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Abstract
Genetic variation influences the response of an individual to drug treatments. Understanding this
variation has the potential to make therapy safer and more effective by determining selection and
dosing of drugs for an individual patient. In the context of cancer, tumours may have specific
disease-defining mutations, but a patient’s germline genetic variation will also affect drug
response (both efficacy and toxicity), and here we focus on how to study this variation. Advances
in sequencing technologies, statistical genetics analysis methods and clinical trial designs have
shown promise for the discovery of variants associated with drug response. We discuss the
application of germline genetics analysis methods to cancer pharmacogenomics with a focus on
the special considerations for study design.
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Pharmacogenomics aims at understanding how genetic variants influence drug efficacy and
toxicity. Such studies can reveal how genetic variation across individuals affects a drug’s
pharmacokinetics and pharmacodynamics. If the associations of genotypes with drug-
induced phenotypes are reproducible and have large effect sizes, clinical use of such
information can be implemented for patient benefit. This is particularly important in
oncology because cancer is a leading cause of morbidity and mortality in industrialized
nations, and failed treatment is often life-threatening. The ability to predict how a cancer
patient will respond to a particular treatment regimen is the ambitious goal of personalized
oncology.

Although some somatic mutations in a tumour can define a patient’s disease and thus the
treatment choice (BOX 1), the study of germline genetic variation is the focus of this
Review. This germline variation, which is present in the patient’s normal tissues, will affect
the pharmacokinetics and pharmacodynamics of a cancer drug independently of the disease
type. Whatever germline variation affects development of disease may also contribute to
individualized responses to anticancer agents.

Box 1

Somatic mutations in cancer pharmacogenomics

Somatic mutations may be the drivers that define the cancer subtype, or they may simply
be passengers. Tumour samples are a mixture of cancer and normal cells, and this must
be accounted for when calling somatic mutations in DNA-sequencing studies96. Tumour
samples are often small biopsies that are formalin-fixed and paraffin-embedded (FFPE),
and thus DNA is partially degraded, so extra care must be taken to determine whether a
sample is amenable to genomic analysis96. The mutations within the cancer cells may
also be heterogeneous: that is, different sections of the tumour may be derived from
different clonal expansions97–99. The branched nature of tumour evolution is just
beginning to be studied in detail, but the current recommendation for dealing with this
heterogeneity in terms of treatment is to target ubiquitous alterations in the trunk of the
phylogenetic tree if such targeted drugs are available98. Targeted therapies have been
developed against some of the proteins (often tyrosine kinases) that are activated by
somatic mutations.

Pathway considerations are important when examining somatic mutations to identify an
appropriate targeted therapy. For instance, activation of epidermal growth factor receptor
(EGFR) signalling in lung cancer can occur through mutations in multiple different genes
within the pathway in addition to mutations in EGFR itself100. The International Cancer
Genome Consortium and the Cancer Genome Atlas are conducting large-scale genome
studies in thousands of tumours from more than 50 cancer types at the genome,
transcriptome and epigenome levels to define somatic driver mutations101–103. In
addition to defining somatic mutations, integrative studies of global mRNA and
methylation patterns may reveal new clinically relevant disease subtypes for prognosis
and therapeutic management. These large-scale sequencing projects plan to make the
genomic data publicly available, and data have already been used to identify possible
therapeutic inhibitors of genes that are amplified in ovarian cancer103. For some targeted
therapies, specific somatic mutations are predictive of treatment efficacy104–111, and the
US Food and Drug Administration (FDA) notes these associations in the drug labels, as
summarized in the table. Data in the table are taken from the FDA website.
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Drug Drug target Cancer type (or types) Somatic markers

Cetuximab EGFR Colorectal, head and
neck EGFR and KRAS

Erlotinib EGFR Lung, pancreatic EGFR

Exemestane Aromatase Breast ESR1, ESR2 and PGR

Gefitinib EGFR Lung EGFR

Imatinib
BCR–ABL, KIT and
PDGFRa tyrosine
kinases

Chronic myeloid
leukaemia,
gastrointestinal

Philadelphia
chromosome, KIT and
PDGFRA

Lapatinib ERBB2 receptor Breast ERBB2

Letrozole Aromatase Breast ESR1, ESR2 and PGR

Panitumumab EGFR Colorectal EGFR and KRAS

Tamoxifen Oestrogen receptor Breast ESR1, ESR2 and PGR

Trastuzumab ERBB2 receptor Breast, stomach ERBB2

Because somatic mutations can sometimes define disease subtypes, they may be
important covariates if different tumour types are combined in a germline
pharmacogenomic analysis. In addition, germline DNA variation may control which
somatic mutations a tumour is likely to acquire. One study found that squamous cell
carcinomas that independently arose were more similar within than among individuals,
demonstrating that germline genetic background probably affects patterns of somatic
change112. Therefore, somatic mutations have been used as endophenotypes to test for
germline genetic variants that confer risk for obtaining specific somatic mutations113–117.
For example, functional germline variants in EGFR may be associated with EGFR
somatic mutations in non-small-cell lung cancer117. BCR–ABL, oncogenic fusion gene;
ERBB2, also known as HER2 or NEU; ESR1, oestrogen receptor 1; PDGFRα, platelet-
derived growth factor subunit-α.

The current treatment for most cancers includes using cytotoxic chemotherapy, which is not
precisely targeted to the somatic mutations that drive malignant transformation as such
driver mutations are unknown for most patients. Studies of cell line pedigrees treated with
various chemotherapeutic agents have shown that some cytotoxic effects are probably
heritable1–3. Variations in the toxicities and responses experienced by cancer patients have
led researchers to search for germline genetic variants associated with chemotherapy-
induced phenotypes. One well-described example is that the standard dose of
mercaptopurine (which is a treatment for acute lymphoblastic leukaemia (ALL)) results in
life-threatening toxicity for individuals with certain variant alleles of thiopurine S-
methyltransferase (TPMT)4–6. The US Food and Drug Administration (FDA) now
recommends genotyping of TPMT, and individuals with inactive alleles are often
successfully treated with reduced doses of mercaptopurine4,7,8. Additional key germline
genetic variants that are associated with cancer-drug-induced phenotypes are shown in
TABLE 1.

Cancer pharmacogenomic studies have challenges in addition to those common to other
pharmacogenomic studies. Optimizing the design at the outset of a cancer
pharmacogenomics study will increase confidence in the findings, and the aim of this article
is to provide information about study design and analytical options. FIGURE 1 summarizes
the steps that will be discussed. Briefly, we look at commonly used designs, including those
incorporated into oncology clinical trials, potential confounders and examples of
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pharmacogenomic findings that have stemmed from such trials. We discuss factors affecting
the consistency of cancer pharmacogenomic studies and summarize key phenotypes and
endophenotypes to consider. We also summarize recent findings from preclinical models
that can potentially address some of the limitations of clinical pharmacogenomic studies. We
end with a discussion of how integration of new genomic technologies and statistical
analysis methods into anticancer agent clinical trials may aid in pharmacogenomic marker
discovery.

Overview of design options and challenges
Designs

The candidate gene approach has often been used in cancer pharmacogenomics6,9,10;
variants in known drug-metabolizing enzymes and drug targets are tested for association
with phenotypes of interest. Genotyping arrays containing hundreds of SNPs in known drug
absorption, distribution, metabolism and elimination (ADME) genes — such as the
Affymetrix DMET chip and the Illumina VeraCode ADME Core Panel — can be useful in
pharmacogenomic candidate gene studies11,12. Of course, the candidate gene approach
requires a priori biological knowledge and will miss unknown regions of association, but the
candidate gene approach may still have merit in cancer pharmacogenomics when patient
sample sizes are limited, particularly if pharmacokinetic data are also available. However, as
genotyping and sequencing costs continue to decline, every effort should be made to carry
out comprehensive genome-wide analyses to make the best use of available patient samples.

Clinical trials offer the ideal infrastructure for pharmacogenomic studies because of their
consistent drug dosing and phenotype collection. Phase I trials are designed to determine the
maximum tolerable dose of a new drug, and Phase II trials estimate the effectiveness of the
drug to determine whether it should proceed to Phase III. The sample sizes of Phase I and II
trials in oncology are often less than 100 individuals and thus are seldom amenable to
genome-wide pharmacogenomic discovery studies, but they may be useful in candidate gene
studies. Comparative Phase III trials often involve hundreds to thousands of patients and are
thus useful sources of data for genome-wide association studies (GWASs). Prospective
cancer pharmaco genomic studies can also be designed separately from clinical trials, but
care should be taken to ensure that consistent dosing regimens and phenotype and covariate
collection procedures are followed. Retrospective studies are possible and may allow a
larger sample size, but inconsistent treatments and data collection may confound results.

Challenges
Challenges in cancer pharmacogenomic studies abound. Cancer patients are often treated
with combinations of drugs, so large samples of patients treated with a single agent are rare.
In addition, the dosage of the drug may vary by regimen or indication, further complicating
efforts to study the pharmacogenomics of a specific drug of interest. Furthermore,
replication of discovery findings made in a GWAS from a large randomized clinical trial is
often difficult, because high costs and ethical considerations may mean that a second
identical trial is not feasible. Furthermore, when data from multiple studies are combined,
the potential for confounding variables increases (FIG. 2). Negative results in cancer
pharmacogenomic studies are abundant, and reasons may include inadequate sample size,
genotyping error, lack of inclusion of the causal genetic variation, phenotypic error or true
absence of an effect. The following sections discuss optimizing the design of cancer
pharmacogenomic studies to detect true associations (FIG. 1).
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Planning a study
Choosing a patient cohort

Ideally, patients in both candidate gene studies and GWASs will have been treated with a
single oncology drug so that phenotypic effects can be attributed to the drug of interest. In
addition, standardized dosing and scheduling of administration are important, as variation in
dose affects any drug-related phenotype. Specific drug-dosing schedules are used in
prospective clinical trials, providing consistent and well-maintained drug data for
pharmacogenomic studies. However, treatment arms on such trials may include multiple
therapies, which may or may not be of the same drug class.

To increase the sample size for a particular phenotype, it may be useful to combine data
from treatment arms of a clinical trial and then to control for potential confounding owing to
treatment differences in the statistical analysis. This strategy has been successful in a GWAS
of musculoskeletal toxicity induced by aromatase inhibitors used to treat breast cancer13 and
a GWAS of overall survival of pancreatic cancer patients treated with gemcitabine14

(TABLE 2). The clinical trial comparing the two aromatase inhibitors is an example of a
drug A versus drug B trial design. To account for potential differences in outcome between
the two drugs, each musculoskeletal toxicity case was matched to two controls on the basis
of treatment arm and other variables in a nested case–control design13. The pancreatic
cancer trial is an example of a drug A versus drug A + B trial design. In this type of trial, a
new agent is often added to the current standard of care. Here, patients with advanced
pancreatic cancer were treated with gemcitabine plus either bevacizumab or a placebo.
Testing a treatment arm covariate in the statistical model was used to control for potential
differences in outcome when the data were combined in a GWAS for overall survival14. In
this case, the top variant may have a prognostic effect for pancreatic cancer because
stratification by treatment arm does not negatively affect the variant’s association with
overall survival14.

Depending on the drug and phenotypes of interest, it may be possible to include a
heterogeneous population (for example, including multiple diseases or doses). For example,
a successfully replicated GWAS of methotrexate clearance combined data from ALL
patients on three different dosing regimens that included different drug combinations; these
differences were accounted for by using treatment regimen as a categorical covariate in the
statistical analysis15 (TABLE 2). The success of this study is probably due to the use of the
endophenotype of drug clearance, which is likely to be less affected by concomitant drugs
than some other phenotypes would be.

DNA source
For germline cancer pharmacogenomic studies, normal DNA is easy to obtain from blood
or, in the case of patients with blood cancers, saliva. Because tumour samples are a mixture
of cancer and normal cells, formalin-fixed and paraffin-embedded (FFPE) biopsy samples
should generally be avoided as a source of DNA for germline studies. In one recent large
study that attempted to replicate the associations between variants in CYP2D6 (which
encodes a cytochrome P450 enzyme) and tamoxifen-related phenotypes10,16,17, DNA was
extracted from tumour tissue in FFPE blocks18, and SNPs in CYP2D6 showed massive
departures from the Hardy– Weinberg equilibrium (HWE)19. In this case, the deviation from
HWE was consistent with a large proportion of hemizygous deletions of CYP2D6 in the
tumour tissue from which the DNA was extracted19. Thus, the tumour tissue did not reliably
reflect the germline genotype, greatly limiting interpretation of this data set.

Although the use of FFPE DNA for assessment of germline genotype is fraught with hazard,
there are many well-phenotyped cancer patient data sets for which only FFPE DNA is
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available20. Therefore, just as phenotyping stringency may be relaxed to increase sample
size, researchers may choose to relax genotyping stringency and to use FFPE-derived
genotypes. Using FFPE genotypes is only feasible if the DNA quality is high, if the
percentage of failed variant calls is extremely low (that is, on a level comparable with blood-
derived genotypes) and if there is strong reason to believe that the region of interest does not
contain point mutations, deletions (that is, loss of heterozygosity, as was the case in the
CYP2D6 study18,19) or amplifications. Importantly, the source of DNA should always be
noted in publications so that readers are aware of potentially inaccurate genotypes that may
confound results. The CYP2D6 study18,19 highlights the need for close collaboration among
statistical geneticists, genotyping laboratories and clinical investigators to ensure appropriate
quality control and genetic analysis in cancer pharmacogenomic studies.

Optimizing sample size
The appropriate sample size will depend on the expected effect sizes of the genetic variants
as well as the number of variants to be tested (that is, whether a candidate gene study or a
GWAS is being carried out). In discovery GWASs, expected effect sizes are unknown, and
thus large sample sizes (for example, thousands of individuals in a treatment group) are
necessary to detect common variants with small effect (odds ratios from 1.1 to 2), as are
often observed in disease-susceptibility GWASs21. Whereas technological advances in
genotyping technologies have decreased costs and allowed larger sample sizes,
pharmacogenomic GWAS sample sizes have typically ranged in the hundreds13–15,22.
Efforts to increase the size of clinical trials would help to detect small effect size
associations, but this is not always possible if the frequency of use of a particular drug is
low. In addition, current clinical trials are powered to detect differences in outcome among
treatments, not genetic associations. However, several pharmacogenomic GWASs involving
~100 cases have detected statistically significant associations, suggesting that the effect
sizes for some drug-induced phenotypes are much larger and involve fewer genes than those
detected in GWASs for complex disease susceptibility23. For example, genome-wide-
significant associations of genetic variants in solute carrier organic anion transporter family,
member 1B1 (SLCO1B1) with myopathy induced by the cholesterol-lowering drug
simvastatin were identified in a discovery GWAS cohort of 85 cases and 90 controls owing
to the large effect size (odds ratio = 4.5) of the risk allele24. This association has since been
replicated in additional cohorts24,25. Cancer pharmacogenomic GWASs have shown
promising results with samples sizes in the hundreds (TABLE 2), but replication is still an
issue for many studies. Currently, there simply are not enough well-phenotyped patient data
sets for most cancer drugs under investigation to make replication studies feasible,
especially when effect sizes are small. Alternative approaches are discussed in later sections.

Key cancer phenotypes
Our definition of phenotype in cancer pharmacogenomic studies refers to overt clinical
phenotypes, such as adverse events and measures of efficacy. Selection of phenotypes is a
crucial step in the execution of a strong pharmacogenomic study. For cancer studies,
especially in retrospective analysis of large trials, selection of phenotypes has been a
fundamental challenge. Here we describe the phenotypes that are typically available from
clinical trials and the development of tools that may allow more effective and efficient
studies of cancer pharmacogenomics.

For patients in cancer trials, clinicians typically rate the severity of treatment toxicities
according to standardized ordinal scales such as the Common Terminology Criteria for
Adverse Events (CTCAE) developed by the US National Cancer Institute and used in most
international studies. CTCAE has been useful for managing the safety of new anticancer
agents in clinical trials and provides investigators and clinicians with a generally uniform
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reference for the relative toxicity of different agents and treatment regimens. However,
clinicians vary in the rigour and expertise with which they rate the severity of adverse events
among their patients, and the recording of graded toxicity is infrequent outside clinical trials.
For some adverse events, quantitative information is compressed into ordinal categories; for
others, the rating is dependent on the action the physician chooses to take rather than the
intrinsic severity of the event, and for others, well-validated scales of symptom rating26 that
work better than the CTCAE scales are available. Therefore, although CTCAE data may be
a phenotype of convenience, efforts to find germline genetic associations can yield results
that are not reproducible, possibly owing to differences in the phenotyping. Thus, accessing
primary quantitative data (for example, blood pressure measurements instead of the CTCAE
hypertension rating) or prospectively incorporating validated symptom-reporting scales26 is
preferred.

Despite their limitations, CTCAE ratings have successfully been used as phenotypes to
identify germline genetic predictors of toxicities in patients13,22. As was done in these
studies, investigators should familiarize themselves with the empiric observations and
actions of the clinicians who have conducted the phenotyping to identify robust
pharmacogenomic markers of adverse events. Frequently, investigators can identify a
clinically relevant threshold level for defining adverse events on the CTCAE scale.
Collaborations among the geneticists, pharmacologists and clinicians involved in the study
with some familiarity with the cross-disciplinary analytical principles can be essential to
cancer pharmacogenomic toxicity studies.

Clinical investigators usually rely on another categorical system to evaluate effects of
treatment on disease: the Response Evaluation Criteria in Solid Tumours (RECIST).
RECIST was developed to standardize assessment of tumour response in patients enrolled in
clinical trials27. Typically, computed tomography (CT or ‘CAT scan’) images are used, and
the single longest dimension of each of several tumour masses is measured before and at
intervals after the initiation of treatment. The change in tumour size at each interval is
categorized as complete response, partial response, stable disease or progressive disease27.
Progression-free survival is quantified as the time on treatment until there is an increase in
tumour burden. The drawbacks of this approach towards assessing tumour burden have been
described elsewhere28–30. Given the complexity of this efficacy phenotype, most efforts to
detect associations will be underpowered and difficult to replicate. Furthermore, the most
important clinical endpoint — overall survival — is confounded by many other factors, such
as superimposed illness, disease heterogeneity and prior therapies. Adoption of quantitative
models that estimate the effect of a drug on the typical growth rate of a particular tumour
over time should provide a more sensitive outcome phenotype for future pharmacogenomic
studies28,29,31.

Key cancer endophenotypes
Endophenotypes are the more quantitative, intermediate phenotypes between genetic
variants and the clinical phenotypes discussed above. Therefore, using these may lead to
pharmacogenomic associations that might be missed with less precise measurements.
Endophenotypes such as peripheral blood enzyme function measurements6 and plasma drug
concentrations15,32 have been the primary means by which cancer pharmacogenetic markers
have been first identified. Additional useful endophenotypes to test for association with
germline genetic variants include changes in serum protein concentrations and clinical
measures such as blood pressure after treatment33. In vitro endophenotyping (for example,
global gene expression and methylation patterns34–36) is another discovery strategy. Several
recent studies have used expression quantitative trait loci (eQTLs) discovered in cell lines to
find associations with cancer patient phenotypes37–39. Perhaps most importantly,
endophenotyping offers the opportunity to optimize measurement techniques, to
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discriminate among candidate phenotypes for further investigation and to incorporate
knowledge derived from other populations and studies of related endophenotypes.

Statistical analyses
The statistical approaches for detecting associations between germline genetic variation and
pharmacogenomic phenotypes are largely the same as those for complex disease
susceptibility40–42. Here we highlight some particular considerations for working with data
from cancer studies.

Correlated phenotypes
In oncology trials, multiple correlated phenotypes (for example, tumour response,
progression-free survival and overall survival) are available for pharmacogenomic analysis.
If GWAS analyses are carried out on multiple phenotypes, the temptation to report just the
‘winner’ phenotypes (that is, those with significant P values) without correcting for multiple
testing should be avoided43. Methods that combine correlated phenotypes in GWASs have
shown increased power to detect SNP associations44,45. Thus, combining the multiple
phenotypes available may lead to additional associations that were not discovered when
phenotypes were singly analysed.

Heterogeneity and meta-analysis
Sources of heterogeneity specific to cancer pharmacogenomics may include the drug dose
administered, drug combination received, cancer type and cancer stage (which is a
categorization of the extent of disease). For cancer drugs, it is important to incorporate
potential treatment heterogeneity into analyses. For instance, when tamoxifen is given as
monotherapy, a significant association between germline CYP2D6 genotype and disease
outcome has been shown in multiple studies (especially those not using tumour
DNA)10,16,17,46. However, in studies in which tamoxifen was given as a part of a
combination chemotherapy regimen, most failed to replicate the CYP2D6
association16,47,48, demonstrating that concomitant medications can confound
pharmacogenomic relationships. Conflicting results in the CYP2D6–tamoxifen studies can
occur for additional reasons, which have not been as thoroughly examined, including
statistical power, dosage and duration of tamoxifen administration and classification of the
CYP2D6 genotype groups16.

Efforts among consortia to reduce heterogeneity between studies from the beginning would
allow more cancer pharmacogenomics studies to be combined in meta-analyses. As in any
meta-analysis, consistent phenotyping allows effect sizes to be combined in either fixed
effects models or random effects models, which are statistically more powerful than
methods that combine P values or Z scores40. In addition to these classic frequentist
approaches, Bayesian models for meta-analysis may be particularly useful in cancer
pharmacogenomics because they allow sequential incorporation of new data as it becomes
available, perhaps even before a clinical trial ends49. Previous analyses form the prior belief
and estimates of association are updated with each new data set to generate a posterior
belief43,50,51. This approach has been used to identify risk markers for prostate cancer and
colorectal cancer52,53.

The incorporation of cancer-specific and other potential covariates in cancer
pharmacogenomic studies is discussed in BOX 2. If GWASs are combined in a metaanalysis
and if some studies contain certain covariates, whereas others do not, the results must be
interpreted carefully. The top SNPs from such a meta-analysis are most likely to be those
with associations that are largely independent of the covariates41. Another source of
heterogeneity among studies in a meta-analysis may be population differences; SNPs that
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are associated with a phenotype in all populations are prioritized over those associated in
only one of the populations. Random effects models handle the possibility of heterogeneity
among studies better than fixed effects models: the trade-off is that the standard errors are
larger41. Tests of heterogeneity can assist researchers in deciding which model to
choose41,43,54.

Box 2

Covariates in cancer pharmacogenomics

As in any genome-wide association study (GWAS), important covariates to consider in
cancer pharmacogenomics studies include age, sex and genetic ancestry, which is often
estimated by principal components analysis118. In addition, several potential confounders
specific to cancer drug studies should be collected when possible and tested for
association with phenotypes of interest. If an association with phenotype is detected, then
the variable should be included as a covariate in the regression models testing for SNP
associations. Covariates to consider for inclusion in cancer pharmacogenomics studies
are listed.

Covariate Variable type

Treatment arm or regimen Discrete

Cancer subtype Discrete

Cancer stage Discrete

Cumulative drug dose Continuous

Somatic mutations Discrete (present or absent)

Additional medications Discrete or continuous (if dose information)

Body surface area Continuous

Age Continuous

Sex Discrete

Ancestry Continuous (principal components)

An alternative approach is to incorporate the cumulative dose of a drug each patient has
received into a phenotype of interest. This approach is similar to survival analysis, and
this accounts for censoring in the data. Although survival analysis models ‘time to event’,
this approach models ‘dose to event’. The event could be an adverse event, tumour
progression or death. Dose-to-event analysis has been successfully used to identify
genetic variants associated with paclitaxel-induced sensory peripheral neuropathy22

(TABLE 2). In this example, the phenotype tested was the cumulative dose of paclitaxel
that either triggered the first grade 2 or greater sensory peripheral neuropathy episode or
the total dose of paclitaxel that the patient received if no neuropathy was experienced22.
Patients without neuropathy are effectively ‘right-censored’ at the cumulative dose level
because the dose that would cause neuropathy in these patients is greater than (that is, ‘to
the right of’) the dose received.

Replication and validation
After putative associations have been discovered in genome-wide or candidate studies,
follow-up studies in patients can test the variants of interest in an attempt to replicate the
initial findings. The effect sizes and allele frequencies from the discovery study can be used
to estimate the appropriately powered sample size for the replication study. Importantly, the
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effect sizes are often overestimated in discovery GWASs owing to the winner’s curse
phenomenon55–57. The inadequate sample sizes that are often used in cancer
pharmacogenomics contribute to upwardly biased effect sizes with large standard errors,
especially among SNPs with low minor allele frequencies56. Thus, most putatively positive
genetic associations are probably false positives, and replication is crucial58,59. Methods that
account for such biased estimates when designing replication studies have been
developed55,57.

Replication attempts for cancer pharmacogenomics are often hindered by the lack of an
appropriate patient replication cohort. An example is an association (found in a GWAS)
between a functional nonsynonymous variant in interleukin 17F (IL17F) and survival in
pancreatic cancer. This has not yet been replicated owing to the lack of an existing trial with
the same eligibility criteria and drug treatment as the discovery study (which used
gemcitabine with or without bevacizumab)14 (TABLE 2). Although the perfect replication
trial may never exist, unreplicated associations from pharmacogenomic GWASs should be
reported in the literature so that groups with related patient data can test for replication. For
instance, the finding of an association of a SNP with methotrexate clearance15 has now been
replicated in an additional ALL patient cohort by an independent group of investigators60

(TABLE 2).

Although testing for replication in independent patient cohorts is ideal, if such a cohort is
unavailable, follow-up functional studies in model systems can be carried out to strengthen
confidence in the initial findings. For example, in the case of the top SNP associated with
musculoskeletal toxicity in patients with breast cancer who are receiving aromatase
inhibitors, the risk allele was predicted to create an oestrogen response element at the T cell
leukaemia/lymphoma 1A (TCL1A) locus13 (TABLE 2). Chromatin immunoprecipitation
experiments in lymphoblastoid cell lines (LCLs) of known genotype transfected with
oestrogen receptor-α (ERα) confirmed that ERα could bind to the risk allele sequence but
not to the major allele13. An additional follow-up study showed that oestrogen-induced,
SNP-dependent TCL1A expression altered the expression of multiple cytokines and nuclear
factor κB (NFκB) in LCLs and an osteosarcoma cell line, providing further evidence for the
involvement of TCL1A in aromatase-inhibitor-induced musculoskeletal pain61. Positive
functional studies such as these might encourage the collection of replication cohorts in the
future.

Alternatives to clinical GWASs
Even without a large enough patient cohort to attempt a GWAS, pairing patient germline
variant association data with extensive functional work may implicate genes in drug
responses. For example, a recent study used whole-genome structural variant data from just
five chronic myeloid leukaemia (CML) patients to identify a common deletion in BCL2-like
11 (BCL2L11; also known as BIM) in the three of these patients who were resistant to
tyrosine kinase inhibitors62 (TABLE 2). The deletion altered splicing, resulting in BIM
isoforms lacking a pro-apoptotic domain. Extensive functional studies in CML and lung
cancer cell lines showed that the polymorphism was sufficient to confer resistance to
tyrosine kinase inhibitors by decreased activation of apoptosis. After demonstrating this
functional mechanism for the deletion, the authors showed that patients with CML or lung
cancer who carry the germline deletion experienced significantly inferior responses to
tyrosine kinase inhibitors62 (TABLE 2).

Cell lines
In addition to their use in functionally validating findings from GWASs and sequencing
studies in patients, cell line models can be used in discovery studies to generate hypotheses
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that can eventually be tested in patients. A major limitation of all cell line models is that
most drug-induced effects involve the interaction of different cell types and organs; thus, a
single model system cannot represent the complexity of drug effects in the human body.
However, the advantages of cell line models are numerous, including the ease of
experimental manipulation and a lack of the in vivo confounders present in clinical samples.

The availability of extensive genotype data for many panels of LCLs derived from
individuals of diverse ancestry, including those from the HapMap63,64 and 1000 Genomes65

projects, facilitates the study of genetic variants predicting drug susceptibility. Most often in
such studies, LCLs are treated with increasing concentrations of a drug, and individual
cellular sensitivity to the drug is measured by cell growth inhibition or apoptosis assays
followed by GWASs that often incorporate genome-wide gene expression35,66,67.

For example, a cytotoxicity-associated SNP discovered in carboplatin-treated LCLs is also
associated with progression-free survival and overall survival in 377 ovarian cancer patients
treated with carboplatin and paclitaxel37. Several additional discovery associations made in
LCLs have been replicated in patient cohorts38,39,68,69. Because a subset of SNPs from the
initial LCL GWAS analyses are tested in patients in these types of studies, the multiple
testing penalty is not as severe, and a smaller clinical sample size can be used. However, it is
unclear how effect sizes translate between LCL and patient cohorts, especially because the
phenotypes measured in each usually differ.

To investigate further the relevance of a SNP in tumour response to a drug, functional
studies are often carried out in cancer cell lines from the appropriate tumour type for the
drug of interest67,70. For instance, follow-up functional experiments using RNAi in a lung
cancer cell line were used to test the top hits from a genome-wide analysis in LCLs and
confirmed the involvement of two genes in response to pemetrexed71. In another recent
study, a systems-biology approach was used to compare the cell growth inhibition caused by
77 therapeutic compounds across 50 breast cancer cell lines of various subtypes72. Using
integrative analysis of gene expression and copy number data, the authors showed that some
of the observed breast cancer subtypeassociated responses can be explained by specific gene
pathway activities; these findings may lead to additional drug targets72.

Resequencing to detect rare variants
GWASs have successfully identified common risk variants for many complex diseases, and
such methods have begun to be applied to cancer drug clinical trial data sets13,14,22. As has
been proposed for complex disease susceptibility73–75, cancer pharmacogenomic traits are
likely to have multiple common and rare variants that, when combined, predict response to
therapy.

In a follow-up study to the previously discussed methotrexate clearance GWAS15, deep
resequencing of the SLCO1B1 locus in 699 paediatric ALL patients was carried out76

(TABLE 2). SLCO1B1 variants accounted for 10.7% of the population variability in
clearance. Rare nonsynonymous variants comprised 17.8% of the SLCO1B1 variation and
had larger effect sizes than did the common nonsynonymous variants76. Such studies have
much less power to detect the effects of rare alleles than common alleles do; thus, when rare
variant associations are found, the effect sizes are probably larger than those of common
variants. These results support the hypothesis that a combination of common and rare
variants is likely to be important for pharmacogenomic phenotypes.

Next-generation sequencing methods have made the discovery of rare genetic variants
throughout the genome fast and affordable. Because sample sizes in cancer
pharmacogenomics are often in the hundreds rather than thousands, methods for combining
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multiple rare variants (minor allele frequency <0.01) within a gene or region into a single
association test will be needed, and several have been proposed77–79. One method of testing
for gene-level associations in discovery studies assumes that genes with a preponderance of
low-frequency alleles in individuals with extreme phenotypes are more likely to modulate
that phenotype79. This method was applied to a warfarin-dosing GWAS data set of 181
patients and identified both vitamin K epoxide reductase complex, subunit 1 (VKORC1) and
cytochrome P450, family 2, subfamily C, polypeptide 9 (CYP2C9), whereas the original
GWAS identified only VKORC1 (REFS 79,80). Both genes were implicated in warfarin
dosing in a follow-up traditional GWAS of 1,053 patients81. Thus, allele aggregation
methods may implicate genes in cancer pharmacogenomic data sets that were not found in
traditional GWASs, even without increasing sample size. Of course, the alleles cannot be so
rare that they are not detected in the patient cohort.

In terms of cancer pharmacogenomics, these rare variant methods are likely to be tested in
cell line models first, as genome sequencing through the 1000 Genomes Project has been
carried out for many LCLs for which chemotherapy-induced cytotoxicity data are
available65,82. A recent exploratory study sequenced 202 drug target genes in 14,002
individuals and found that rare variants (with a minor allele frequency <0.5%) are abundant
(with a frequency of 1 every 17 bases)75. The cohort included individuals from case–control
studies of 12 different complex diseases. Many of these rare variants are predicted to be
deleterious (~56% of the nonsynonymous variants) and are likely to be relevant to
understanding pharmacogenomic variation. As costs continue to decrease, patients in
clinical trials will probably undergo whole-genome (or exome) sequencing rather than
genotyping on SNP arrays. It has recently been shown that extremely low-coverage
sequencing (0.1–0.5×) combined with imputation captures almost as much of the common
variation (>5%) and low-frequency variation (1–5%) across the genome as SNP arrays at a
reduced cost83, and so this approach might be used for future GWASs.

Under the extreme phenotype hypothesis, one approach to reduce the amount of sequencing
required is to sequence only individuals in the upper and lower tails of a phenotypic
distribution84–86. For example, the therapeutic dose of a particular drug may vary tenfold
between the 5% of patients that are most sensitive and the 5% of patients that are most
resistant: both of these sets of patients may be enriched for the genetic variants that
contribute to differences in drug sensitivity87. Exome sequencing of extreme phenotypes in
91 patients was recently successful in the discovery of a gene involved in chronic
Pseudomonas aeruginosa infection in cystic fibrosis, demonstrating the potential use of the
approach88. Reducing phenotypic variance by taking as many measurements as possible
under such an approach is crucial for ensuring that the individuals sequenced are truly those
with the extreme phenotypes.

Conclusions and future directions
Successful GWASs of cancer pharmacogenomic phenotypes are possible (TABLE 2), but
replication of germline variant associations has been difficult, often because of challenges
associated with large, clinical trials and a lack of well-defined replication populations in
oncology. Germline DNA collection and consent for genetic studies from as many
participants in future cancer drug clinical trials as possible will allow genome-wide
pharmacogenomic association studies of cohorts with standardized dosing and phenotype
collection. Another approach that can be considered is pathway-based analysis (BOX 3);
like methods that combine rare variants within a gene into a single association test, variants
within a pathway can also be combined. Pathway-based approaches provide a more
powerful analysis of GWAS data sets41,89 than do analyses of single variants or genes. Such
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approaches may be particularly useful for pharmacogenomic analysis of oncology clinical
trials, which are often underpowered to uncover variants with small effect sizes.

Box 3

Pathway-based association approaches in cancer pharmacogenomics

Pathway-based association analysis combines variants in genes in a known molecular
pathway to test whether the pathway is associated with the phenotype. Genes do not work
in isolation; instead, complex molecular networks and pathways are often involved in
biological processes. Thus, it is feasible that variation in different genes from the same
pathway may lead to similar phenotypic outcomes. The pathway-based approach is useful
because an implicated pathway is readily biologically interpretable. For example, the
interleukin 12 (IL-12)–IL-23 cytokine pathway has been found to associate with
susceptibility to the autoimmune disorder Crohn’s disease in multiple populations119, and
this is plausible given the role of cytokines in immune responses. It may not be possible
to uncover variants conferring modest phenotypic risk in multiple underpowered
genome-wide association studies (GWASs), but these variants can sometimes be readily
identified by a pathway-based approach in a single study119. Therefore, such approaches
may be particularly useful in cancer pharmacogenomics. Importantly, as the most
associated gene in a pathway might not be the best candidate for therapeutic intervention,
knowledge of potential targets within a pathway may have clinical implications for
finding new drugs that either decrease toxicity or increase tumour response.

Multiple statistical methods have been developed to combine variants within a pathway
into an association test and have been reviewed elsewhere41,89. Key considerations are
which pathways to test and how to assign variants to genes. Genome-wide approaches
often define pathways according to the Kyoto Encyclopedia of Genes and Genomes
(KEGG)120 and the Gene Ontology121. Variants can be assigned to genes on the basis of
either a predefined base pair distance or putative variant function (for example, amino
acid change or regulatory activity). Candidate pathway approaches may also be useful in
cancer pharmacogenomics. The Pharmacogenomics Knowledgebase (PharmGKB)122

manually curates pharmacokinetic and pharmacodynamic pathways for well-studied
drugs, including many anticancer agents. The pathway for a particular drug could be used
to determine whether variation in included genes associates with the variation in response
to that drug. Additionally, in the case of a lesser-studied drug, multiple PharmGKB
pathways could be tested to determine whether any known pathways also associate with
phenotypes induced by the lesser-studied drug. Such an analysis could reveal related
mechanisms of action between drugs.

Cancer pharmacogenomic studies have demonstrated the potential to make therapy safer and
more effective for patients. Although most current recommendations are for somatic variants
(BOX 1), the FDA has included information in the labels of at least seven cancer drugs for
which germline variants predict toxicity90. Because of phenotypic heterogeneity (for
example, some heterozygotes for reduced TPMT activity tolerate full mercaptopurine doses,
but others do not), the FDA will often recommend rather than require a particular
pharmacogenetic test (for example, see these FDA summary minutes). The
Pharmacogenomics Research Network routinely publishes gene-based drug-dosing
guidelines for well-established associations, such as TPMT and mercaptopurine, through the
Clinical Pharmacogenetics Implementation Consortium (CPIC)7,91. For these guidelines to
improve patient care, full clinical implementation will require widespread physician
education, acceptance and automated decision support.
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As studies move beyond known drug targets and drug metabolism enzymes, the common
variants associated with cancer pharmacogenomic traits may have smaller effect sizes so
that they are able to predict a response only when combined. Until discoveries are made and
validated to high confidence, clinical utility cannot be assessed. Recently, two polygenic
modelling methods have been developed to detect the contribution of larger numbers of
common SNPs to complex phenotypes in GWAS data: polygenic risk score analysis92 and
mixed linear modelling93,94. In polygenic risk score analysis, an additive polygenic risk
score based on SNPs below a predetermined P value threshold in a discovery set of samples
is then tested in an independent set of samples. The mixed linear modelling method
estimates additive genetic variance under a mixed linear model with a random effect
representing the polygenic component of trait variation. Applying similar models to the
analysis of cancer pharmacogenomics may implicate new biological factors that influence
such traits and inform the types of genetic variants that should be examined in future studies.

Clinical translation will be more challenging when results move beyond individual genes of
strong effect and into such polygenic models. However, advances in sequencing
technologies, statistical genetics analysis methods and clinical trial designs have shown
promise for additional cancer pharmacogenomic discovery. In the future, every patient’s
catalogue of drug-related germline variants may be readily available, and algorithms that
combine well-validated genetic variants of small effect to explain a large proportion of the
variance in treatment toxicity or response could be applied to a patient’s data to provide
clinicians with immediate treatment recommendations95. Until then, with the goal of
reducing toxicity and improving patient outcomes in mind, the next wave of cancer
pharmacogenomic discovery will inform researchers about the underlying genetic
architecture of variable drug response and may potentially reveal genes and pathways that
can be used as targets for new drugs.
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Glossary

Efficacy In oncology, this term refers to measures such as tumour
response, progression-free survival and overall survival

Pharmacokinetics The effect of the body on the drug: that is, the process by
which a drug is absorbed, distributed, metabolized and
eliminated by the body

Pharmacodynamics The effect of the drug on the body: that is, drug targets and
mechanisms of action

Nested case–control
design

A case–control study in which only a subset of controls is
compared to the cases by matching controls to the cases on
known covariates that associate with the phenotype of interest.
It increases efficiency and may reduce genotyping costs

Adverse events Toxicities or side effects attributed to the use of a particular
drug
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Common Terminology
Criteria for Adverse
Events (CTCAE)

Organizes adverse events by body system and rates each
specific event according to a 1–5 scale: 1, mild but not
warranting intervention: 2, moderate with medical intervention
or temporary cessation of treatment warranted: 3, severe
requiring intensive medical intervention or hospitalization: 4,
life-threatening: and 5, death

Tumour response How a tumour changes or does not change in size after a
particular treatment regimen

Fixed effects models A type of meta-analysis that combines the effect sizes
(estimates) across studies that each have the same phenotype
measured on the same scale and assumes the genetic effects are
the same across the different studies

Random effects models A type of meta-analysis that combines the effect sizes
(estimates) across studies with the same phenotypic
measurement, allows the genetic effects to be different across
the different studies and provides a measure of heterogeneity
across the studies

Z scores A statistical measure that quantifies the number of standard
deviations that an observed data point is from the expected
value under no association

Bayesian models A statistical framework that incorporates uncertainty in prior
beliefs about parameters such as between-study variance,
effect size and genetic model (that is, additive and dominant)
into association testing

Winner’s curse
phenomenon

Refers to the overestimation of the effect size of a newly
identified genetic association because many genome-wide
association studies are underpowered for detecting small
genetic effects at a stringent genome-wide significance level. It
implies that the sample size required for a confirmatory study
will be underestimated, resulting in failure to replicate the
association

Censoring A type of missing data problem that occurs when the value of a
measurement is only partially known (for example, in survival
analysis, it might be known only that the date of death is
sometime after the date of last patient contact)

Extreme phenotype
hypothesis

The assumption that individuals with the most severe drug
response phenotypes are more likely to carry alleles that
associate with the phenotypes
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Figure 1. Steps in cancer pharmacogenomic study design
This flow diagram outlines the main steps in a cancer pharmacogenomic study design. In
addition to making these key decisions, potential covariate data should be collected, as
discussed in BOX 2. GWAS, genome-wide association study.
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Figure 2. Negative relationship between sample size and drug treatment consistency in cancer
pharmacogenomics
To test for replication of findings from preliminary genome-wide association studies
(GWASs), it is necessary to combine data sets from multiple trials and retrospective patient
collections. Therefore, the phenotype and covariate data become less consistent, increasing
the potential for confounding variables. The sample size (x) will vary depending on the
prevalence of the type of cancer under study and the prevalence of the drug’s use when
collecting retrospective data, but often x is ~1,000.
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