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Comparative functional genomics studies the evolution of biological processes by analyzing functional data, such as gene
expression profiles, across species. A major challenge is to compare profiles collected in a complex phylogeny. Here, we
present Arboretum, a novel scalable computational algorithm that integrates expression data from multiple species with
species and gene phylogenies to infer modules of coexpressed genes in extant species and their evolutionary histories. We
also develop new, generally applicable measures of conservation and divergence in gene regulatory modules to assess the
impact of changes in gene content and expression on module evolution. We used Arboretum to study the evolution of the
transcriptional response to heat shock in eight species of Ascomycota fungi and to reconstruct modules of the ancestral
environmental stress response (ESR). We found substantial conservation in the stress response across species and in the
reconstructed components of the ancestral ESR modules. The greatest divergence was in the most induced stress, primarily
through module expansion. The divergence of the heat stress response exceeds that observed in the response to glucose
depletion in the same species. Arboretum and its associated analyses provide a comprehensive framework to systematically
study regulatory evolution of condition-specific responses.

[Supplemental material is available for this article.]

Comparative functional genomics approaches are increasingly used

to study regulatory evolution in unicellular ( Jensen et al. 2006;

Gasch 2007; Thompson and Regev 2009; Wohlbach et al. 2009;

Romero et al. 2012) and multicellular organisms (Brawand et al.

2011; Schmidt et al. 2012; Xiao et al. 2012). Such studies measure and

compare genomic profiles, including mRNA levels (Bergmann et al.

2003b; Tirosh et al. 2006; Wapinski et al. 2010; Brawand et al. 2011;

Fowlkes et al. 2011; Rhind et al. 2011; Tirosh et al. 2011), chromatin

organization (Segal et al. 2006; Tsankov et al. 2010; Xiao et al. 2012),

or protein–DNA interactions (Borneman et al. 2007; Schmidt et al.

2010, 2012; Kutter et al. 2011) across two or more species.

Although comparing genomic profiles between pairs of species

is relatively straightforward, deriving evolutionary insights requires

us to compare many species in a phylogeny (Brawand et al. 2011;

Rhind et al. 2011). For example, one important feature of tran-

scriptional programs is their organization into regulatory modules

of coexpressed genes (Ihmels et al. 2002; Segal et al. 2003). There are

many approaches to identify such modules in a single species (Eisen

et al. 1998; Bergmann et al. 2003a; Segal et al. 2005; Joshi et al.

2009), but mapping genes and modules across multiple species is

challenging. The few studies that compared modules across more

than two species (Bergmann et al. 2003b; Stuart et al. 2003; Kuo et al.

2010b; Waltman et al. 2010) typically ignore phylogenetic re-

lationships. Rather, they either identify modules in each species

independently (Bergmann et al. 2003b; Tanay et al. 2005) or identify

modules from a single merged data matrix, often requiring matched

samples across species (possibly preferring orthologs to reside in the

same module [Kuo et al. 2010b]). Neither strategy infers the modules

in the ancestors of the extant species.

Here, we developed Arboretum, a novel algorithm that takes

expression profiles from multiple species and the species’ and genes’

phylogenies and infers both extant and ancestral modules. By

rooting the module identities at the last common ancestor (LCA) of

the species, Arboretum automatically maps modules across species

and allows us to trace the evolution of the module assignment of

each gene. We used Arboretum to study the evolution of the tran-

scriptional program to heat stress in eight species of Ascomycota and

to reconstruct the environmental stress response (ESR) at the LCA of

a subset of five species. We found substantial conservation of stress

response across species, including the S. cerevisiae ESR, and highlight

species- and clade-specific divergence; changes in gene content and

gene duplication both contribute to this divergence.

Results

Arboretum: An algorithm to infer the evolution
of expression modules

Arboretum takes as input expression profiles measured for multiple

extant species in a phylogeny, the species’ tree, and gene trees, and
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infers modules in each of the extant and ancestral species and the

evolutionary transitions from the modules of an ancestral species

to those of its descendant species (Fig. 1; Methods; Supplemental

Methods).

Arboretum is based on a generative probabilistic model that

consists of two parts (Fig. 1A): (1) evolution of ‘‘hidden’’ module

membership of both ancestral and extant species; and (2) ob-

served expression generation at the extant species only. Evolu-

tion of module membership is modeled by a transition matrix for

every branch of the species tree, describing the conditional

probability of a gene’s module membership in a species, given

that gene’s module membership in that species’ immediate an-

cestor (Fig. 1A, black and white matrices). A Gaussian mixture

models the expression data of each module at the extant species

(Fig. 1A, red and green matrices). The model’s parameters are the

Gaussian mixture parameters, mean mS
k and covariance +S

k for

each module k, at each extant species S, the transition matrices

for each branch, and the initial module probability distribution

at the root. These parameters are learned using expectation

maximization (EM) (Dempster et al. 1977), with the module

membership of each gene in each species (extant or ancestral)

inferred based on the observed expression data. The module IDs

across species are all linked to the same module in the LCA, such

that module m in one species corresponds to module m in an-

other species.

Arboretum handles complex orthology relations

By considering the gene tree associated with each group of orthologs

(orthogroup) (Wapinski et al. 2007b), Arboretum handles many-

to-many relationships between orthologs that result from gene

duplication and loss. For loss, the generative model simply does

not generate expression for the species where the gene is lost. For

an orthogroup with paralogs, Arboretum proceeds from the LCA

down the tree generating module assignments until it reaches the

phylogenetic point where duplication happened (Fig. 1B, star), as

indicated by the gene tree associated with the orthogroup. At that

node, Arboretum independently draws two samples from the tran-

sition probability matrix of the module, assigns each to one of the

paralogs, and independently evolves it down the rest of the tree

(Supplemental Methods). This allows the paralogs to subsequently

evolve along different trajectories. By using the gene tree structure,

Arboretum avoids iterating over all pairs of orthologs and naturally

handles the many-to-many relationships across the species.

Arboretum identifies coherent and conserved expression
modules compared to other methods

We compared Arboretum’s performance to that of two existing

methods of clustering multispecies expression profiles (Supple-

mental Methods) that do not explicitly model the phylogenetic

relationships: the orthoseeded algorithm—similar to Waltman

Figure 1. Arboretum. (A) Generative model. Shown are the components of the generative model for a phylogeny with three extant species (X, Y, Z, gray
rectangles) and two ancestral species (A, B, white rectangles) with k = 2 modules (heatmaps). The model consists of two parts: module evolution (top) and
expression generation (bottom). Module evolution is modeled by transition matrices, one for every branch of the tree (black and white matrices on
branches and bottom). The observed expression (heatmaps) is modeled by a mixture of Gaussians—one mixture for each extant species, one mixture
component per module. The parameters of each Gaussian are shown on top of each species-specific module. For example, S1

X and m1
X denote the

covariance and mean of module 1 in species X. (B ) Modeling module evolution of a gene family with duplication. (Top) Shown is a gene tree; (star)
duplication event. All species after duplication (B, X, and Y) have two copies of the ancestral gene (B1, B2, X1, X2, and Y1, Y2). (Bottom) Module evolution
procedure. (CA

i ) Module assignments of the ith orthogroup in species A. Module assignments post-duplication are denoted as, for example, CX1
i and CX2

i,
for genes X1, X2 in species X. The assignments CB1

i and CB2
i are both sampled from the transition matrix of the phylogenetic point right after the duplication

(B) and evolved independently down the rest of the subtree.
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et al. (2010), but without biclustering—and soft k-means clustering

(Kuo et al. 2010b). We used expression data from different subsets

of five species from a large panel of 15 species for which we

have measured expression under glucose depletion (described in

D Thompson, S Roy, M Chan, M Styczynsky, J Pfiffner, unpubl.).

Different subsets of species enable us to study robustness to the

specific species composition in the data. We used four criteria

(Supplemental Methods): (1) module stability (the proportion of

gene pairs that are in the same module under different random

initializations); (2) expression coherence (the average proportion

of genes whose expression profiles had >0.8 correlation with the

module’s mean); (3) conservation of gene content in expression

modules (the degree of overlap in orthologous genes between maxi-

mally overlapping pairs of modules in two species); and (4) ability to

recover the ‘ground truth’ assignment of genes into modules based

on simulated data generated with our module evolution model.

Arboretum performed well in all measures (Fig. 2; Supple-

mental Fig. 1). First, modules inferred by Arboretum were as stable as

orthoseeded clustering and outperformed soft k-means clustering

(Methods), for all subsets of species used. Second, the expression

coherence of modules generated by all three methods was compa-

rable, across different random initializations. Third, soft k-means

clustering yielded the most conserved modules, followed by Arbo-

retum, and then orthoseeded clustering. This is expected since soft

k-means clustering explicitly favors orthologous genes to be in the

same module, whereas Arboretum only imposes a prior distribu-

tion on the module assignment via the tree, to allow measured

expression to uncover regulatory divergence during evolution.

Fourth, for the simulated data with known module assignments,

Arboretum performed significantly better than soft k-clustering and

was on par (or slightly better in some cases) with the orthoseeded

algorithm (Supplemental Fig. 1). The lower performance of soft

k-clustering on the simulated data suggests that it likely overestimates

conservation (as reflected in the third criterion above).

Arboretum also infers transition matrices and ancestral module

assignments that provide insights into the evolutionary history of

modules. To assess their quality, we compared the accuracy of the

inferred modules to the ‘ground truth’ in the simulated data across

different input parameters (Supplemental Figs. 2, 3). We found that

Arboretum performs very well for extant species and recent ances-

tors, with—as expected—some diminishing performance for more

ancient ancestors. The majority of errors in ancestors is due to mis-

assignments between modules with close expression patterns

(Supplemental Fig. 4).

Comparative transcriptional analysis of the heat shock
response in eight yeast species

We used Arboretum to study the evolution of the transcriptional

response to heat shock in eight Ascomycota yeasts—Saccharomyces

cerevisiae, Candida glabrata, Saccharomyces castellii, Kluyveromyces

lactis, Kluyveromyces waltii, Candida albicans, Schizosaccharomyces

Figure 2. Performance of Arboretum. Shown is a comparison of Arboretum’s performance (purple) to that of soft k-means clustering (blue) and
orthoseeded clustering (red), based on degree of ortholog conservation measured as the average negative logarithm of the P-value of the hypergeometric
test for significance of overlap across modules (left), module stability (middle), and expression coherence of modules (right), for three different sets of five
species each (rows). Error bars were obtained by running each algorithm with different random initializations.

Evolution of transcriptional modules
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japonicus, and Schizosaccharomyces pombe (Fig. 3A, left). In each

species, we measured at least four time points following heat shock

(Fig. 3A; Supplemental Fig. 5; Methods).

A conserved transcriptional program to heat stress

Arboretum identified five expression modules (Fig. 3A; Methods),

ranging from strongly repressed Module 1 to strongly induced

Module 5 and enriched for genes with coherent functions in most

(>90%) extant and ancestral species (Supplemental Table 1).

Modules of the same ID (‘orthologous’ modules) exhibit the most

significant overlap (Fig. 3B, red diagonal elements), with increased

conservation for more closely related species. Modules 1 and 2

(strong and milder repression, respectively) are significantly asso-

ciated with growth-related processes (e.g., ribosome biogenesis,

RNA processing, RNA methylation, FDR <0.05) (Supplemental

Table 1), consistent with their known repression during stress.

Conversely, Modules 4 (mild induction) and 5 (strong induction)

are enriched with genes whose function is important in heat stress,

including cellular response to heat, proteolysis, protein catabolism,

and protein folding. There is also conserved enrichment of cis-reg-

ulatory elements in some modules. In most species, Module 1 is

enriched for binding sites of the growth regulators SFP1 and TOD6

(Supplemental Fig. 6), and Module 5 is enriched for binding sites of

stress and glucose regulators MSN2/4, RGT1, and ADR1. This sug-

gests that basic functional features of the heat stress response are

evolutionarily conserved. Indeed, the module assignment of the

vast majority of individual genes (98.6%) changed in <50% of the

species since the LCA (Methods).

Species- and clade-specific innovation in the response
to heat stress

Arboretum also highlights species and lineage-specific innovation

in the regulation of other processes. For example, Module 4 (mild

induction) of all species, except the Schizosaccharomyces species, is

enriched for sporulation genes. This suggests a change in the

coupling of meiosis and stress response in the fission yeasts

(Supplemental Table 2), possibly related to the different way in

which antisense transcription of meiotic genes is responsive to

stress in Schizosaccharomyces (Rhind et al. 2011). Furthermore,

sexual reproduction genes are particularly enriched in Module 5

in C. albicans, where stress has been previously implicated in in-

duction of the parasexual cycle (Berman and Hadany 2012). In

another example, Module 4 in the human pathogen, C. glabrata, is

enriched for genes involved in iron sulfur cluster assembly and

sulfur assimilation. This may be an adaptation to the human host,

where the pathogen competes on limited iron (Nevitt and Thiele

2011). C. glabrata Module 5 (strong induction) is also uniquely

enriched for histidine, lysine, and arginine metabolism genes; this

was not previously observed, to the best of our knowledge, and may

reflect a unique lifestyle choice for this pathogen.

A pan-stress environmental stress response (ESR) is apparent
and conserved across species

In all extant and ancestral species, Modules 1 and 5 significantly

overlap with the repressed and induced modules of the environ-

mental stress response (ESR), respectively, as previously defined in

S. cerevisiae (Fig. 4A; Methods; Gasch et al. 2000). To test if this

conservation extends to the response to other stresses, we used

Arboretum to identify modules in profiles measured in five of the

eight species under oxidative and salt stress (Wapinski et al. 2010).

In each case, we found substantial overlap in gene content between

modules with similar expression (e.g., strongly induced) across dif-

ferent responses within a species (Fig. 4B; Supplemental Fig. 7) and

between the same response in different species (Fig. 4C; Supple-

mental Fig. 8), as well as to the induced and repressed modules of the

S. cerevisiae ESR (Supplemental Fig. 9). The conserved, pan-stress ESR

is apparent in all species, including C. albicans, in contrast to pre-

vious suggestions that C. albicans may not have a robust ESR (for

review, see Gasch 2007). The repressed S. cerevisiae ESR was more

conserved than the induced ESR (Supplemental Fig. 9). The salt stress

response is the most conserved, and the oxidative stress is the least

(Supplemental Fig. 8).

To determine the ancestral ESR and identify potential mod-

ules with unique stress- or species-specific behavior, we next ap-

plied Arboretum to the combined data set of all three stress re-

sponses across all species (three time courses with at least four time

points in five species). We found that k = 7 modules explain the

expression data best (Supplemental Fig. 10A). Consistent with the

preceding analysis, most modules were largely conserved across

species, both in gene membership (Supplemental Fig. 10B) and in

expression patterns across stresses (Supplemental Fig. 10A). The

modules were typically enriched with similar conserved processes:

growth related in the repressed modules and stress related in the

induced modules (Supplemental Table 3).

The pan-species pan-stress analysis also highlights species-

specific differences. First, down-regulation of growth genes (in

Module 1) and up-regulation of stress genes (in Module 7) is delayed

during oxidative stress in K. lactis and C. albicans, suggesting that

the ESR is initiated later in this stress in these species. A delayed

kinetic may suggest that the stress as perceived as ‘‘milder’’ by these

species. Second, comparison of Module 5 (mild induction) across

species suggests that this module emerged as a pan-stress ESR

module only at the LCA of S. cerevisiae and C. glabrata but was an-

cestrally induced only in heat shock. Genes in this module are

enriched in actin cytoskeleton organization and protein targeting to

the vacuole in all extant species. Third, Module 3 (mild repression,

especially in heat stress) in C. albicans consists of distinct genes than

in other species (Supplemental Fig. 10B), and is enriched for fatty

acid oxidation genes and sulfur amino acid metabolism genes. This

suggests a unique repression of these genes in this species under

heat stress, which may be related to their clade-specific duplication

in Candida, as we discuss below.

Finally, we identified putative genes of the LCA ESR response.

Specifically, 381 and 243 genes, respectively, belong to the most

repressed (Module 1) (Fig. 4D) and the most induced modules

(Module 7) (Fig. 4E) of the LCA in our pan-stress analysis (Sup-

plemental Table 4). Another 874 and 302 genes belong to the next

most repressed (Module 2) (Supplemental Fig. 11A) and induced

(Module 6) (Supplemental Fig. 11B) modules. Two hundred two

and 155 genes from Modules 1 and 2 are also members of the S.

cerevisiae repressed (517 genes) ESR. Sixty-two and 52 genes from

Modules 7 and 6 are also present in the induced (242 genes) ESR

(Gasch et al. 2000), suggesting substantial conservation of the

ancestral response (P < 10�12 for repressed modules to P < 10�15 for

induced modules, hypergeometric test). The ancestral induced ESR

is enriched for genes involved in proteolysis, carbon metabolism,

glutathione metabolism, amino acid transport, sporulation,

autophagy, and response to stress. The repressed ESR is enriched for

growth processes, such as ribosome biogenesis, RNA processing,

mitochondrial organization, purine metabolism, and chromatin

silencing.

Roy et al.
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Figure 3. Heat shock transcriptional response in eight Ascomycota species is captured by five modules. (A) Expression modules identified by Arboretum
in the transcriptional response to heat shock in eight species. Shown are the expression modules (1–5, heat maps, middle) in each of eight species (species
tree, left) at denoted time points prior to and following heat shock (time axis, right). Color bar denotes expression relative to pre-stress time zero. (Red)
induced; (green) repressed; (black) no change. Each heatmap shows the expression profile of all genes assigned to that module in a given species. The
heatmap height is proportional to the number of genes in the module (marked on top). All modules in one column are mapped to the same ancestral
module ID (1–5, top) at the LCA of these eight species. (B) Overlap of modules between species. Shown is the degree of overlap in orthologous genes
between every pair of modules 1–5 (rows and columns in each matrix) in every pair of extant species. Diagonal elements (red): overlap between modules
of the same ID; off-diagonal elements (blue): overlap between modules of different IDs. Red and blue intensity is proportional to �log (P-value) of the
hypergeometric distribution (color scales, right).
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Figure 4. Reconstructed evolutionary history of the environmental stress response. (A) Shown are the heat shock module assignments for each gene (column) in
each extant and ancestral species (row) for genes previously observed as repressed in the ESR (top) and induced in the ESR (bottom) in S. cerevisiae. Rows are ordered
using post-fix ordering (left: child; right: child and parent) of the species tree. Columns are ordered based on the module assignment of a gene in S. cerevisiae. (White)
Gene lost in species. (B) Similarity of stress modules within a species. Shown is a comparison of modules identified by Arboretum in the transcriptional response to
heat shock (Heat), oxidative stress (Ox), and salt stress (Salt) in S. cerevisiae (top) and ancestor A4 (bottom). Each matrix shows gene content conservation (F-score
overlap) between all pairs of modules for one pair of conditions in one species. F-score overlap ranges from 0 (no overlap, white) to 1 (full overlap, dark blue). (C )
Similarity of stress modules between species. Shown is the degree of overlap in orthologous genes between every pair of modules 1–5 (rows and columns in each
matrix) for S. cerevisiae and C. glabrata (top) and C. glabrata and K. lactis (bottom) in heat, salt, and oxidative stress. Black intensity is proportional to�log (P-value) of
the hypergeometric distribution. (D,E) Ancestral ESR. Shown are the expression profiles and Arboretum assignments of genes assigned to the most repressed (D)
and most induced (E) modules of the LCA, A11 in a pan-stress Arboretum analysis. Genes corresponding to these panels are provided in Supplemental Table 4.

1044 Genome Research
www.genome.org



Conserved expression of orthologous genes underlies
conserved expression of functional processes

Consistent with the overall conservation, some processes are

associated with the same module across species (e.g., ribosome

biogenesis with Module 1, protein folding with Module 5) (Sup-

plemental Table 2). This may be due to two possible scenarios: (1)

the ‘same’ (orthologous) genes from the associated process have

conserved expression across species and are hence members of the

‘same’ (orthologous) modules; or (2) distinct (nonorthologous)

genes from the same process are members of the ‘same’ (ortho-

logous) modules in different species. Although the first possibility

is simpler, there is support for the second possibility in cell cycle

genes in S. cerevisiae and S. pombe ( Jensen et al. 2006).

Supporting the first hypothesis, in ;40% of the processes

associated with the same heat shock module in two species (Sup-

plemental Methods), >70% of the genes associated with the pro-

cess in the two modules are orthologous (Supplemental Fig. 12A,

blue curve, dashed lines). One notable exception is ‘response to

stimulus’ (Supplemental Fig. 12; Supplemental Table 4), which is

enriched in Module 4 in several species through largely distinct

genes (Methods), reflecting the diverse set of processes included in

this category (nutrient sensing, mating, DNA damage, etc.) and

consistent with a faster evolution of the mechanisms by which

species interact with their environment.

Regulatory rewiring of processes is conducted through
distinct genes

In other cases, the same process is associated with distinct modules

(and expression patterns) in different species. For example, DNA

repair is associated with Module 2 in S. cerevisiae and C. glabrata

and with Module 3 in most of the other species. As before, this

could have occurred either through reassignment of orthologous

genes from one module to another or due to distinct genes. Sup-

porting the latter hypothesis, in 80% of the cases when two dif-

ferent (nonorthologous) modules in two species are associated

with the same process, there is <50% overlap between the process’

genes associated with the two modules (Supplemental Fig. 12A,

purple curve, dashed lines). One of the few exceptions where

process ‘reassignment’ was mediated through reassignment of

orthologous genes is ‘mitochondrial translation’ (Supplemental

Fig. 12C; Supplemental Table 4). This may be related to the dis-

tinction in carbon metabolism between species (Piskur et al. 2006).

Increased module divergence in heat shock compared
to glucose depletion

We next compared the heat shock modules to modules learned

independently by Arboretum from transcriptional profiles mea-

sured in the same eight species during gradual glucose deple-

tion in growth in batch culture (D Thompson, S Roy, M Chan,

M Styczynsky, J Pfiffner, unpubl.). By several measures, the degree

of conservation in the heat shock response is lower than in the

response to glucose depletion. These include: a less significant

overlap in gene content between each pair of orthologous modules

in the heat shock response (KS test, P < 10�4) (Fig. 5A); a lower

average probability of a gene to conserve its ancestral module as-

signment in the heat stress response (ancestral module conserva-

tion index [AMCI]; Methods) (paired t-test P-value < 10�2) (Fig.

5B,C); more frequent reassignment between modules in heat

shock than in glucose depletion (KS test, P < 10�29) (Fig. 5D); and

an overall higher degree of member turnover in the heat shock

response, defined as the fraction of genes that transitioned be-

tween modules at a given phylogenetic point (Fig. 5E). The notable

exception is the whole genome duplication (WGD) ancestor, with

lower AMCI and higher turnover in the glucose depletion response

(A5) (Fig. 5C,E, arrow), consistent with the rewiring of carbon me-

tabolism at the WGD (Piskur et al. 2006; Conant and Wolfe 2007;

D Thompson, S Roy, M Chan, M Styczynsky, J Pfiffner, unpubl.).

The increased divergence in the heat shock program is most
prominent in the highly induced Module 5 and is primarily
due to module expansion

To test whether the increased divergence in the heat shock re-

sponse affects all modules equally, we measured the degree of

conservation of each module in each response by the average

fraction of genes that were shared between each pair of species

(Methods). Module 5 conservation is lower in heat shock than in

glucose depletion (KS test P-value < 10�19; mean 0.43 6 0.199

STDEV in heat shock; mean 0.59 6 0.159 STDEV in glucose de-

pletion). Module 1 conservation is more comparable in the two re-

sponses, albeit still significantly lower in heat shock (KS test P-value <

10�8; 0.67 6 0.142 STDEV in heat shock; 0.75 6 0.122 in glucose

depletion). The higher conservation of Module 1 in both responses

reflects the known repression of growth processes in both heat shock

and nutrient limitation. The degree of divergence in the other three

modules is much more comparable in the two responses. The dif-

ferent species had a similarly robust response to stress by several

independent measures, including the effect on growth and changes

in expression of ESR genes (above and Wapinski et al. [2010]) (except

Schizosaccharomyces [Rhind et al. 2011]), suggesting that this in-

creased divergence is likely not due to an experimental limitation.

The divergence in the gene content of a given module could

result either from member genes ‘moving out’ of that module’s

ancestor (‘module contraction’) or from new members ‘moving

into’ this module (‘module expansion’), or both. We quantified

these using: (1) a module contraction index (MCI) that measures

the overall extent to which genes leave their ancestral module; and

(2) a module expansion index (MEI) that measures the overall

extent to which new genes join a module (Methods). Both Mod-

ules 1 and 5 have the lowest MCI in both responses (Fig. 6A), but

Module 5 has a relatively high MEI in heat shock compared to

glucose depletion (Fig. 6B), suggesting that its increased divergence

is likely a result of enhanced expansion. Computing these metrics at

each phylogenetic point identified the WGD ancestor (A5) to be one

of the most substantial expansion points in Module 5 (Fig. 6C,D).

Similar genes are stationary, but distinct processes are mobile
between modules in the two responses

We next examined if module reassignment of genes is reca-

pitulated in the two responses, by testing whether genes that are

reassigned between modules in one response (at a certain phylo-

genetic point) are as likely to be reassigned in the other response

(possibly at a different phylogenetic point). The stationary genes in

each response significantly overlap (189 in heat, 340 in carbon,

and 102 in both; hypergeometric P-value < 10�20), and are

enriched for similar processes (RNA metabolism and ribosome

biogenesis). Indeed, in both responses, growth-related processes

have a relatively low number of reassignments (KS test P-value <

0.05) (Supplemental Table 5). This is expected given the similar

functional role of growth repression in both stress and nutrient

limitation responses.

Evolution of transcriptional modules
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Although mobile genes also overlapped significantly between

the responses (187 in heat, 110 in carbon, and 37 in both; hyper-

geometric P-value < 10�20), they were not enriched for the same

processes (carbon metabolism and mitochondrial processes in

glucose depletion and amino acid metabolism in heat shock; KS

test P-value < 0.05) (Supplemental Table 6). Thus, although some

high-mobility genes may have ‘intrinsic’ regulatory flexibility, this

does not necessarily contribute to the regulatory rewiring at the

Figure 5. Heat shock modules diverge more than glucose depletion modules. (A) Conservation of gene content in orthologous modules (of the same
ID) for a pair of species in heat shock (y-axis) versus glucose depletion (x-axis). All points below the diagonal indicate that conservation of the
‘corresponding’ module pairs is lower in heat shock than in glucose depletion. (B) Ancestral module conservation index (AMCI). Shown are transition
matrices learned for C. glabrata in glucose depletion (top) and heat shock response (bottom). The matrix specifies the conditional distribution of modules in
C. glabrata given modules in its immediate ancestor, A4. Element intensity is proportional to the probability value. AMCI quantifies the extent to which
a species preserves its immediate ancestral module assignment and is calculated as the average of the diagonal elements. (C ) Higher AMCI in glucose
depletion than in heat shock. Each point in the scatter is the AMCI of all extant species (black circles) and ancestral species (gray circles) in response to heat
shock (y-axis) versus glucose depletion (x-axis). (Arrow) WGD ancestor (A5). (D) Higher module reassignment of genes in heat shock than in glucose
depletion. Shown is the histogram of the fraction of reassignments (out of the maximum possible) for heat shock (blue) and glucose depletion (red).
(E ) Module turnover is higher in heat shock than in glucose depletion. Shown is the degree of turnover at each ancestral (black) and extant (gray) species
for heat shock (y-axis) versus glucose depletion (x-axis). (Arrow) WGD ancestor (A5).
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level of functional processes. Such rewiring is instead mediated

through regulatory changes in distinct genes in different responses.

Gene duplication is a major source of module divergence

To assess the role of gene duplication in module divergence, we

compared modules reconstructed by Arboretum in either (1)

orthogroups with no duplication events (but allowing losses);

(2) orthogroups with at most one duplication event; or (3) all

orthogroups, including those with many duplication events

(Methods). Module conservation, as reflected by AMCI, decreases

as the number of duplications increases (Supplemental Fig. 13A),

suggesting that paralogous genes allow increased regulatory

divergence. This increased divergence is specifically due to

orthogroups with duplication: there are no significant differences

between the runs in the reassignment frequencies of orthogroups

with no duplications (Supplemental Fig. 13B).

Reassignment of paralogs between modules explains some of

the species-specific divergence patterns we observed. For example,

as noted above, in our pan-stress analysis (Supplemental Fig. 10),

the C. albicans Module 3 (mild repression, especially in heat stress)

is uniquely enriched for fatty acid oxidation genes, belonging to

orthogroups that were specifically duplicated in the Candida clade.

This duplication was accompanied by functional and regulatory

divergence. Those in Module 3, uniquely repressed in C. albicans,

are associated with induction of morphological changes (fila-

mentation and the white-to-opaque transition) related to patho-

genicity (Lan 2002; Shea and Del Poeta 2006; Shareck et al. 2011).

Their paralogs reside in the heat induced Module 6 and are in-

volved in peroxisomal fatty acid oxidation and iron homeostasis

(Singh et al. 2011). Thus, the neofunctionalization of these genes

was accompanied by regulatory divergence, reflected as species-

specific module reassignment of one member of each group of

paralogs.

Discussion
A major challenge in comparative functional genomics is to de-

velop methods that can relate complex functional data in mean-

ingful ways across a phylogeny. Unlike sequence data, studies of

the evolution of genomic responses still lack specific models. Here,

we addressed this challenge within the context of modular tran-

scriptional responses. Typical approaches that compare modules in

pairs of species attempt to enumerate all possible mappings be-

tween extant species, do not directly incorporate the tree structure

of species and genes, and hence do not scale well to dozens of

species. In contrast, Arboretum handles this mapping efficiently

by associating the inferred modules through their ancestry, ex-

plicitly modeling the transition of genes between modules. This

solves the mapping problem, is scalable to large numbers of spe-

cies, and can be easily applied to data sets with a different number

of measurements per species. To interpret Arboretum’s rich output,

we developed several generally applicable statistical measures.

In this and a companion study (D Thompson, S Roy, M Chan,

M Styczynsky, J Pfiffner, unpubl.), we showed how these can be

applied to study an individual response across species (heat stress

here and glucose depletion in D Thompson, S Roy, M Chan,

M Styczynsky, J Pfiffner, unpubl.), as well as to compare the global

evolutionary characteristics of two complex responses.

Our analysis indicates a higher degree of conservation of

stress responses than that suggested in a recent study of a similar

set of species and conditions (Tirosh et al. 2011). First, there is

Figure 6. Module contraction and expansion in heat shock and glucose depletion. (A,B) Module contraction index (A) and module expansion index (B)
in heat shock (gray) and glucose depletion (black) for each module M1–M5 (x-axis). Higher bars indicate a greater expansion (contraction) of a module.
(C,D) MCI and MEI for the most induced heat shock module (C ) and glucose depletion module (D) at individual phylogenetic points (x-axis).
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a somewhat higher degree of global correlation in expression

profiles between matching conditions in different species in our

study (Supplemental Fig. 14). This may be due to the fact that the

rich medium we used was optimized to minimize differences in

growth between species (D Thompson, S Roy, M Chan, M Styczynsky,

J Pfiffner, unpubl.), as compared to YPD previously used (Tirosh

et al. 2011). Second, our analysis relies on data collected along

multiple time points (Wapinski et al. 2010), thus reducing dif-

ferences that may manifest at a single time point (Tirosh et al.

2011). Indeed, the delay in the onset of the oxidative stress re-

sponse in two of the species would be missed by a single early

time point. Third, we carefully monitored growth curves (Wapinski

et al. 2010; D Thompson, S Roy, M Chan, M Styczynsky, J Pfiffner,

unpubl.) to ensure that all species were at a comparable physio-

logical state. Finally, most of our conclusions are drawn from Ar-

boretum’s module analysis, likely increasing the robustness of our

analysis and reducing our sensitivity to fluctuations in gene ex-

pression within species.

Arboretum and its associated analyses provide a promising

direction for comparative functional genomics and for other cases

when samples are related through a tree (e.g., a cell lineage) (Liu

et al. 2009; Novershtern et al. 2011). An important future direction

is to model gene expression at ancestral species (Gu et al. 2005).

One possibility is to assume a mean expression profile in the an-

cestral species and use a random effects model capturing how the

expression evolves. Other future developments can include ex-

plicit modeling of module birth and death, and direct association

with changes in regulatory mechanisms. Together, these can lead

to mechanistic and adaptive models of the evolution of regulatory

programs.

Methods

Overview of Arboretum
The full algorithmic details of Arboretum are given in the Sup-
plemental Methods. Briefly, Arboretum is a model-based cluster-
ing approach that uses a probabilistic generative model to cluster
multiple expression data sets, one for each extant species. The
generative model generates values for the ‘hidden’ module as-
signments and the observed expression values for each gene in
a species. The generative process for each orthogroup starts with
a module assignment drawn from the prior distribution at the LCA,
propagating it down through the branches of the species tree for
uniform orthogroups and gene trees for nonuniform orthogroups
until it reaches a leaf node. We use a Gaussian mixture to generate
the expression level of the gene at each leaf. The model parameters
are the Gaussian mixture parameters, the module prior probability,
and the transition probabilities along each branch, which are
learned by expectation maximization. When the algorithm con-
verges, we have a discrete probability distribution over module
assignments for each gene-species pair. A gene is finally assigned to
a module in a species s that has the highest probability of gener-
ating the gene’s expression profile in the species s (if extant) or its
descendant species (if ancestral).

Assessing Arboretum’s performance

We compared Arboretum to two algorithms, Orthoseeded species-
specific clustering (Waltman et al. 2010) and soft k-means clus-
tering (Kuo et al. 2010a), which are also detailed in the Supple-
mental Methods. We used four comparison measures, estimating
these from 20 different random initializations of each algorithm:
(1) Module stability, defined as the proportion of gene pairs that

coclustered; (2) Expression coherence, measured as the average pro-
portion of module genes whose expression profiles had a >0.8
correlation with the module’s mean; (3) Conservation of gene con-
tent, first identifying best matching modules in each pair of species
(the hypergeometric P-value), and then calculating conservation
for two species as the average of the maximal overlap scores; (4)
Performance on (simulated) ground truth to assess how well other
algorithms infer modules in extant species. We also used the sim-
ulated data for an accuracy and sensitivity analysis of initial pa-
rameter settings of Arboretum. The simulated data and all perfor-
mance measures are detailed in the Supplemental Methods.

Analysis of heat shock response in eight species

We ran Arboretum on expression data measuring the heat shock
response of eight species using orthology mappings from the Syn-
ergy algorithm (http://www.broadinstitute.org/regev/orthogroups/)
(Wapinski et al. 2007a). The strains, growth conditions, microarray
hybridization, and data preprocessing are described in detail in
the Supplemental Methods, and microrray data are available at
GSE38478. The majority of our analysis is on 3499 orthogroups
with at most one duplication event (1069 orthogroups with one
duplication event; 2430 are either uniform [no duplication or loss]
or have a loss). To assess the role of gene duplication in module
divergence, we included all 4215 orthogroups that had at least one
gene member in S. cerevisiae and in at least one other species (with
no limit on the number of duplications).

We selected the number of modules using a combination of
penalized log-likelihood of data per species and manual inspection
(Supplemental Methods). Based on penalized log likelihood of
separate clustering of each species as well as Arboretum-based
clustering of all species, the maximum number of modules for any
species was k = 11 (Supplemental Fig. 15A,B). However, the k = 11
case did not produce significantly different expression modules,
and were prone to seemingly arbitrary reassignment of module
genes between species, given the very similar expression patterns
in ‘adjacent’ modules. We therefore picked k manually (Supple-
mental Fig. 15C), choosing a number where different modules had
clearly distinguishable expression patterns (k = 5 for heat stress and
k = 7 for pan-stress).

Module conservation and divergence scores

To compare module conservation in extant species, we use
a hypergeometric test–based overlap (Supplemental Methods). For
comparisons that include the ancestral module assignments, we
defined:

Ancestral module conservation index (AMCI)

AMCI for each species with an ancestor measures the tendency of
a species to conserve the modules’ assignment of its immediate
ancestor. AMCI for a species t is the average of the diagonal ele-
ments of t’s transition matrix. Because each element is a probability
value, it is bounded between 0 and 1. The closer it is to 1, the more
likely is the species to preserve the module assignments of its im-
mediate ancestor; and the closer it is to 0, the more likely it is to
diverge from the module assignments of its immediate ancestor.

Module contraction and expansion index

Module contraction index (MCI) for module m at a phylogenetic
point s, is the ratio of the number of contractions (Supplemental
Methods) divided by the number of genes in module m in s’s an-
cestor t. Module expansion index (MEI) at s for m is the number of
expansions (Supplemental Methods) divided by total number of
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genes in module m in s. We also define a global MCI of a module m
as the sum of contractions for that module across all species with
a parent (that is, except the LCA) divided by a normalization term,
Zm

c, defined as follows: +s;t2S;s 6¼t Nm
st , where S is the set of all species

other than the LCA; t is s’s immediate parent; and Nm
st is the number

of genes for which we have a module assignment in both s and t and
the module assignment of the gene is m in the ancestor t. Similarly,
we define a global MEI as the sum of all expansions divided by
a corresponding normalization term (Supplemental Methods).

Gene ontology (GO) processes and cis-regulatory element
enrichment in modules

We use the FDR-corrected hypergeometric P-value to assess en-
richment of GO processes and cis-regulatory elements in a given
gene set (Supplemental Methods). GO terms for S. cerevisiae were
downloaded from the Saccharomyces Genome Database (SGD)
Release version 1.1556. For all other species, we use orthology to
transfer the gene ontology annotations, as previously described
(Wapinski et al. 2007b). For cis-regulatory elements, we used a
similar hypergeometric-based enrichment using a recently gener-
ated collection of species-specific motifs (Habib et al. 2012).

Assessing GO process conservation and divergence

To assess conservation in gene content for a process enriched in
orthologous modules (same IDs), we use F-score overlap of gene
members annotated with the process for each pair of modules
(Supplemental Methods). Briefly, for each process, p, enriched in
module m in at least two species, we take an average of F-scores first
over each pair of such species, and then over any modules enriched
in p in more than one species. Gene content conservation for
processes enriched in nonorthologous modules (different IDs)
are computed also using F-score, averaged between all pairs of
enriched nonorthologous modules (Supplemental Methods).

Comparing the reassignment tendency of genes under
different responses

Reassignment tendency measures how often a gene is reassigned at
any phylogenetic point starting from the LCA to any of the leaf nodes
(see Supplemental Methods for details). For orthogroups without
duplications, the reassignment fraction is the number of reassign-
ments divided by the number of phylogenetic points at which the
gene is not lost. For orthogroups with duplications, we compute the
reassignment fraction pre- and post-duplication separately, and take
an average of these quantities (Supplemental Methods). A gene is
called ‘‘high mobility’’ if it has a reassignment score of $0.5 and ‘‘low
mobility’’ or ‘‘stationary’’ if it has a reassignment score of <0.05.

Source code availability

Source code and usage instructions can be downloaded from
http://www.broadinstitute.org/;sroy/arboretum or http://pages.
discovery.wisc.edu/;sroy/arboretum.

Data access
The expression data sets associated with this study have been
submitted to the NCBI Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE38478.
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