
SPD121).

A GC-TOF-MS method (Carreno-Quintero et al., 2012) was used with some
minor modifications. Detector voltage was set at 1,600 V. Raw data were
processed using the ChromaTOF software 2.0 (Leco Instruments) and further
processed using the MetAlign software (Lommen, 2009) to extract and align
the mass signals. A signal-to-noise ratio of 2 was used. The output was further
processed by the MetAlign Output Transformer (Plant Research Interna-
tional), and mass signals that were present in less than three RILs were dis-
carded. Centrotypes were created using the MSClust program (Tikunov et al.,
2011). The mass spectra of these centrotypes were used for the identification
by matching to an in-house-constructed library and the National Institute of
Standards and Technology NIST05 (http://www.nist.gov/srd/mslist.cfm)
libraries. This identification is based on spectra similarity and comparison of
retention indices calculated by using a third-order polynomial function
(Strehmel et al., 2008).

QTL Mapping

Data were preprocessed using a log transformation, and per-phenotype
outliers were removed after Z transformation (Z-score . 3). With the open-
source statistical package R (version 2.14.1), we fitted a basic linear model
(yi = b0 + b1gi + «i) on the four conditions separately. This was followed by a
combined mapping allowing for a developmental covariate and interaction
term between the G marker and developmental stage (yi = b0 + b1ei + b2gi +
b3ei:gi + «i). P values from all mappings are transformed into LOD scores by
taking the –log. In addition, raw and normalized effects were calculated for
each individual environment. Normalized effects were calculated by dividing
the difference between the maximum and the minimum value for that trait
by the mean effect at the marker. LOD significance was determined using

permutations for the combined mapping of the four environments; a LOD
score of 4 was found to be significant (Breitling et al., 2008). Supplemental File
S3 contains the R script used for the data analysis.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Allele distribution within the Bay-0 3 Sha RIL
population and the four selected subpopulations.

Supplemental Figure S2. Principal component analysis plot showing the
first two principal components of the metabolite analysis in the Bay-0 3
Sha RIL population.

Supplemental Figure S3. Transgression plot.

Supplemental Figure S4. Clustered heat map from the G component
showing the LOD profiles of all metabolites.

Supplemental Figure S5. Clustered heat map from the G:E component
showing the LOD profiles of all metabolites.

Supplemental Figure S6. Flashcards of all identified metabolites.

Supplemental Figure S7. Kyoto Encyclopedia of Genes and Genomes met-
abolic pathway with flashcards overlay of the metabolites identified in
this study.

Supplemental Figure S8. Overview from HIF analysis with all metabolites
with significant QTL confirmation.

Supplemental Table S1. Overview of QTLs shared between different
models based on 95% confidence intervals.

Supplemental File S1. Metabolite centrotype data.

Supplemental File S2. ANOVA results from metabolic profiling of the
parental lines Bay-0 and Sha.

Supplemental File S3. R script with original data files allowing reanalysis
of all data provided in this paper.

Supplemental File S4. Summary of all detected metabolic G QTLs.

Supplemental File S5. Summary of all detected metabolic G:E QTLs.
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